Sedimentology and Paleontology of the Lower

Total Page:16

File Type:pdf, Size:1020Kb

Sedimentology and Paleontology of the Lower SEDIMENTOLOGY AND PALEONTOLOGY OF THE LOWER JURASSIC SCOTS BAY FORMATION, BAY OF FUNDY, NOVA SCOTIA, CANADA A THESIS PRESENTED BY HASSAN SALEM HASSAN Submittad in partial fuifiilment of the requirements for the Degree of Master of Science (Geology) at Acadia University Wolfville, Nova Scotia Canada Spring Convocation 2000 O Copyright by Hassan S. Hassan National Library Bibliothèque nationale 1*1 of Canada du Canada Acquisitions and Acquisitions et Bibliographie Services services bibliographiques 395 Welfington Street 395. rue Wellington OttawaON KlAON4 OtfawaON KlAW Canada Canada The author has granted a non- L'auteur a accordé une licence non exclusive licence allowing the exclusive permettant à la National Library of Canada to Bibliothèque nationale du Canada de reproduce, loan, distribute or sel1 reproduire, prêter, distribuer ou copies of this thesis in microfonn, vendre des copies de cette thèse sous paper or electronic formats. la forme de microfichelnlm, de reproduction sur papier ou sur format électronique. The author retains ownership of the L'auteur conserve la propriété du copyright in this thesis. Neither the droit d'auteur qui protège cette thèse. thesis nor substantial extracts fiom it Ni la thèse ni des extraits substantiels may be printed or otherwise de celle-ci ne doivent être imprimés reproduced without the author's ou autrement reproduits sans son permission. autorisation. CONTENTS TABLE CONTENTS LIST OF TABLES ............................................................................................ LIST OF PLATES ................................... ,... ................................................. LIST OF FIGURES ........................................................................................... AB STRACT ...................................................................................................... xii AC KNO WLEDGEMENT S .............................................................................. CHAPTER ONE: DJTRODUCTION ............................................................. 1.1 PURPOSE OF THE STUDY .............................................. 1 -2 LOCATION AND ACCESS .............................................. 1.3 METHODS OF STUDY ........................... .. ................... CHAPTER TWO: PREVIOUS WORK ......................................................... CHAPTER THREE: REGIONAL GEOLOGY ............................. .. ......... 3.1 STRATIGRAPHY AND ORIGW OF BAY OF FUNDY ........................................................................ 3.1.1 WolfMlIe Formation ..................... ..... ............. 3.1 -2 Blomidon Formation .............................................. 3.1.3 North Mountain Basalt Formation .................... ... 3.1.4 Scots Bay Formation ............................................ 3.2 STRUCTURAL GEOLOGY ............................................. CHAPTER FOUR: STRATIGRAPHY AND SEDMENTOLOGY ............ 4.1 INTRODUCTION ............................................................. 4.2 LOWER CONTACT ...................... .... ............................... 4.3 ROCK CLASSIFICATIONS ............................................. 4.4 DESCRIPTION OF STRATIGRAPHIC SECTIONS ......... 4.4.1 Davidson Cove ..................................................... 4.4.2 East Broad Cove .................................................. 4.4.3 Central Brod Cove .............................................. 4.4.4 West Broad Cove ................................................. 4.4-5 Lime Cove ............................................................ 4.4.6 Woodworth Cove ................................................. 4.5 SEDiMENTARY FACIES AM) DEPOStTIONAL ENVIRONMENTS ........................................................... 4.5.1 INTRODUCTION ............................................... 4.5.2 MARGINAL CHANNEL FACIES ................... .... 4.5.3 Off SHORE FACES ........................................... 4.5.4 NEARSHORE FACIES ....................................... 4.5.4.1 Higher energy nearshore subfacies ......... 4.5.4.1.1Laminate d bioclastic silty sandy limestone unit ...................... 4.5.4.1.2Bioclastic calcareous sandstone unit .............................. 4.5 -4-2 Lower energy nearshore subfacies ......... 4.5.4.2.1 Stromatolitic unit ....................... 4.5.4.2.2 Conglomeratic sandstone unit .................... ... .................. 4.5-4 .2.3 Wakestone-packstone unit .............. 4.5.5 SHORELINE FACIES ....................................... 4.5.6 LACUSTRINE DEPOSTIONAL MODEL ......... 4.5.7 FACES CORRELATIONS ................................ 4.6 CONCLUSION .................................................................... CKAPTER FIVE: DIAGENESIS ....................................................................... 5 .1 IN'ïRODUCTION .............................................................. 5 -2 DIAGENETIC FRAMEWORK .......................................... 5.2.1 Cementation .......................................................... 5.2.2 Replacement ......................................................... 5 .2.3 Dissolution and porosity ....................................... 5.2.4 Recrystallization ................................................... 5 .2.5 Paragenetic sequence ............................................. 5.3 CONCLUSION ................................................................... CHAPTER SIX: CHERTS ...................... ... .................................................. 6.1 iNTRODUCTION .............................................................. 6.2 REPLACEMENT AND AGE ............................................. 6.3 CHERT PETROLOGY ........................................................ 6.4 SOURCE AND CONDITIONS FAVOURLNG SILICA CHAPTER SEVEN:PALEONTOLOGY AM) AGE ...................................... 7.1 INTRODUCTION ................................................................ 7.2 PEVIOUS WORK ...................... .... ..........*.....*.*........-- 7.3 METHODS ......................................................................... 7.4 FOSSIL ASSEMBLAGES .................................................. 7.4.1 Chlorophyta ............................................................ 7 -4.2 Vertebrata .............................................................. 7.4.3 Mollusca ................................................................. 7.4.4 Small Ostracodes .................................................... 7.4.5 Gant Ostracodes .................................................... 7.5 SY STEMATIC PALEONTOLOGY ................................... CIass Bivalvia ................................................................ Genus Nuidtes ....................................................... Naidtes scotsbayensis n . sp................. Class Gast ro poda ................................... ... .................... HMobia sp ............................................ Genus Vahta ......................................................... VuIwta sp ............................................... Genus Gyraulrrs .................... .... ......................... Gyrou/us sp ............................................ Class Crustacea ............................................................. Genus Danvinda .................................................... Danvinula sarytimenensis ................... .. Danvinda aE D . liassîua ....................... ~imlaacadiuemis n . sp ......... ........ Danvida n . sp . 1 ................................. Genus Metacpris ................................................... Metacypris ridgensis n . sp ...................... Genus Tirniriasevia ................... ... ........................ Tirniriusevia aff. T. digiralis ..................... Genus Megawodvorthia n. gen............................... MegawOOdis'orfhia salemi n- sp ................. 7.6 PALEOECOLOGY OF SCOTS BAY OSTRACODES ...... 7.7 AGE OF THE SCOTS BAY FORMATION ..................... CHAPTER EIGHT: CONCLUSION ............................................................ REFERENCES ............................................................................................ LIST OF TABLES TABLE 4-1 Summary of Lithoaratignphic wiits of the Scots Bay Formation . TABLE 4-2 Key symbols ........................................................ ........-.....-... .. TABLE 5-1. Paragenetic table .. .. .. .. .... .. .. TABLE 7-1 Comparative table of five ostracode genera ..... .... ... .. .. .... ... .. .. - TABLE 7-2 Measurements of 3 7 specimens of Naides scotsbuyensis n. sp. .. TABLE 7-3 Measuremmts of 6 specimens of Danvimla stzryinnenensis . .. .. TABLE 74 Meanirements of 10 specimens of Danvimlu a& D. Iimsica .. .. TABLE 7-5 Measurements of 1 5 specimens of Danvimlu aduemis n. sp . .. TABLE 7-6 Measurements of 12 specimens ofMetaqpris r@emis n. sp. .. TABLE 7-7 Measurements of 10 specimms of Tirniriasevia afE T. wtaIis .. TABLE 7-8 Measurements of 24 specimens of Meguwdorthia sulemi n. sp. ............. ....... m.m.mm.mmmmmm.mm.m.m ................................- - .-.. LIST OF PLATES PLATE 1 Stems of charophytic algae ........................................................ PLATE 2 Nuidites scotsbayenris n . sp.................................................... PLATE 3 Gyrmius sp., VQ~VG=Isp., H'obia sp .................................... PLATE 4 Danvimla ai€ D. Iiassica. D . auadiuensi n . sp., D . sta?yîinneml~~ls.S.. sp 1....................................................... PLATE 5 Tirniriasevia ISET. digitah,
Recommended publications
  • Gondwana Vertebrate Faunas of India: Their Diversity and Intercontinental Relationships
    438 Article 438 by Saswati Bandyopadhyay1* and Sanghamitra Ray2 Gondwana Vertebrate Faunas of India: Their Diversity and Intercontinental Relationships 1Geological Studies Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata 700108, India; email: [email protected] 2Department of Geology and Geophysics, Indian Institute of Technology, Kharagpur 721302, India; email: [email protected] *Corresponding author (Received : 23/12/2018; Revised accepted : 11/09/2019) https://doi.org/10.18814/epiiugs/2020/020028 The twelve Gondwanan stratigraphic horizons of many extant lineages, producing highly diverse terrestrial vertebrates India have yielded varied vertebrate fossils. The oldest in the vacant niches created throughout the world due to the end- Permian extinction event. Diapsids diversified rapidly by the Middle fossil record is the Endothiodon-dominated multitaxic Triassic in to many communities of continental tetrapods, whereas Kundaram fauna, which correlates the Kundaram the non-mammalian synapsids became a minor components for the Formation with several other coeval Late Permian remainder of the Mesozoic Era. The Gondwana basins of peninsular horizons of South Africa, Zambia, Tanzania, India (Fig. 1A) aptly exemplify the diverse vertebrate faunas found Mozambique, Malawi, Madagascar and Brazil. The from the Late Palaeozoic and Mesozoic. During the last few decades much emphasis was given on explorations and excavations of Permian-Triassic transition in India is marked by vertebrate fossils in these basins which have yielded many new fossil distinct taxonomic shift and faunal characteristics and vertebrates, significant both in numbers and diversity of genera, and represented by small-sized holdover fauna of the providing information on their taphonomy, taxonomy, phylogeny, Early Triassic Panchet and Kamthi fauna.
    [Show full text]
  • A New Basal Sauropodomorph Dinosaur from the Lower Jurassic Navajo Sandstone of Southern Utah
    A New Basal Sauropodomorph Dinosaur from the Lower Jurassic Navajo Sandstone of Southern Utah Joseph J. W. Sertich1*, Mark A. Loewen2 1 Department of Anatomical Sciences, Stony Brook University, Stony Brook, New York, United States of America, 2 Utah Museum of Natural History, Salt Lake City, Utah, United States of America Abstract Background: Basal sauropodomorphs, or ‘prosauropods,’ are a globally widespread paraphyletic assemblage of terrestrial herbivorous dinosaurs from the Late Triassic and Early Jurassic. In contrast to several other landmasses, the North American record of sauropodomorphs during this time interval remains sparse, limited to Early Jurassic occurrences of a single well- known taxon from eastern North America and several fragmentary specimens from western North America. Methodology/Principal Findings: On the basis of a partial skeleton, we describe here a new basal sauropodomorph dinosaur from the Lower Jurassic Navajo Sandstone of southern Utah, Seitaad ruessi gen. et sp. nov. The partially articulated skeleton of Seitaad was likely buried post-mortem in the base of a collapsed dune foreset. The new taxon is characterized by a plate-like medial process of the scapula, a prominent proximal expansion of the deltopectoral crest of the humerus, a strongly inclined distal articular surface of the radius, and a proximally and laterally hypertrophied proximal metacarpal I. Conclusions/Significance: Phylogenetic analysis recovers Seitaad as a derived basal sauropodomorph closely related to plateosaurid or massospondylid ‘prosauropods’ and its presence in western North America is not unexpected for a member of this highly cosmopolitan clade. This occurrence represents one of the most complete vertebrate body fossil specimens yet recovered from the Navajo Sandstone and one of the few basal sauropodomorph taxa currently known from North America.
    [Show full text]
  • Eolian Dune Field of Late Triassic Age, Fundy Basin, Nova Scotia'
    Comment and Reply on 'Eolian dune field of Late Triassic age, Fundy Basin, Nova Scotia' COMMENT sands occur in the Wolfville Formation and are Late Triassic in age (Figs. 1A and 1B). Hubert and Mertz suggested a regional Paul E. Olsen, Peabody Museum, Yale University, New Haven, south-to-north trend of increasing aridity during the deposition Connecticut 06511 of the Upper Triassic part of the Newark Supergroup. I agree with their interpretation of the Red Head and Clark Head locali- Hubert and Mertz's (1980) description of newly discovered ties as eolian dune fields, but I suggest that the localities repre- eolian dune sands in the lower Mesozoic Fundy Group of Nova sent two horizons of different ages; Red Head is Late Triassic Scotia provides the first definitive evidence of true aridity in the but Clark Head is Early Jurassic. This stratigraphic revision is Newark Supergroup. According to Hubert and Mertz, the dune crucial to the climatic framework for the whole of the Newark 1 3-6 2 c 1 2 3 4 5 6 CLARK HEAD- OLD WIFE POINT- WASSONS BLUFF - RED HEAD - MCKAY HEAD BLUE SAC-McKAY HEAD LOWER ECONOMY CLARK HEAD BLUE SAC CAPE BLOMIDON- OLD WIFE POINT- E,, E,, / covered ' 01 E /- ------ E ,/ faulted , CARNIAN ,/ORDOVICIAN TO CARBONIFEROUS ROCKS TO CARBONIFEROUS 1 ROCKS Figure 1. Diagrams of relationships of North Mountain Basalt to McKay Head Basalt of Klein (1962) and Wolfville, Blomidon, and Scots Bay Forma- tions. Note that both position of Triassic-Jurassic boundary and stage boundaries are approximate; lowermost North Mountain Basalt could be latest Triassic age.
    [Show full text]
  • Internal Stratigraphy of the Jurassic North Mountain Basalt, Southern Nova Scotia
    Report of Activities 2001 69 • Internal Stratigraphy of the Jurassic North Mountain Basalt, Southern Nova Scotia D. J. Kontak Introduction sediments are exposed, only 9 m of Scots Bay Formation remain as remnant inliers along the The Jurassic (201 Ma, Hodych and Dunning, 1992) Scots Bay coastline (De Wet and Hubert, 1989). North Mountain Basalt (NMB; also referred to as the North Mountain Fonnation) fonns a prominent The NMB outcrops along the Bay of Fundy in cuesta along the southern coastline of the Bay of southern mainland Nova Scotia and is Fundy. These continental, tholeiitic basalt flows exceptionally well exposed along the coastline and have played an important role in the geological inland along river valleys (Fig. 1). Topographic heritage of the province by: (l) hosting some ofthe relief of the area bounding the Bay of Fundy earliest mineral resources exploited (e.g. Cu, Fe), reflects the distribution of the underlying massive (2) contributing to the character of zeolite basalt flows. No more obvious is this than along mineralogy (e.g. type locality for mordenite; How, the Annapolis Valley area where the west side of 1864), (3) fonning part of the Fundy Rift Basin, an the valley is composed of massive, fresh basalt of important part of the Mesozoic evolution of eastern the lower flow unit of the NMB. The proximity of North America, and (4) filling an important niche the area on the north side of the Bay of Fundy to in the aggregate operations of the province. Despite the east-west Cobequid-Chedabucto Fault Zone has the importance of the NMB there has been resulted in structural modifications to the otherwise relatively little recent work devoted to defining and simple stratigraphy of the NMB.
    [Show full text]
  • Early Ornithischian Dinosaurs: the Triassic Record
    Historical Biology An International Journal of Paleobiology ISSN: 0891-2963 (Print) 1029-2381 (Online) Journal homepage: https://www.tandfonline.com/loi/ghbi20 Early ornithischian dinosaurs: the Triassic record Randall B. Irmis , William G. Parker , Sterling J. Nesbitt & Jun Liu To cite this article: Randall B. Irmis , William G. Parker , Sterling J. Nesbitt & Jun Liu (2007) Early ornithischian dinosaurs: the Triassic record, Historical Biology, 19:1, 3-22, DOI: 10.1080/08912960600719988 To link to this article: https://doi.org/10.1080/08912960600719988 Published online: 10 Oct 2011. Submit your article to this journal Article views: 291 View related articles Citing articles: 70 View citing articles Full Terms & Conditions of access and use can be found at https://www.tandfonline.com/action/journalInformation?journalCode=ghbi20 Historical Biology, 2007; 19(1): 3–22 Early ornithischian dinosaurs: the Triassic record RANDALL B. IRMIS1, WILLIAM G. PARKER2, STERLING J. NESBITT3,4, & JUN LIU3,4 1Museum of Paleontology and Department of Integrative Biology, University of California, 1101 Valley Life Sciences Building, Berkeley, CA, 94720-4780, USA, 2Division of Resource Management, Petrified Forest National Park, P.O. Box 2217, Petrified Forest, AZ, 86028, USA, 3Lamont–Doherty Earth Observatory, Columbia University, 61 Route 9W, Palisades, NY, 10964, USA, and 4Division of Paleontology, American Museum of Natural History, Central Park West at 79th Street, New York, NY, 10024, USA Abstract Ornithischian dinosaurs are one of the most taxonomically diverse dinosaur clades during the Mesozoic, yet their origin and early diversification remain virtually unknown. In recent years, several new Triassic ornithischian taxa have been proposed, mostly based upon isolated teeth.
    [Show full text]
  • Guide to the Mesozoic Redbeds of Central Connecticut
    I I I Guide to the Mesozoic Redheds I of I Central Connecticut I JOHN F. HUBERT, ALAN A. REED, I WAYNE L. DOWDALL, and J. MICHAEL GILCHRIST I I I STATE GEOLOGICAL AND NATURAL HISTORY SURVEY OF CONNECTICUT DEPARTMENT OF ENVIRONMENTAL PROTECTION 1978 GUIDEBOOK NO. 4 On the cover: In the early morning along the shore of on East Berlin Lake, the 7-m phytosour Rutiodon snatches a Semionotus from the sho I lows. The tall horsetail Equisetum and cycad Otozomiles thrive in the wet mud of the lake strand. Stands of the conifer Aroucarioxylon tower 60 m high along the distant horizon on sandy soils of the well drained uplands. The dinosaur Eubronfes passed this way the previous evening. Sketch by Amy S. Hubert STATE GEOLOGICAL AND NATURAL HISTORY SURVEY OF CONNECTICUT DEPARTMENT OF ENVIRONMENTAL PROTECTION } } ] GUIDE TO THE MESOZOIC REDBEDS OF CENTRAL CONNECTICUT JOHN F. HUBERT J University of Massachusetts ALAN A. REED ) Chevron Oil Company WAYNE L • DOWDALL Weston Geophysical Resea:t>ch J. MICHAEL GILCHRIST Texaco Oil Company ,-------,_r-- -----------, i 1 i I 1 I ~ l ; .J J 1978 J GUIDEBOOK NO. 4 J J ii STATE GEOLOGICAL AND NATURAL HISTORY SURVEY OF CONNECTICUT THE NATURAL RESOURCES CENTER DEPARTMENT OF ENVIRONMENTAL PROTECTION Honorable Ella Grasso, Governor of Connecticut Stanley J. Pac, Connnissioner of the Department of Environmental Protection STATE GEOLOGIST DIRECTOR, NATURAL RESOURCES CENTER Hugo F. Thomas, Ph.D. This guidebook is a reprint of "Guide to the Redbeds of Central Connecticut: 1978 Field Trip, Eastern Section of the Society of Economic Mineralogists and Paleontologists." It was originally published as Contribution No.
    [Show full text]
  • Dinosaur Diversification Linked with the Carnian Pluvial Episode
    ARTICLE DOI: 10.1038/s41467-018-03996-1 OPEN Dinosaur diversification linked with the Carnian Pluvial Episode Massimo Bernardi 1,2, Piero Gianolla 3, Fabio Massimo Petti 1,4, Paolo Mietto5 & Michael J. Benton 2 Dinosaurs diversified in two steps during the Triassic. They originated about 245 Ma, during the recovery from the Permian-Triassic mass extinction, and then remained insignificant until they exploded in diversity and ecological importance during the Late Triassic. Hitherto, this 1234567890():,; Late Triassic explosion was poorly constrained and poorly dated. Here we provide evidence that it followed the Carnian Pluvial Episode (CPE), dated to 234–232 Ma, a time when climates switched from arid to humid and back to arid again. Our evidence comes from a combined analysis of skeletal evidence and footprint occurrences, and especially from the exquisitely dated ichnofaunas of the Italian Dolomites. These provide evidence of tetrapod faunal compositions through the Carnian and Norian, and show that dinosaur footprints appear exactly at the time of the CPE. We argue then that dinosaurs diversified explosively in the mid Carnian, at a time of major climate and floral change and the extinction of key herbivores, which the dinosaurs opportunistically replaced. 1 MUSE—Museo delle Scienze, Corso del Lavoro e della Scienza 3, 38122 Trento, Italy. 2 School of Earth Sciences, University of Bristol, Bristol BS8 1RJ, UK. 3 Dipartimento di Fisica e Scienze della Terra, Università di Ferrara, via Saragat 1, 44100 Ferrara, Italy. 4 PaleoFactory, Dipartimento di Scienze della Terra, Sapienza Università di Roma, Piazzale Aldo Moro, 5, 00185 Rome, Italy. 5 Dipartimento di Geoscienze, Universitàdegli studi di Padova, via Gradenigo 6, I-35131 Padova, Italy.
    [Show full text]
  • Latest Triassic Onset of the Central Atlantic Magmatic Province (CAMP) Volcanism in the Fundy Basin (Nova Scotia): New Stratigraphic Constraints
    ARTICLE IN PRESS EPSL-09928; No of Pages 12 Earth and Planetary Science Letters xxx (2009) xxx–xxx Contents lists available at ScienceDirect Earth and Planetary Science Letters journal homepage: www.elsevier.com/locate/epsl Latest Triassic onset of the Central Atlantic Magmatic Province (CAMP) volcanism in the Fundy Basin (Nova Scotia): New stratigraphic constraints S. Cirilli a,⁎, A. Marzoli b,c, L. Tanner d, H. Bertrand e,f, N. Buratti a, F. Jourdan g,h, G. Bellieni b,c, D. Kontak i, P.R. Renne g,j a Dipartimento di Scienze della Terra, Università di Perugia, Italy b Dipartimento di Geoscienze, Università di Padova, Italy c Centro Nazionale delle Ricerche, Istituto di Geoscienze e Georisorse, Padova, Italy d Department of Biological Sciences, Le Moyne College, Syracuse, NY 13214, USA e Ecole Normale Supérieure de Lyon, France f Université Lyon1, France g Berkeley Geochronology Center, 2455 Ridge Rd., Berkeley, CA, USA h Western Australian Argon Isotope Facility, Department of Applied Geology, Curtin University of Technology, Perth, WA6845, Australia i Department of Earth Sciences, Laurentian University, Sudbury, Ontario, Canada P3E 2C6 j Department of Earth and Planetary Science, University of California, Berkeley, CA, USA article info abstract Article history: In this paper we investigate the stratigraphic relationship between the emplacement of the CAMP basalts and the Received 2 February 2009 Triassic–Jurassic (Tr–J) boundary in the Fundy Basin (Nova Scotia, Canada). This is one of the best exposed of the Received in revised form 9 July 2009 synrift basins of eastern North America (ENA) formed as a consequence of the rifting that led to the formation of Accepted 14 July 2009 the Atlantic Ocean.
    [Show full text]
  • Stratigraphic and Temporal Context and Faunal Diversity of Permian-Jurassic Continental Tetrapod Assemblages from the Fundy Rift Basin, Eastern Canada
    Stratigraphic and temporal context and faunal diversity of Permian-Jurassic continental tetrapod assemblages from the Fundy rift basin, eastern Canada Hans-Dieter Sues1* and Paul E. Olsen2 1. Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, MRC 121, P.O. Box 37012, Washington, DC 20013-7012, U.S.A. 2. Lamont-Doherty Earth Observatory of Columbia University, 61 Route 9W, Palisades, New York 10964-1000, U.S.A. *Corresponding author: <[email protected]> Date received 30 July 2014 ¶ Date accepted 25 November 2014 ABSTRacT The Fundy basin in Nova Scotia and New Brunswick is the largest exposed rift basin of the Newark Supergroup and also extends beneath the Bay of Fundy. Its strata can be divided into four tectonostratigraphic sequences (TS). TS I is represented by the probably Permian Honeycomb Point Formation and possibly the Lepreau Formation. TS II includes the Wolfville Formation with the probably Middle Triassic Economy Member and the early Late Triassic Evangeline Member. These members have yielded markedly different assemblages of continental tetrapods. TS III comprises most of the Blomidon Formation, which is Norian to Rhaetian in age. The Blomidon Formation has yielded few skeletal remains of tetrapods to date but many tetrapod tracks. TS IV includes the late Rhaetian top of the Blomidon Formation and the McCoy Brook Formation, which overlies the North Mountain Basalt and is latest Rhaetian and earliest Jurassic (Hettangian) in age. The McCoy Brook Formation has yielded a diversity of continental tetrapods and lacks any of the characteristic Late Triassic forms. Recent work has correlated the Global Boundary Stratotype Section and Point (GSSP) for the base of the Jurassic (Hettangian) to a level above the North Mountain Basalt.
    [Show full text]
  • AGS#24 Fieldtripa5 Keighley Brown.Pdf (10.47Mb)
    GAC-MAC-CSPG-CSSS Pre-conference Field Trips A1 Contamination in the South Mountain Batholith and Port Mouton Pluton, southern Nova Scotia HALIFAX Building Bridges—across science, through time, around2005 the world D. Barrie Clarke and Saskia Erdmann A2 Salt tectonics and sedimentation in western Cape Breton Island, Nova Scotia Ian Davison and Chris Jauer A3 Glaciation and landscapes of the Halifax region, Nova Scotia Ralph Stea and John Gosse A4 Structural geology and vein arrays of lode gold deposits, Meguma terrane, Nova Scotia Rick Horne A5 Facies heterogeneity in lacustrine basins: the transtensional Moncton Basin (Mississippian) and extensional Fundy Basin (Triassic-Jurassic), New Brunswick and Nova Scotia David Keighley and David E. Brown A6 Geological setting of intrusion-related gold mineralization in southwestern New Brunswick Kathleen Thorne, Malcolm McLeod, Les Fyffe, and David Lentz A7 The Triassic-Jurassic faunal and floral transition in the Fundy Basin, Nova Scotia Paul Olsen, Jessica Whiteside, and Tim Fedak Post-conference Field Trips B1 Accretion of peri-Gondwanan terranes, northern mainland Nova Scotia Field Trip A5 and southern New Brunswick Sandra Barr, Susan Johnson, Brendan Murphy, Georgia Pe-Piper, David Piper, and Chris White Facies heterogeneity in lacustrine basins: B2 The Joggins Cliffs of Nova Scotia: Lyell & Co's "Coal Age Galapagos" J.H. Calder, M.R. Gibling, and M.C. Rygel the transtensional Moncton Basin (Mississippian) B3 Geology and volcanology of the Jurassic North Mountain Basalt, southern Nova Scotia Dan Kontak, Jarda Dostal, and John Greenough and extensional Fundy Basin (Triassic-Jurassic), B4 Stratigraphic setting of base-metal deposits in the Bathurst Mining Camp, New Brunswick New Brunswick and Nova Scotia Steve McCutcheon, Jim Walker, Pierre Bernard, David Lentz, Warna Downey, and Sean McClenaghan B5 Geology and environmental geochemistry of lode gold deposits in Nova Scotia Paul Smith, Michael Parsons, and Terry Goodwin David Keighley and David E.
    [Show full text]
  • A Long-Necked Tanystropheid from the Middle Triassic Moenkopi Formation (Anisian) Provides Insights Into the Ecology and Biogeography of Tanystropheids
    Palaeontologia Electronica palaeo-electronica.org A long-necked tanystropheid from the Middle Triassic Moenkopi Formation (Anisian) provides insights into the ecology and biogeography of tanystropheids Kiersten K. Formoso, Sterling J. Nesbitt, Adam C. Pritchard, Michelle R. Stocker, and William G. Parker ABSTRACT Archosauromorphs are a diverse and successful group of reptiles that radiated into a series of groups around the time of the end-Permian extinction. One of these groups of archosauromorphs, tanystropheids, consists of diverse forms, and some of the largest members of the group possessed extremely elongated cervical vertebrae (greater than five times longer than tall), resulting in a hyperelongate neck. These derived tanystropheids have been found in Tethyan marine deposits of Pangaea. Four partial cervical vertebrae from a hyperelongate-necked tanystropheid from the Middle Triassic Moenkopi Formation of Arizona and New Mexico are described in this paper. These cervical vertebrae are assigned to Tanystropheidae, specifically the clade that includes the hyperelongate-necked Tanystropheus based on character states, which include an elongate centrum (length to height ratio of 6.2), the presence of epipophy- ses, and an elongate axial centrum. The Moenkopi tanystropheid elements were found in lower latitude fluvial sequences without any marine influence, corresponding to western Pangaea, whereas Tanystropheus-like tanystropheids are typically associated with marginal marine environments in middle to high latitudes of eastern Pangaea. These fossils suggest that hyperelongate-necked, Tanystropheus-like tanystropheids were perhaps behaviorally bound to general semi-aquatic environments, both marine and freshwater, due to their unique morphology. These fossils also greatly extend the biogeographic range of large tanystropheids and increase the anatomical diversity of tanystropheids known from North America demonstrating that the clade persisted in a wide variety of environments throughout the Triassic Period.
    [Show full text]
  • Donald Baird and His Discoveries of Carboniferous and Early Mesozoic Vertebrates in Nova Scotia
    Donald Baird and his discoveries of Carboniferous and early Mesozoic vertebrates in Nova Scotia Hans-Dieter Sues1*, Robert W. Hook2, and Paul E. Olsen3 1. Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, MRC 121, P.O. Box 37012, Washington, DC 20013-7012, USA 2. Vertebrate Paleontology Laboratory, The University of Texas at Austin, Austin, Texas 78758, USA 3. Lamont-Doherty Earth Observatory of Columbia University, 61 Rt. 9W, Palisades, New York 10964-1000, USA *Corresponding author <[email protected]> Date received: 23 March 2013 ¶ Date accepted 08 April 2013 ABSTRacT Donald Baird (1926–2011), an influential and innovative vertebrate paleontologist with a scientific career spanning nearly 50 years, had an exceptional breadth of expertise in the study of late Paleozoic and Mesozoic vertebrates and their life traces. Beginning in 1956, Baird conducted fieldwork in the Carboniferous and Triassic-Jurassic of Nova Scotia, making a total of 21 trips in 30 years. His many scientific contributions include the discoveries of important assemblages of Carboniferous vertebrates as well as an unexpectedly diverse record of early Mesozoic tetrapods and their trackways in the province. Baird also encouraged and supported fieldwork by other vertebrate paleontologists as well as amateurs in Nova Scotia and elsewhere. His career-long commitment to the vertebrate paleontology of the province was instrumental in establishing it as an important source of fossils of Carboniferous and early Mesozoic continental vertebrates. RÉSUMÉ Donald Baird (1926–2011), paléontologiste des vertébrés influent et novateur dont la carrière scientifique s’est échelonnée sur près de 50 ans, a acquis un savoir-faire exceptionnel dans l’étude des vertébrés du Paléozoïque tardif et du Mésozoïque et des vestiges de leur vie.
    [Show full text]