Repairing Deteriorated Aircraft Fabric with Fiberglass Cloth

Total Page:16

File Type:pdf, Size:1020Kb

Repairing Deteriorated Aircraft Fabric with Fiberglass Cloth 4 Repairing Deteriorated Aircraft Fabric With Fiberglass Cloth Roy M. Prine At this stage of your planning it is important that you have a Early in 1955, a Kansas City, layout table to serve as a draw- Missouri Fixed Base Operator ing board. On your board you approached the C. A. A. with now can start actual design the intriguing idea of repairing work. The following steps are and reinforcing deteriorated air- recognized to be an excellent ap- craft fabric with Fiberglass proach in any design work, and cloth. The method to be used I would suggest that you plan was simply sheets of the glass your drawings according to the cloth on the fabric, then secure following method. or bond them to the underlying (A) Layout drawings. —This fabric with either a resin or air- is a general drawing of a section craft dope and in all probability of the airplane in which the lay- the aircraft would not have to be out of various parts is arranged disassembled, a distinct advan- clearly understood. If your and from which detail drawings tage. Design Preparation knowledge is limited somewhat of these parts can be made to Believing that the idea had in regard to the aforementioned fit the completed structure. merit and since it is recognized Stanley "Prop" Dzik (B) Installation drawing. -- questions, I would like to con- that the majority of the fabric This drawing shows groups of vey to you the avenues to follow covered small aircraft have fa- Designing an aircraft of your that will enable you to carry out parts or assemblies which com- bric that is marginal or even own concept, whether you in- your design work with less prise a major unit of an airplane sub-marginal in strength, and tend to use it for just plain plea- doubt. structure such as the fuselage realizing that within the next sure flying or acrobatic work, installation' drawing which two years the figure will rapidly First I would suggest that you shows the location of all fixed can relatively be a simple under- visit your local library, and ac- increase, the Operator was ad- taking, or it can ultimately re- points in the fuselage. vised to go ahead and every as- quire several basic aeronautical (C) Assembly drawings. —This sult in discouragement. books on aircraft engineering. sistance possible would be given I would like to aim this dis- drawing shows the assembly of him. If your local library 'does not two or more parts into a unit. cussion to those who contem- have the books you're interested Since there was no informa- plate designing their own air- (D) Detail drawings. —This tion or knowledge available on in, then ask the librarian for is a drawing of a separate part craft, and to those that gave up addresses of publishers or the the subject, it became necessary the idea. To these individuals which will later be assembled to set up an experimental pro- source that you can contact for to other parts. I would like to direct some per- a list of books you can pur- gram to determine methods of tinent advice regarding the pre- (E) Rework drawings. —When accomplishment, to evaluate the chase. I would also suggest that it is desirable to rework a part requisities of basic design, be- you write to the Superintendent practicability and airworthiness so that it may be used, this draw- fore attempting to build their of Documents, U.S. Government qualities of each method devel- aircraft. ing is prepared to show how such oped and to accomplish this cer- Printing Office, Washington 25, rework operations can be car- The first thought in mind D. C., and ask for a list of C.A.A. tain standards and criteria were would be to make a 3-view plan ried out. set up as follows: Technical Manuals on aircraft I have only highlighted and configuration drawing of the construction and maintenance, There should be no apparent touched on the most important type of aircraft to be desired. for example, C.A.M. #1, 8, and conflict with C.A.R. parts 3 and factors that are necessary to car- At this point you believe you 18. After you have obtained 4. All material, technique, pro- ry out a well planned project. really have accomplished some- these books and manuals, I sug- cesses, and workmanship must If you follow the suggestions as thing. All that you have now is gest that you study all phases be compatible with C.A.M. - 18 a "pretty" picture of an air- outlined in this discussion you requirements. There must be on aircraft design. I do not will realize that the end result plane, and in most cases you've mean that you glance or page no adverse effect upon the struc- will be most gratifying in respect done just that. How much do through the technical matter, tural integrity or flight charac- that you will save yourself con- I know about but apply some serious studying, teristics of the aircraft. siderable time, effort, expense (1) aircraft materials and their even if it means burning the During the next few months, and most of all "grief". application in aircraft design? midnight oil. many methods and processes (2) "An" aircraft hardware In conclusion may I remind Let's assume that now, after were tried and evaluated using specifications related to type, you that it takes a little mental aircraft dope and plastic resins you have devoted much time in size and quality? sweat to find the approved short- until one process appeared to (3) weight and balance? the course of study, some of the cut. puzzling questions you had prior meet the criteria and standards (4) aircraft standards and pro- Editors Note: —We are pleased set up. Also the process was to this time, are now answered. cedures? to have published "Prop" Dzik's easy to understand and use, no (5) C.A.A. rules and regula- If your design involves con- "Design Preparation". E.A.A. special equipment or tools would tions governing amateur built siderable (a) sheet metal work, Headquarters has a tremendous be necessary, and installations aircraft? (b) steel tubing, (c) or wood- flow? of correspondence from could be made by any certifi- The outlook now seems a trifle working design, it would be ad- members to answer relative cated mechanic if instructions complicated, but let me assure viseable for you to purchase a simple technical questions. An- were followed. you that is not the case at all. set of plans that are of compar- swers to those questions can be During the experimental pro- There is no mystery involved able design to your own from acquired by following the advice gram, invaluable assistance and in designing your own aircraft. a material standpoint. You will in the "Design Preparation" ar- advice was given by the person- With the proper approach in find that the plans will be an ticle, thus helping reduce the nel of Owens-Corning Fiber- planning, each step must be invaluable reference for gui- load on E.A.A.'s correspondence glass Corp., who manufacture carefully studied, analyzed, and dance. work. See Fiberglass on Page 13 13 Continued from Page 4 the basic glass material and Hess-Goldsmith and Co.. Inc., who manufacture the glass clo'h. Many types and grades of glas~ cloth and bonding agents were tried during the experimentrl trial until one type was found that had the desired qualities and most nearly approached grade A. aircraft fabric but was considerably stronger in both directions. The aircraft dope bonding process was approved in July 1955 and a few months la- ter the Epoxy resin bonding pro- cess was developed and approv- ed. Each process has distinct advantages and disadvantages but if both processes and meth- ods are combined at a slight in- it created too much turbulence. crease in labor and material, the industry. The Parasol Champ! A smaller windshield is being advantages of both methods can A few of the specific questions made, while it is presently being be had. for which specific answers must The July, 1955 issue featured flown without any windsheld The aircraft selected for the be obtained are as follows: an Aeronca "Champion" which at all. original experiment was an Aer- a. If aircraft dope, plastics or was modified to a parasol con- The wing tips were also re- onca 7 A C with deteriorated resins are used as a bonding figuration. The parasol effect moved, and tip plates were then fabric which strip tested be- agent, is the bond of sufficient was achieved by cutting the added. tween 35 - 38 lbs., the structure strength? fuselage back down, and remov- James E. Tyndall of 5606 being satisfactory and airwor- b. At what rate will this bond ing the cabin from the fuselage, Patterson Avenue in Richmond, thy. After completion of the ex- deteriorate? still retaining the wing support Virginia, did this modification periment, the reinforced fabric c. Does the Fiberglass cloth structure, rather than construct on his Aeronca, for the total was again strip tested and show- and aircraft laminate have suf- new cabane mounts. cost amounting to $550.00, which ed a tensile strength of 165 lbs. ficient tear resistance after being The standard "Champion" included the original airplane. in one direction and 125 in the finished? windshield was trimmed off a The rate of climb and speed are opposite direction. The estima- d. When applied over old fa- little, but had to be after the about the same as any other ted weight increase was approx- bric, can Fiberglass cloth be so first test flight last fall, because "Champion", but it handles imately 25-30 lbs.
Recommended publications
  • S-6S Text Manual
    0or* -- *IF9 S-6s COYOTE II 1 16WING HAYS, KS 6760 1 (7.51 625-6346 DESIGNED BY: RANDY SCHLITTER Your manual is ready for assembly: 1. Place the technical manual in the larger 3 ring binder and the parts manual in the smaller 3 ring binder. Every page has a section number then a page number within that section. (Example: parts page 13-02) Parts pages have an exploded view and a parts listing. Text pages are assigned with the prefix "0". 2. Separate the sections with the tab inserts listed below. Follow the table of contents for the order that the manual should follow. 3. Cut out and slip in the labels to corresponding sections. -------r------ -I------- T - - 1 GENERALDATA S-1 FIREWALL DOORS -wyNi- I I I I I I I I I I I I I GENERAL DATA I S-1 FIREWALL I DOORS I WINGS I OPTIONS I -r------1 - FuLLAOE - EN; NE -wTNisiEL - TilZ I' I MOUNT I I LsGMsLY I I I I I I I I r-------r-( FUSELAGE I ENGINE------I------- MOUNT I WINDSHIELD I TRIAL ASSEMBLY I I -r------1 MAIN GEAR TAILCONE BATTERY Box - - I I I I I I I I I I I I ( MAlN GEAR 1 TAILCONE I BATTERY BOX I COVERING I I ----- l- - - - - - - l- - - - - - - -I- - - - - - - 1-------1 -NOSE GEAR, CONTROL STICK SEATISEAT BELT PAINTING I TAILWHEEL I I I I I I NOSE GEAR1 1 I 1 I I ( TAILWHEEL I CONTROL STICK I SEATISEAT BELT I PAINTING I I FLOoiBiAiD; - TNTERIO; - T--T~L-- lNZisSEMBLY -r------l I RUDDER PEDAL I I I I I I FLOORBOARD1 I I I I I ...........................I RUDDER PEDAL I INTERIOR I TAIL I FINAL ASSEMBLY--------- I I RANS, RANS, INC.
    [Show full text]
  • Aircraft Collection
    A, AIR & SPA ID SE CE MU REP SEU INT M AIRCRAFT COLLECTION From the Avenger torpedo bomber, a stalwart from Intrepid’s World War II service, to the A-12, the spy plane from the Cold War, this collection reflects some of the GREATEST ACHIEVEMENTS IN MILITARY AVIATION. Photo: Liam Marshall TABLE OF CONTENTS Bombers / Attack Fighters Multirole Helicopters Reconnaissance / Surveillance Trainers OV-101 Enterprise Concorde Aircraft Restoration Hangar Photo: Liam Marshall BOMBERS/ATTACK The basic mission of the aircraft carrier is to project the U.S. Navy’s military strength far beyond our shores. These warships are primarily deployed to deter aggression and protect American strategic interests. Should deterrence fail, the carrier’s bombers and attack aircraft engage in vital operations to support other forces. The collection includes the 1940-designed Grumman TBM Avenger of World War II. Also on display is the Douglas A-1 Skyraider, a true workhorse of the 1950s and ‘60s, as well as the Douglas A-4 Skyhawk and Grumman A-6 Intruder, stalwarts of the Vietnam War. Photo: Collection of the Intrepid Sea, Air & Space Museum GRUMMAN / EASTERNGRUMMAN AIRCRAFT AVENGER TBM-3E GRUMMAN/EASTERN AIRCRAFT TBM-3E AVENGER TORPEDO BOMBER First flown in 1941 and introduced operationally in June 1942, the Avenger became the U.S. Navy’s standard torpedo bomber throughout World War II, with more than 9,836 constructed. Originally built as the TBF by Grumman Aircraft Engineering Corporation, they were affectionately nicknamed “Turkeys” for their somewhat ungainly appearance. Bomber Torpedo In 1943 Grumman was tasked to build the F6F Hellcat fighter for the Navy.
    [Show full text]
  • Poly-Fiber Aircraft Coatings
    POLY-FIBER AIRCRAFT COATINGS AIRCRAFT SPRUCE - WORLD’S LARGEST DISTRIBUTOR OF POLY-FIBER PRODUCTS This FAA approved process utilizing Poly-Fiber Dacron polyester and the unique “Poly” line of finishes assures a beautiful, durable, weather-resistant cover job every time. Documented time tested results by the pro fes sion als. The Poly-Fiber Covering Process was CM issued Supplemental Type Cer tifi cate No. SA-1008-WE in 1965 and this number will apply to all aircraft. Note: Formerly known as Stits covering process. Only Poly-Fiber materials may be used through the topcoat paint to comply with STC requirements. Poly-Fiber finishes are required for approval. Poly-Fiber is approved for use on most certified aircraft. To be sure, check the Master Eligibility List in the latest revision of Poly-Fiber Procedure Manual No. 1. WP POLY-FIBER FABRIC UNCERTIFIED LIGHT THE POLY-FIBER 1.87 oz/sq. yard. Lightweight fabric recommended for covering ultralight aircraft. This fabric will be unstamped. PRACTICE KIT It is not approved for certified aircraft except on plywood If you’re thinking of building a fab- surface. 72” Width .... P/N 09-02001 .....$9.65 /Lineal Yd. ric-covered airplane but are won- ME MEDIUM WEIGHT dering what the covering process 2.79 oz/sq. yard. Standard fabric recommended for nor- is like, this is the perfect answer. mal service on all types of aircraft regardless of speed, You get a practice frame, fabric, wing loading or horsepower. tapes, needles, rib lacing cord, P/N 09-01600 ...$13.50 /Lin eal Yd. thermometer, instructions, and all HA HEAVY DUTY the coatings you need to work through the Poly-Spray stage.
    [Show full text]
  • Triumph Group, Inc. Annual Report 2013
    Triumph Group, Inc. Annual Report 2013 Designed to be Different. Built to Perform. TRIUMPH. ONE NAME. MANY SOLUTIONS. In fiscal 2013, Triumph achieved its best year ever – setting new records for revenue, earnings and cash flow. Highlights include: In fiscal 2013, revenues increased 9% and income from continuing operations before pension actions grew 25% over fiscal 2012. Organic sales growth for the fiscal year was 8%. All of Triumph’s three business segments reported healthy year-over-year operating margin expansion. Triumph generated over $430 million in cash flow from operations before pension contributions of $110 million – reflecting effective working capital management and quality earnings. The acquisitions of Embee, Inc. and Goodrich Pump and Engine Control Systems expanded Triumph’s range of capabilities and helped achieve greater balance among Triumph’s three business segments. The additional acquisition of Primus Composites was announced shortly after the fiscal year closed. Two of Triumph’s non-core Aftermarket Services’ Instruments Companies were divested. Jeffry Frisby assumed new responsibilities as Triumph’s CEO, succeeding company founder Richard Ill, who continues as Chairman. Major Markets Top Ten Platforms as of March 31, 2013 as of March 31, 2013 (based on backlog) 57% Commercial Aerospace 1. Boeing 747 28% Military 2. Gulfstream G450, G550 12% Business 3. Boeing 777 2% Non-Aviation 4. Boeing 787 1% Regional 5. Boeing 737 6. Airbus A330, A340 7. Boeing C-17 8. Boeing V-22 9. Boeing 767 10. Sikorsky UH-60 About Triumph Triumph Group, Inc., headquartered aircraft and aircraft components, subassemblies, components and in Berwyn, Pennsylvania, designs, as well as commercial and regional services Triumph provides.
    [Show full text]
  • Eaa 430 Flyer
    Serving the Port Angeles & Sequim Area EAA 430 FLYER February 2019 Dedicated to having fun with airplanes and promoting General Aviation CHAPTER CHATTER “That's not my job!” This is a story about four individuals named: Everybody, Somebody, Anybody and Nobody. There was an important job to be done and Everybody was sure that Somebody would do it. Anybody could have done it, but Nobody did it. Somebody got angry about that because it was Everybody’s job. Everybody thought Anybody could do it, but Nobody realized that Everybody would not do it. It ended up that Everybody blamed Somebody when Nobody did what Anybody could have done. In our chapter, we are blessed with volunteers who step up. As we continue to grow, we need to expand the numbers of volunteers who pitch in and in come alongside those now serving. I would like to see a mentorship program begin to “train up” the next set of leaders. Doing this will magnify the efforts of the volunteers and spread out the task. This would definitely be a WIN WIN for the chapter. Our March meeting will be in our new home at Sequim Valley Airport. Bud Davies’ hangar #15 will be the location for the near future. Meeting dates and times have not changed … still the last Saturday of the month at 1000. A schedule for the moving day will be determined and a special email announcement will be sent to the membership. Many hands make a large task much smaller. Join us. Several members of the Board of Directors will be attending the EAA BOOT CAMP (leadership training – open to all EAA members) in Puyallup WA on Friday the 22nd.
    [Show full text]
  • MS-486 Title: the William Laufer Aviation Collection Dates
    MS-486, William Laufer Aviation Collection Collection Number: MS-486 Title: The William Laufer Aviation Collection Dates: 1919-1998 (Bulk 1940-1980) Creator: Laufer, William L., 1933-2002 Summary/Abstract: William Laufer was an aviation mechanic for the Southern Ohio Aviation Company and later, an instructor for the Miami Valley Career Technology Center teaching in their FAA Certified Aircraft Mechanic’s program. The collection contains aircraft maintenance training material, general federal aviation maintenance guidance, and a variety of aircraft maintenance manuals including manuals for Beechcraft, Cessna, Douglas, and WACO airplanes. The collection also includes parts catalogs and sales brochures for propeller-driven aircraft, including aircraft engines, propellers, and a variety of parts for aircraft including gyroscopes, radios, spark plugs, and generators. Quantity/Physical Description: 17 linear feet Language(s): English Repository: Special Collections and Archives, University Libraries, Wright State University, Dayton, OH 45435-0001, (937) 775-2092 Restrictions on Access: Parts of this collection are stored off-site. Please provide us at least two days advance notice if you would like to research this collection. Call (937) 775-2092 or e-mail us at [email protected]. Restrictions on Use: Copyright restrictions may apply. Unpublished manuscripts are protected by copyright. Permission to publish, quote or reproduce must be secured from the repository and the copyright holder. Preferred Citation: (Box # File #) MS-486, William Laufer Aviation Collection, Special Collections and Archives, University Libraries, Wright State University, Dayton, Ohio Acquisition: The William Laufer Aviation Collection was donated to Special Collections and Archives by Gail R. Laufer, William Laufer’s wife, in September 2013.
    [Show full text]
  • Basic Airframe Repair Basic Airframe Repair
    SUBCOURSE EDITION AL0992 A BASIC AIRFRAME REPAIR BASIC AIRFRAME REPAIR Subcourse Number AL0992 EDITION A US Army Aviation Logistics School Fort Eustis, Virginia 23604-5439 4 Credit Hours Edition Date: September 1994 SUBCOURSE OVERVIEW This subcourse is designed to provide you with a general familiarization of the airframe of today's aircraft and repair procedures. You will study the design and construction of aircraft parts and assemblies, metals used in the construction, and the metal qualities and stresses involved. You will also study procedures involved in the repair of damages to the aircraft skin and structure and the type of hardware required. Early aviation's aircraft made of wood and fabric, reinforced with metal, were strong enough to withstand the vibrations and torsion stresses met at slow speed. However, with the need for higher speeds, greater payloads, and more powerful engines, wood became unsatisfactory. Manufacturers and designers realized that structural parts made with metal must replace the wood and fabric. So they developed light, strong metal alloys. To these they applied structural forming and reinforcing methods to reduce weight and to gain the strength required for increased performance. Making repairs involved selecting the right metal for structural strength and streamlining, choosing the type of rivet to use, and determining the type of patch that will meet structural requirements. Also important is determining how much weight can be added, within safe limits, and choosing the method of structural forming and reinforcement to use. You will find this text divided into two chapters which discuss airframe parts, metals, processes, hardware and damage repair.
    [Show full text]
  • Aircraft Components
    Ch 01.qxd 10/24/03 6:40 AM Page 1-1 According to the current Title 14 of the Code of Federal provides a brief introduction to the airplane and its Regulations (14 CFR) part 1, Definitions and major components. Abbreviations, an aircraft is a device that is used, or intended to be used, for flight. Categories of aircraft for certification of airmen include airplane, rotorcraft, MAJOR COMPONENTS lighter-than-air, powered-lift, and glider. Part 1 also Although airplanes are designed for a variety of pur- defines airplane as an engine-driven, fixed-wing poses, most of them have the same major components. aircraft heavier than air that is supported in flight by the The overall characteristics are largely determined by dynamic reaction of air against its wings. This chapter the original design objectives. Most airplane structures include a fuselage, wings, an empennage, landing gear, Aircraft—A device that is used for flight in the air. and a powerplant. [Figure 1-1] Airplane—An engine-driven, fixed-wing aircraft heavier than air that is supported in flight by the dynamic reaction of air against its wings. Empennage Wing Fuselage Powerplant Landing Gear Figure 1-1. Airplane components. 1-1 Ch 01.qxd 10/24/03 6:40 AM Page 1-2 FUSELAGE However, if the side of the can is dented only slightly, The fuselage includes the cabin and/or cockpit, which the can will collapse easily. The true monocoque con- contains seats for the occupants and the controls for struction mainly consists of the skin, formers, and the airplane.
    [Show full text]
  • Covering a Lightplane Fuselage
    Covering A Lightplane Fuselage By Bob Whittier, EAA 1235 P. O. Box 543, South Duxbury, Mass. HIS ARTICLE will seem to cover details which are would be to choose a piece 20 ft. long and perhaps 48 T "old hat" to the experienced aircraft mechanic and in. wide. You would measure about 1 ft. inward from amateur aircraft builder. It has been written as a result one end, and the same amount inward from the diagon- of a growing number of requests from newcomers to our ally opposite end, and make an almost-diagonal cut to get sport and magazine for fundamental how-to-do-it infor- the two side pieces. Or one piece of cloth 36 in. wide mation on aircraft fabric work. So it is hoped that the might give enough cloth to cover one side and the bot- old-timers will indulge us this attempt to be of assistance tom. to the many enthusiastic newcomers! If one is uncertain, it is possible to use lengths of The subject in the photographs is the fuselage of a brown wrapping paper of appropriate width to make pat- 1935 model E-2 Cub, rebuilt by the author a short time terns, or to make miniature patterns to scale from the ago. Therefore the procedure to be described is applic- blueprints or model, and juggle them around on rec- able to aircraft in both the antique and amateur-built tangles drawn to scale and representing contemplated fab- classes. In the job to be described, Grade A cotton air- ric lengths and widths, to find the most economical size.
    [Show full text]
  • Dictionary of Aeronautical Terms Aeronautical of Dictionary
    ASA DICTIONARY DICTIONARY OF AERONAUTICAL TERMS DICTIONARY OF AERONAUTICAL TERMS DICTIONARY OF Dale Crane’s ultimate reference book contains more than 11,000 AERONAUTICAL accurate, aviation-specific terms and definitions, updating and gathering all the terms in Title 14 of the Code of Federal Regulations, glossaries from FAA handbooks, advisory circulars and manuals, the Aeronautical Information Manual (AIM) and Pilot/Controller Glossary, TERMS as well as definitions not found in government publications. Nearly 500 illustrations further define and aid visual recognition of the terms, and Over 11,000 entries useful tables and lists are included in appendices. In an industry of acronyms and technical language, this comprehensive Based on the original compilation by dictionary is an essential reference book for anyone involved with aviation and/or space organizations—administrators, pilots, maintenance technicians, drone operators, colleges and universities, DALE CRANE air traffic controllers, manufacturers, engineers, government agencies, airlines, and corporate flight departments, as well as newcomers to the industry, and those who speak English as a second language. SIXTH EDITION The ASA Dictionary of Aeronautical Terms, now in its Sixth Edition, is a vital reference tool that belongs on every aviation bookshelf. SIXTH EDITION Aviation Supplies & Academics, Inc. 7005 132nd Place SE Newcastle, Washington 98059 425-235-1500 www.asa2fly.com ASA-DAT-6 ASA-DAT-6 Dictionary of Aeronautical Terms, Sixth Edition Based on all previous editions by Dale Crane, and continually revised and edited by ASA Editorial Staff. Aviation Supplies & Academics, Inc. 7005 132nd Place SE Newcastle, Washington 98059-3153 Email: [email protected] Website: www.asa2fly.com Visit www.asa2fly.com/reader/dat for the “Reader Resources” page for additional information as new terms and definitions are collected.
    [Show full text]
  • Advisory Circular
    AC NO: 20-78 DATE: 11 July 72 ADVISORY CIRCULAR MAINTENANCE rnSPECTION NorES FOR McDONNELL DOOGLAS DC-8 SERIES AIRCRAFT DEPARTMENT OF TRANSPORTATION FEDERAL AVIATION ADMINISTRATION AC NO: 20ft78 DATE: 11 July 72 ADVISORY CIRCULAR DEPARTMENT OF TRANSPORTATION FEDERALAVI ATlON ADMINISTRATION MAINTENANCE INSPECTION NarES FOR McDONNELL DaJGlAS DC-8 SUBIECT: SERIES AIRCRAFT 1. PURPOSE. This handbook provides maintenance inspection notes which can be used for the maintenance support program for certain structural parts of the DC-8 series aircraft. 2. REFERENCES. a. FAA Advisory Circular 20-50, Ultrasonic Testing January 1967. b. FAA Advisory Circular 20-61, Nondestructive Xesting for Aircraft, May 1968. c. FAA Advisory Circular 65-9, Airframe and Powerp1ant Mechanics General Handbook 1970. d. FAA Advisory Circular 65-12, Airframe and Powerplant Mechanics Powerp1ant Handbook 1971. e. Douglas Service Magazine, Volume XXIII, Issue No. 2 1965. f. Douglas Service Magazine, Volume XXIV, 1966. 3. DESCRIPTION. Maintenance inspection matters on the wing and fuselage are reviewed with a view toward supplementing information currently available. 4. HOW TO GET THIS PUBLICATION. a. Order additional copies of this publication from: Department of Transportation Distribution Unit. TAD-484.3 Washington, D.C. 20591 Initiated by: FS-30JA AC 20- 78 11 July 72 b. Identify this publication as: Advisory Circular 20-78 Maintenance Inspection Notes for McDonnell Douglas DC-8 Series Aircraft. ~K01 C. R. MELUGIN, JR. Acting Director, Flight Sta Page ii 11 July 72 AC 20-78 TABLE OF CONTENTS Page No. CHAPl'ER 1- MAINTENANCE INSPECTION NOTES. 1 1. Introduction. 1 2. Description. 1 3. Background. 1 4.
    [Show full text]
  • Aircraft Painting and Finishing
    Chapter 8 Aircraft Painting and Finishing Introduction Paint, or more specifically its overall color and application, is usually the first impression that is transmitted to someone when they look at an aircraft for the first time. Paint makes a statement about the aircraft and the person who owns or operates it. The paint scheme may reflect the owner’s ideas and color preferences for an amateur-built aircraft project, or it may be colors and identification for the recognition of a corporate or air carrier aircraft. 8-1 Paint is more than aesthetics; it affects the weight of the Ethanol or denatured alcohol is used to thin shellac for aircraft and protects the integrity of the airframe. The spraying and as a constituent of paint and varnish remover. It topcoat finish is applied to protect the exposed surfaces from can also be used as a cleaner and degreaser prior to painting. corrosion and deterioration. Also, a properly painted aircraft is easier to clean and maintain because the exposed surfaces Isopropyl, or rubbing alcohol, can be used as a disinfectant. are more resistant to corrosion and dirt, and oil does not It is used in the formulation of oxygen system cleaning adhere as readily to the surface. solutions. It can be used to remove grease pencil and permanent marker from smooth surfaces, or to wipe hand or A wide variety of materials and finishes are used to protect fingerprint oil from a surface before painting. and provide the desired appearance of the aircraft. The term “paint” is used in a general sense and includes primers, Benzene enamels, lacquers, and the various multipart finishing Benzene is a highly flammable, colorless liquid with a formulas.
    [Show full text]