A Family of ADP-Ribosylation Factor Effectors That Can Alter Membrane Transport Through the Trans-Golgi Annette L

Total Page:16

File Type:pdf, Size:1020Kb

A Family of ADP-Ribosylation Factor Effectors That Can Alter Membrane Transport Through the Trans-Golgi Annette L Molecular Biology of the Cell Vol. 11, 1241–1255, April 2000 A Family of ADP-Ribosylation Factor Effectors That Can Alter Membrane Transport through the trans-Golgi Annette L. Boman,* Chun-jiang Zhang, Xinjun Zhu, and Richard A. Kahn† Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322-3050 Submitted October 29, 1999; Revised January 21, 2000; Accepted January 28, 2000 Monitoring Editor: Hugh R.B. Pelham A family of three structurally related proteins were cloned from human cDNA libraries by their ability to interact preferentially with the activated form of human ADP-ribosylation factor 3 (ARF3) in two-hybrid assays. The specific and GTP-dependent binding was later confirmed through direct protein binding of recombinant proteins. The three proteins share large (Ϸ300 residues) domains at their N termini that are 60–70% identical to each other and a shorter (73 residues) domain at their C termini with 70% homology to the C-terminal “ear” domain of ␥-adaptin. Although GGA1 is found predominantly as a soluble protein by cell fractionation, all three proteins were found to localize to the trans-Golgi network (TGN) by indirect immunofluorescence. The binding of GGAs to TGN was sensitive to brefeldin A, consistent with this being an ARF-dependent event. Thus, these proteins have been named Golgi-localizing, ␥-adaptin ear homology domain, ARF-binding proteins, or GGAs. The finding that overexpression of GGAs was sufficient to alter the distribution of markers of the TGN (TGN38 and mannose 6-phosphate receptors) led us to propose that GGAs are effectors for ARFs that function in the regulation of membrane traffic through the TGN. INTRODUCTION cases, ARF was found not to be required for the transport/ fusion activity but only for inhibition of the assay by the ADP-ribosylation factors (ARFs) are 21-kDa GTP-binding nonhydrolyzable GTP analogue GTP␥S (Gant and Wilson, proteins that constitute a subfamily of the Ras superfamily 1997; Happe and Weidman, 1998). Thus, an obligate role for (Donaldson and Klausner, 1994; for reviews, see Boman and ARF in any of these steps is uncertain. However, a model Kahn, 1995; Moss and Vaughan, 1998). Results from several that has emerged is that ARFs recruit multimeric coat com- laboratories have pointed to a central role for ARFs in reg- plexes to the sites of vesicle buds and play a regulatory role ulating some aspect of membrane traffic, particularly to and in vesicle formation. from the Golgi, and more recently from the trans-Golgi Six currently defined coat protein complexes are thought network (TGN) (Stamnes and Rothman, 1993; Traub et al., to be recruited to membranes by ARF or an ARF family 1993; Ooi et al., 1998; Hirst et al., 1999). ARFs were originally member. Two of these coat complexes are heptameric found to localize to the Golgi (Stearns et al., 1990b). Assays of (COP-I and COP-II) and four are tetramers (adaptin com- endoplasmic reticulum (ER)-Golgi (Balch et al., 1992), intra- plexes AP-1, AP-2, AP-3, and AP-4). COP-I–coated vesicles Golgi (Taylor et al., 1992), endosome fusion (Lenhard et al., function in the transport of vesicles between the Golgi and 1992), and nuclear vesicle fusion (Boman et al., 1992) were the intermediate compartment (Cosson et al., 1996; Gaynor used to define a role for ARF in each assay, and presumably and Emr, 1997). COP-II, whose recruitment to membranes in those transport processes. However, in several of these involves activation of the ARF homologue SAR1, mediates export from the ER (Barlowe et al., 1994). The four adaptin * Present address: Department of Biochemistry and Molecular complexes share structural relatedness between homolo- Biology, University of Minnesota, Duluth, MN 55812. gous subunits and are recruited to membranes in concert † Corresponding author. E-mail address: [email protected]. with ARFs. AP-1 is found associated with sites of protein Abbreviations used: ARF, ADP-ribosylation factor; BFA, brefel- export from the TGN and on TGN-derived vesicles (Stamnes din A; bp, base pairs; EST, expressed sequence tag; GAP, ␥ and Rothman, 1993; Traub et al., 1993; Hirst and Robinson, GTPase-activating protein; GGA, Golgi-localizing, -adaptin ear 1998). AP-2 associates with plasma membranes in an ARF- homology domain, ARF-binding protein; GST-GGA1(145–639), fusion protein consisting of GST and amino acid residues 145– sensitive manner (West et al., 1997) and is found on endo- 639 of GGA1; kb, kilobase; M6PR, mannose 6-phosphate recep- somes derived from the plasma membrane. AP-3 tor; NRK, normal rat kidney; TGN, trans-Golgi network; UTR, (Dell’Angelica et al., 1997; Simpson et al., 1997; Ooi et al., untranslated region. 1998) and AP-4 (Dell’Angelica et al., 1999; Hirst et al., 1999) © 2000 by The American Society for Cell Biology 1241 A.L. Boman et al. are involved in transport within the endosomal-lysosomal BamHI sites and into pBG4D at the BamHI site. In addition to system and in the transport of non-clathrin–coated vesicles wild-type ARF3, we also subcloned two mutant alleles of ARF, from the TGN, respectively. [Q71L]ARF3, a dominant activating mutant, and [N126I]ARF3, a Much of the early work on the role of ARF in coat protein dominant negative mutant. Any DNA amplified by PCR was se- recruitment was fueled by results with the macrolide anti- quenced to confirm that no errors were introduced by the polymer- ase. biotic brefeldin A (BFA) because of its remarkable ability in The expression of each ARF-BD fusion protein was confirmed by live cells to cause protein coats (e.g., COP-I [Donaldson et al., immunoblotting. Proteins in yeast lysates were resolved by electro- 1990] and AP-1 [Traub et al., 1993]) on the Golgi to rapidly phoresis on SDS-PAGE gels, transferred to nitrocellulose, and fall off and the uncoated Golgi membranes to fuse with the probed with either mAb 12CA5 against the hemagglutinin (HA) ER (Lippincott-Schwartz et al., 1989). BFA was shown to epitope incorporated at the C terminus of the BD or ARF3-specific inhibit an ARF-specific guanine nucleotide exchange factor polyclonal antibody R-1023 (Cavenagh et al., 1996). in crude membrane fractions (Helms and Rothman, 1992; Randazzo et al., 1993) and later directly on purified ARF Two-Hybrid Screen guanine nucleotide exchange factors (Peyroche et al., 1996, 1999; Mansour et al., 1999; Togawa et al., 1999). Thus, until Transformation of Y190 with a plasmid encoding the activated ARF another site of BFA action is defined, it is reasonable to mutant construct [Q71L]ARF3-BD yielded strain YAB324. This strain was transformed with each of two human cDNA libraries, a conclude that a protein whose localization is rapidly (within B-cell library in pACT (8 ϫ 105 transformants) and a kidney library seconds to a few minutes) and dramatically altered by BFA in pGAD10 (9 ϫ 105 transformants; Stratagene, La Jolla, CA), and addition to live cells lies downstream of an ARF-dependent transformants were selected for histidine auxotrophy on minimal step. medium lacking histidine and containing 25 mM 3-aminotriazole. It is evident from both genetic and biochemical studies in After reselection on 3-aminotriazole, colonies were assayed for yeast and mammalian cells that, in addition to their effects ␤-galactosidase activity, as described previously (Breeden and on membrane traffic, ARFs regulate other cellular processes Nasmyth, 1985). Filters were incubated at 30°C for 30 min to 3 h, and must do so through regulated interactions with a vari- with color scoring at regular intervals. Obvious blue color develop- ety of effectors, distinct from those involved in membrane ment within 3 h was considered positive. The [Q71L]ARF3-BD plasmid, carrying a gene conferring sensitivity to cycloheximide, traffic. In addition, it is not clear if the effects of ARF on was next lost by growth of potential positive strains on plates vesicular traffic are direct or only mediated by interactions containing cycloheximide. Only those strains that tested negative in with coat proteins. To identify novel effectors for activated the ␤-galactosidase assay after losing the ARF plasmid were inves- ARFs, we initiated a two-hybrid screen of human cDNA tigated further. These were then tested in two-hybrid assays in Y190 libraries with the use of a dominant activated mutant of strains carrying either lamin or cdk2 as partners to confirm the ARF3 ([Q71L]ARF3) as bait. Among the effectors identified specificity of the interaction with [Q71L]ARF3. As a final selection were a group of three proteins, termed GGA1, GGA2, and and to enrich for potential ARF effectors or GTPase-activating pro- GGA3 (for Golgi-localizing, ␥-adaptin ear homology do- teins (GAPs), each library plasmid was also transformed into Y190 main, ARF-binding proteins), that share extensive sequence carrying either the wild-type ARF3-BD construct, pAB155, or the negative dominant mutant [N126I]ARF3 construct, pABH3-3. Only identity and that include a region at the C terminus with those library inserts encoding proteins that interacted preferentially marked homology to an adaptin subunit. We describe the with the activated mutant of ARF3 were pursued. direct and GTP-dependent binding of ARF3 to GGA1 and Library plasmids were rescued from each positive strain and provide data from in vivo studies of cells overexpressing confirmed to be of library origin by restriction digestion analysis. GGA proteins that support a model in which GGAs act as Each library plasmid was then transformed into Y190 or YAB324 ARF-sensitive components in protein transport from the cells to test for two-hybrid activity alone or to confirm the positive TGN. reactivity with [Q71L]ARF3-BD, respectively. Library inserts in those plasmids encoding proteins that interacted less well with ARF3 than with the activated mutant were then sequenced in both MATERIALS AND METHODS directions by automated DNA sequencing.
Recommended publications
  • BACE1 Function and Inhibition: Implications of Intervention in the Amyloid Pathway of Alzheimer’S Disease Pathology
    Review BACE1 Function and Inhibition: Implications of Intervention in the Amyloid Pathway of Alzheimer’s Disease Pathology Gerald Koelsch CoMentis, Inc., South San Francisco, CA 94080, USA; [email protected] Received: 15 September 2017; Accepted: 10 October 2017; Published: 13 October 2017 Abstract: Alzheimer’s disease (AD) is a fatal progressive neurodegenerative disorder characterized by increasing loss in memory, cognition, and function of daily living. Among the many pathologic events observed in the progression of AD, changes in amyloid β peptide (Aβ) metabolism proceed fastest, and precede clinical symptoms. BACE1 (β-secretase 1) catalyzes the initial cleavage of the amyloid precursor protein to generate Aβ. Therefore inhibition of BACE1 activity could block one of the earliest pathologic events in AD. However, therapeutic BACE1 inhibition to block Aβ production may need to be balanced with possible effects that might result from diminished physiologic functions BACE1, in particular processing of substrates involved in neuronal function of the brain and periphery. Potentials for beneficial or consequential effects resulting from pharmacologic inhibition of BACE1 are reviewed in context of ongoing clinical trials testing the effect of BACE1 candidate inhibitor drugs in AD populations. Keywords: Alzheimer’s disease; amyloid hypothesis; BACE1; beta secretase; pharmacology 1. Introduction Alzheimer’s disease (AD) is a fatal progressive neurodegenerative disorder, slowly eroding memory, cognition, and functions of daily living, inevitably culminating in death from pneumonia and infectious diseases resulting from failure to thrive, loss of fine motor skills, and incapacitation. Treatment is limited to therapeutics that alleviate symptoms of memory loss, but are effective for a relatively short duration during and after which disease progression continues.
    [Show full text]
  • Rabbit Anti-RABEP1 Antibody-SL19721R
    SunLong Biotech Co.,LTD Tel: 0086-571- 56623320 Fax:0086-571- 56623318 E-mail:[email protected] www.sunlongbiotech.com Rabbit Anti-RABEP1 antibody SL19721R Product Name: RABEP1 Chinese Name: RABEP1蛋白抗体 Neurocrescin; Rab GTPase binding effector protein 1; RAB5EP; Rabaptin 4; Rabaptin Alias: 5; Rabaptin 5alpha; RABPT5; RABPT5A; Renal carcinoma antigen NY REN 17; Renal carcinoma antigen NYREN17. Organism Species: Rabbit Clonality: Polyclonal React Species: Human,Mouse,Rat, ELISA=1:500-1000IHC-P=1:400-800IHC-F=1:400-800ICC=1:100-500IF=1:100- 500(Paraffin sections need antigen repair) Applications: not yet tested in other applications. optimal dilutions/concentrations should be determined by the end user. Molecular weight: 99kDa Cellular localization: The cell membrane Form: Lyophilized or Liquid Concentration: 1mg/ml immunogen: KLH conjugated synthetic peptide derived from human RABEP1:501-600/862 Lsotype: IgGwww.sunlongbiotech.com Purification: affinity purified by Protein A Storage Buffer: 0.01M TBS(pH7.4) with 1% BSA, 0.03% Proclin300 and 50% Glycerol. Store at -20 °C for one year. Avoid repeated freeze/thaw cycles. The lyophilized antibody is stable at room temperature for at least one month and for greater than a year Storage: when kept at -20°C. When reconstituted in sterile pH 7.4 0.01M PBS or diluent of antibody the antibody is stable for at least two weeks at 2-4 °C. PubMed: PubMed RABEP1 is a Rab effector protein acting as linker between gamma-adaptin, RAB4A and RAB5A. It is involved in endocytic membrane fusion and membrane trafficking of Product Detail: recycling endosomes. Stimulates RABGEF1 mediated nucleotide exchange on RAB5A.
    [Show full text]
  • Sequence and Comparative Analysis of the Chicken Genome Provide Unique Perspectives on Vertebrate Evolution
    articles Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution International Chicken Genome Sequencing Consortium* *Lists of participants and affiliations appear at the end of the paper ........................................................................................................................................................................................................................... We present here a draft genome sequence of the red jungle fowl, Gallus gallus. Because the chicken is a modern descendant of the dinosaurs and the first non-mammalian amniote to have its genome sequenced, the draft sequence of its genome—composed of approximately one billion base pairs of sequence and an estimated 20,000–23,000 genes—provides a new perspective on vertebrate genome evolution, while also improving the annotation of mammalian genomes. For example, the evolutionary distance between chicken and human provides high specificity in detecting functional elements, both non-coding and coding. Notably, many conserved non-coding sequences are far from genes and cannot be assigned to defined functional classes. In coding regions the evolutionary dynamics of protein domains and orthologous groups illustrate processes that distinguish the lineages leading to birds and mammals. The distinctive properties of avian microchromosomes, together with the inferred patterns of conserved synteny, provide additional insights into vertebrate chromosome architecture. Genome sequence comparison is a modern extension of the long- standing use of other species as models to illuminate aspects of human biology and medicine. Large-scale genome analyses also highlight the evolutionary dynamics of selective and mutational processes at different chronological scales1–4. We present here results obtained from an extensive analysis of a draft sequence of the chicken genome, which has evolved separately from mammalian genomes for ,310 million years (Myr)4,5 (Fig.
    [Show full text]
  • Analysis of Gga Null Mice Demonstrates a Non- Redundant Role for Mammalian GGA2 During Development
    Analysis of Gga Null Mice Demonstrates a Non- Redundant Role for Mammalian GGA2 during Development Jennifer Govero., Balraj Doray., Hongdong Bai¤, Stuart Kornfeld* Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America Abstract Numerous studies using cultured mammalian cells have shown that the three GGAs (Golgi-localized, gamma-ear containing, ADP-ribosylation factor- binding proteins) function in the transport of cargo proteins between the trans- Golgi network and endosomes. However, the in vivo role(s) of these adaptor proteins and their possible functional redundancy has not been analyzed. In this study, the genes encoding GGAs1-3 were disrupted in mice by insertional mutagenesis. Loss of GGA1 or GGA3 alone was well tolerated whereas the absence of GGA2 resulted in embryonic or neonatal lethality, depending on the genetic background of the mice. Thus, GGA2 mediates a vital function that cannot be compensated for by GGA1and/or GGA3. The combined loss of GGA1 and GGA3 also resulted in a high incidence of neonatal mortality but in this case the expression level of GGA2 may be inadequate to compensate for the loss of the other two GGAs. We conclude that the three mammalian GGAs are essential proteins that are not fully redundant. Citation: Govero J, Doray B, Bai H, Kornfeld S (2012) Analysis of Gga Null Mice Demonstrates a Non-Redundant Role for Mammalian GGA2 during Development. PLoS ONE 7(1): e30184. doi:10.1371/journal.pone.0030184 Editor: Ludger Johannes, Institut Curie, France Received October 27, 2011; Accepted December 15, 2011; Published January 26, 2012 Copyright: ß 2012 Govero et al.
    [Show full text]
  • Mouse Gga1 Conditional Knockout Project (CRISPR/Cas9)
    https://www.alphaknockout.com Mouse Gga1 Conditional Knockout Project (CRISPR/Cas9) Objective: To create a Gga1 conditional knockout Mouse model (C57BL/6J) by CRISPR/Cas-mediated genome engineering. Strategy summary: The Gga1 gene (NCBI Reference Sequence: NM_145929 ; Ensembl: ENSMUSG00000033128 ) is located on Mouse chromosome 15. 17 exons are identified, with the ATG start codon in exon 1 and the TAG stop codon in exon 17 (Transcript: ENSMUST00000041587). Exon 2~3 will be selected as conditional knockout region (cKO region). Deletion of this region should result in the loss of function of the Mouse Gga1 gene. To engineer the targeting vector, homologous arms and cKO region will be generated by PCR using BAC clone RP24-83M14 as template. Cas9, gRNA and targeting vector will be co-injected into fertilized eggs for cKO Mouse production. The pups will be genotyped by PCR followed by sequencing analysis. Note: Mice homozygous for a gene-trapped allele display decreased birth weight, slow postnatal weight gain, hypoglycemia, increased plasma levels of acid hydrolases, and partial neonatal lethality. Exon 2 starts from about 2.31% of the coding region. The knockout of Exon 2~3 will result in frameshift of the gene. The size of intron 1 for 5'-loxP site insertion: 3420 bp, and the size of intron 3 for 3'-loxP site insertion: 1064 bp. The size of effective cKO region: ~1666 bp. The cKO region does not have any other known gene. Page 1 of 8 https://www.alphaknockout.com Overview of the Targeting Strategy Wildtype allele 5' gRNA region gRNA region 3' 1 2 3 4 5 17 Targeting vector Targeted allele Constitutive KO allele (After Cre recombination) Legends Exon of mouse Gga1 Homology arm cKO region loxP site Page 2 of 8 https://www.alphaknockout.com Overview of the Dot Plot Window size: 10 bp Forward Reverse Complement Sequence 12 Note: The sequence of homologous arms and cKO region is aligned with itself to determine if there are tandem repeats.
    [Show full text]
  • GGA1 (D-6): Sc-271927
    SANTA CRUZ BIOTECHNOLOGY, INC. GGA1 (D-6): sc-271927 BACKGROUND APPLICATIONS The GGA family of proteins (Golgi-localized, g-adaptin ear-containing, ARF- GGA1 (D-6) is recommended for detection of GGA1 of human origin by binding proteins) are ubiquitous coat proteins that facilitate the trafficking Western Blotting (starting dilution 1:100, dilution range 1:100-1:1000), of soluble proteins from the trans-Golgi network (TGN) to endosomes/lyso- immunoprecipitation [1-2 µg per 100-500 µg of total protein (1 ml of cell somes by means of interactions with TGN-sorting receptors, ARF (ADP-ribo- lysate)], immunofluorescence (starting dilution 1:50, dilution range 1:50- sylation factor) and Clathrin. Members of the GGA family, GGA1, GGA2 (also 1:500), immunohistochemistry (including paraffin-embedded sections) known as VEAR) and GGA3, are multidomain proteins that bind mannose 6- (starting dilution 1:50, dilution range 1:50-1:500) and solid phase ELISA phosphate receptors (MPRs). GGAs have modular structures with an N-termi- (starting dilution 1:30, dilution range 1:30-1:3000). nal VHS (VPS-27, Hrs and STAM) domain followed by a GAT (GGA and TOM1) Suitable for use as control antibody for GGA1 siRNA (h): sc-41167, GGA1 domain, a connecting hinge segment and a C-terminal GAE ( -adaptin ear) g shRNA Plasmid (h): sc-41167-SH and GGA1 shRNA (h) Lentiviral Particles: domain. The amino-terminal VHS domains of GGAs form complexes with sc-41167-V. the cytoplasmic domains of sorting receptors by recognizing acidic-cluster di-leucine (ACLL) sequences. GGA1 and GGA2 do not associate with each Molecular Weight of GGA1: 85 kDa.
    [Show full text]
  • Association Between GGA1 Gene Polymorphisms and Occurrence of Mammary Mixed Tumors and Aging in Domestic Bitches1)
    34 Med. Weter. 2016, 72 (1), 34-40 Praca oryginalna Original paper Association between GGA1 gene polymorphisms and occurrence of mammary mixed tumors and aging in domestic bitches1) WIESŁAWA KRANC*, ADRIAN CHACHUŁA**, KATARZYNA WOJTANOWICZ-MARKIEWICZ***, KATARZYNA ZAORSKA**, EDYTA OCIEPA***, ADAM PIOTROWSKI*, DOROTA BUKOWSKA***, SYLWIA CIESIÓŁKA**, SYLWIA BORYS****, HANNA PIOTROWSKA****, AGNIESZKA SKOWROŃSKA*****, MARCIN NOWAK******, PAWEŁ ANTOSIK***, KLAUS-PETER BRÜSSOW***, BARTOSZ KEMPISTY*, **, MAŁGORZATA BRUSKA*, MICHAŁ NOWICKI**, MACIEJ ZABEL**, ******* *Department of Anatomy, **Department of Histology and Embryology, Medicine Faculty I, Poznan University of Medical Sciences, Swiecickiego 6 St., 60-781 Poznan, Poland ***Institute of Veterinary Sciences, Faculty of Animal Breeding and Biology, Poznan University of Life Sciences, Wolynska 35 St., 60-637 Poznan, Poland ****Department of Toxicology, Faculty of Farmacy, Poznan University of Medical Sciences, Dojazd 30 St., 60-631 Poznan, Poland *****Department of Human Physiology, Faculty of Medical Sciences, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland ******Department of Pathology, Faculty of Veterinary Medicine, Wroclaw University of Life Sciences, C. K. Norwida 31 St., 50-375 Wrocław, Poland *******Department of Histology and Embryology, Wroclaw Medical University, 6a Chalubinskiego St., 50-368, Wroclaw, Poland Received 13.07.2015 Accepted 03.11.2015 Kranc W., Chachuła A., Wojtanowicz-Markiewicz K., Zaorska K., Ociepa E., Piotrowski A., Bukowska D., Ciesiółka S., Borys S., Piotrowska H., Skowrońska A., Nowak M., Antosik P., Brüssow K.-P., Kempisty B., Bruska M., Nowicki M., Zabel M. Association between GGA1 gene polymorphisms and occurrence of mammary mixed tumours and aging in domestic bitches Summary In recent years the number of malignant mammary gland tumor occurrences in domestic bitches has increased.
    [Show full text]
  • Genome-Wide Association Study Reveals Putative Role of Gga-Mir
    Yuan et al. BMC Genomics (2017) 18:699 DOI 10.1186/s12864-017-4092-9 ORIGINALPAPER Open Access Genome-wide association study reveals putative role of gga-miR-15a in controlling feed conversion ratio in layer chickens Jingwei Yuan1, Sirui Chen1, Fengying Shi2, Guiqin Wu2, Aiqiao Liu2, Ning Yang1 and Congjiao Sun1* Abstract Background: Efficient use of feed resources for farm animals is a critical concern in animal husbandry. Numerous genetic and nutritional studies have been conducted to investigate feed efficiency during the regular laying cycle of chickens. However, by prolonging the laying period of layers, the performance of feed utilization in the late- laying period becomes increasingly important. In the present study, we measured daily feed intake (FI), residual feed intake (RFI) and feed conversion ratio (FCR) of 808 hens during 81–82 weeks of age to evaluate genetic properties and then used a genome-wide association study (GWAS) to reveal the genetic determinants. Results: The heritability estimates for the investigated traits were medium and between 0.15 and 0.28 in both pedigree- and genomic-based estimates, whereas the genetic correlations among these traits were high and ranged from 0.49 to 0.90. Three genome-wide significant SNPs located on chromosome 1 (GGA1) were detected for FCR. Linkage disequilibrium (LD) and conditional GWA analysis indicated that these 3 SNPs were highly correlated with one another, located at 13.55–45.16 Kb upstream of gga-miR-15a. Results of quantitative real-time polymerase chain reaction (qRT-PCR) analysis in liver tissue showed that the expression of gga-miR-15a was significantly higher in the high FCR birds than that in the medium or low FCR birds.
    [Show full text]
  • Review the Sorting and Trafficking of Lysosomal Proteins
    Histol Histopathol (2006) 21: 899-913 Histology and http://www.hh.um.es Histopathology Cellular and Molecular Biology Review The sorting and trafficking of lysosomal proteins X. Ni, M. Canuel and C.R. Morales Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada Summary. For a long time lysosomes were considered phosphate, to allow its recognition by a sorting receptor. terminal organelles involved in the degradation of Protein sorting in most eukaryotic cells may also involve different substrates. However, this view is rapidly protein-protein interactions between the cargo and the changing by evidence demonstrating that these receptor. Consequently, eukaryotic cells may have an organelles and their content display specialized functions additional repertoire of receptors that recognize amino in addition to the degradation of substances. Many acid sequences and/or motifs in the lysosomal cargo. lysosomal proteins have been implicated in specialized Such motifs have the property to specify the sorting and cellular functions and disorders such as antigen final destination of the cargo. This possibility is processing, targeting of surfactant proteins, and most discussed in the present review. lysosomal storage disorders. To date, about fifty To exit a sorting compartment a receptor must lysosomal hydrolases have been identified, and the interact with cytoplasmic coat proteins such as adaptor majority of them are targeted to the lysosomes via the proteins, ARF and clathrin, that cause vesicles to bud mannose-6-phosphate receptor (M6P-Rc). However, from donor membranes (trans-Golgi network/TGN) and recent studies on the intracellular trafficking of the non- to traffic to acceptor membranes (late endosomes and enzymic lysosomal proteins prosaposin and GM2 lysosomes).
    [Show full text]
  • Genetic Architecture of Bone Quality Variation in Layer Chickens Revealed
    www.nature.com/scientificreports OPEN Genetic architecture of bone quality variation in layer chickens revealed by a genome-wide association Received: 26 October 2016 Accepted: 23 February 2017 study Published: 06 April 2017 Jun Guo1,*, Congjiao Sun2,*, Liang Qu1, Manman Shen1, Taocun Dou1, Meng Ma1, Kehua Wang1 & Ning Yang2 Skeletal problems in layer chickens are gaining attention due to animal welfare and economic losses in the egg industry. The genetic improvement of bone traits has been proposed as a potential solution to these issues; however, genetic architecture is not well understood. We conducted a genome-wide association study (GWAS) on bone quality using a sample of 1534 hens genotyped with a 600 K Chicken Genotyping Array. Using a linear mixed model approach, a novel locus close to GSG1L, associated with femur bone mineral density (BMD), was uncovered in this study. In addition, nine SNPs in genes were associated with bone quality. Three of these genes, RANKL, ADAMTS and SOST, were known to be associated with osteoporosis in humans, which makes them good candidate genes for osteoporosis in chickens. Genomic partitioning analysis supports the fact that common variants contribute to the variations of bone quality. We have identified several strong candidate genes and genomic regions associated with bone traits measured in end-of-lay cage layers, which accounted for 1.3–7.7% of the phenotypic variance. These SNPs could provide the relevant information to help elucidate which genes affect bone quality in chicken. Osteoporosis in hens is a common disease leading to increased risk to bone fracture, and is especially severe in caged layer populations, yet the underlying genetic architecture is poorly understood.
    [Show full text]
  • GGA1-Mediated Endocytic Traffic of LR11/Sorla Alters APP Intracellular Distribution and Amyloid-Β Production Jeremy H
    GGA1-mediated endocytic traffic of LR11/SorLA alters APP intracellular distribution and amyloid-β production Jeremy H. Herskowitz, Emory University Katrin Offe, Emory University Aniruddha Deshpande, Emory University Richard A Kahn, Emory University Allan I Levey, Emory University James J Lah, Emory University Journal Title: Molecular Biology of the Cell Volume: Volume 23, Number 14 Publisher: The American Society for Cell Biology | 2012-07-15, Pages 2645-2657 Type of Work: Article | Final Publisher PDF Publisher DOI: 10.1091/mbc.E12-01-0014 Permanent URL: http://pid.emory.edu/ark:/25593/cwsw4 Final published version: http://dx.doi.org/10.1091%2Fmbc.E12-01-0014 Copyright information: © 2012 Herskowitz et al. This is an Open Access work distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License (http://creativecommons.org/licenses/by-nc-sa/3.0/). Accessed October 4, 2021 10:12 AM EDT M BoC | ARTICLE GGA1-mediated endocytic traffic of LR11/SorLA alters APP intracellular distribution and amyloid- β production Jeremy H. Herskowitza, Katrin Offea, Aniruddha Deshpandea, Richard A. Kahnb, Allan I. Leveya, and James J. Laha aCenter for Neurodegenerative Disease, Department of Neurology, and bDepartment of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322 ABSTRACT Proteolytic processing of the amyloid-β precursor protein (APP) and generation Monitoring Editor of amyloid-β peptide (Aβ) are key events in Alzheimer’s disease (AD) pathogenesis. Cell bio- Adam Linstedt logical and genetic evidence has implicated the low-density lipoprotein and sorting receptor Carnegie Mellon University LR11/SorLA in AD through mechanisms related to APP and Aβ production.
    [Show full text]
  • Role of the Polycystins in Cell Migration, Polarity, and Tissue Morphogenesis
    Cells 2015, 4, 687-705; doi:10.3390/cells4040687 OPEN ACCESS cells ISSN 2073-4409 www.mdpi.com/journal/cells Review Role of the Polycystins in Cell Migration, Polarity, and Tissue Morphogenesis Elisa Agnese Nigro, Maddalena Castelli and Alessandra Boletta * Division of Genetics and Cell Biology, Dibit, IRCCS-San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milano, Italy; E-Mails: [email protected] (E.A.N.); [email protected] (M.C.) * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +39-02-2643-4805; Fax: +39-02-2643-4861. Academic Editor: Christoph Englert Received: 7 August 2015 / Accepted: 26 October 2015 / Published: 30 October 2015 Abstract: Cystic kidney diseases (CKD) is a class of disorders characterized by ciliary dysfunction and, therefore, belonging to the ciliopathies. The prototype CKD is autosomal dominant polycystic kidney disease (ADPKD), whose mutated genes encode for two membrane-bound proteins, polycystin-1 (PC-1) and polycystin-2 (PC-2), of unknown function. Recent studies on CKD-associated genes identified new mechanisms of morphogenesis that are central for establishment and maintenance of proper renal tubular diameter. During embryonic development in the mouse and lower vertebrates a convergent-extension (CE)-like mechanism based on planar cell polarity (PCP) and cellular intercalation is involved in “sculpting” the tubules into a narrow and elongated shape. Once the appropriate diameter is established, further elongation occurs through oriented cell division (OCD). The polycystins (PCs) regulate some of these essential processes. In this review we summarize recent work on the role of PCs in regulating cell migration, the cytoskeleton, and front-rear polarity.
    [Show full text]