Signals Involved in Protein Intracellular Sorting
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
BACE1 Function and Inhibition: Implications of Intervention in the Amyloid Pathway of Alzheimer’S Disease Pathology
Review BACE1 Function and Inhibition: Implications of Intervention in the Amyloid Pathway of Alzheimer’s Disease Pathology Gerald Koelsch CoMentis, Inc., South San Francisco, CA 94080, USA; [email protected] Received: 15 September 2017; Accepted: 10 October 2017; Published: 13 October 2017 Abstract: Alzheimer’s disease (AD) is a fatal progressive neurodegenerative disorder characterized by increasing loss in memory, cognition, and function of daily living. Among the many pathologic events observed in the progression of AD, changes in amyloid β peptide (Aβ) metabolism proceed fastest, and precede clinical symptoms. BACE1 (β-secretase 1) catalyzes the initial cleavage of the amyloid precursor protein to generate Aβ. Therefore inhibition of BACE1 activity could block one of the earliest pathologic events in AD. However, therapeutic BACE1 inhibition to block Aβ production may need to be balanced with possible effects that might result from diminished physiologic functions BACE1, in particular processing of substrates involved in neuronal function of the brain and periphery. Potentials for beneficial or consequential effects resulting from pharmacologic inhibition of BACE1 are reviewed in context of ongoing clinical trials testing the effect of BACE1 candidate inhibitor drugs in AD populations. Keywords: Alzheimer’s disease; amyloid hypothesis; BACE1; beta secretase; pharmacology 1. Introduction Alzheimer’s disease (AD) is a fatal progressive neurodegenerative disorder, slowly eroding memory, cognition, and functions of daily living, inevitably culminating in death from pneumonia and infectious diseases resulting from failure to thrive, loss of fine motor skills, and incapacitation. Treatment is limited to therapeutics that alleviate symptoms of memory loss, but are effective for a relatively short duration during and after which disease progression continues. -
Understanding and Exploiting Post-Translational Modifications for Plant Disease Resistance
biomolecules Review Understanding and Exploiting Post-Translational Modifications for Plant Disease Resistance Catherine Gough and Ari Sadanandom * Department of Biosciences, Durham University, Stockton Road, Durham DH1 3LE, UK; [email protected] * Correspondence: [email protected]; Tel.: +44-1913341263 Abstract: Plants are constantly threatened by pathogens, so have evolved complex defence signalling networks to overcome pathogen attacks. Post-translational modifications (PTMs) are fundamental to plant immunity, allowing rapid and dynamic responses at the appropriate time. PTM regulation is essential; pathogen effectors often disrupt PTMs in an attempt to evade immune responses. Here, we cover the mechanisms of disease resistance to pathogens, and how growth is balanced with defence, with a focus on the essential roles of PTMs. Alteration of defence-related PTMs has the potential to fine-tune molecular interactions to produce disease-resistant crops, without trade-offs in growth and fitness. Keywords: post-translational modifications; plant immunity; phosphorylation; ubiquitination; SUMOylation; defence Citation: Gough, C.; Sadanandom, A. 1. Introduction Understanding and Exploiting Plant growth and survival are constantly threatened by biotic stress, including plant Post-Translational Modifications for pathogens consisting of viruses, bacteria, fungi, and chromista. In the context of agriculture, Plant Disease Resistance. Biomolecules crop yield losses due to pathogens are estimated to be around 20% worldwide in staple 2021, 11, 1122. https://doi.org/ crops [1]. The spread of pests and diseases into new environments is increasing: more 10.3390/biom11081122 extreme weather events associated with climate change create favourable environments for food- and water-borne pathogens [2,3]. Academic Editors: Giovanna Serino The significant estimates of crop losses from pathogens highlight the need to de- and Daisuke Todaka velop crops with disease-resistance traits against current and emerging pathogens. -
Rabbit Anti-RABEP1 Antibody-SL19721R
SunLong Biotech Co.,LTD Tel: 0086-571- 56623320 Fax:0086-571- 56623318 E-mail:[email protected] www.sunlongbiotech.com Rabbit Anti-RABEP1 antibody SL19721R Product Name: RABEP1 Chinese Name: RABEP1蛋白抗体 Neurocrescin; Rab GTPase binding effector protein 1; RAB5EP; Rabaptin 4; Rabaptin Alias: 5; Rabaptin 5alpha; RABPT5; RABPT5A; Renal carcinoma antigen NY REN 17; Renal carcinoma antigen NYREN17. Organism Species: Rabbit Clonality: Polyclonal React Species: Human,Mouse,Rat, ELISA=1:500-1000IHC-P=1:400-800IHC-F=1:400-800ICC=1:100-500IF=1:100- 500(Paraffin sections need antigen repair) Applications: not yet tested in other applications. optimal dilutions/concentrations should be determined by the end user. Molecular weight: 99kDa Cellular localization: The cell membrane Form: Lyophilized or Liquid Concentration: 1mg/ml immunogen: KLH conjugated synthetic peptide derived from human RABEP1:501-600/862 Lsotype: IgGwww.sunlongbiotech.com Purification: affinity purified by Protein A Storage Buffer: 0.01M TBS(pH7.4) with 1% BSA, 0.03% Proclin300 and 50% Glycerol. Store at -20 °C for one year. Avoid repeated freeze/thaw cycles. The lyophilized antibody is stable at room temperature for at least one month and for greater than a year Storage: when kept at -20°C. When reconstituted in sterile pH 7.4 0.01M PBS or diluent of antibody the antibody is stable for at least two weeks at 2-4 °C. PubMed: PubMed RABEP1 is a Rab effector protein acting as linker between gamma-adaptin, RAB4A and RAB5A. It is involved in endocytic membrane fusion and membrane trafficking of Product Detail: recycling endosomes. Stimulates RABGEF1 mediated nucleotide exchange on RAB5A. -
Sequence and Comparative Analysis of the Chicken Genome Provide Unique Perspectives on Vertebrate Evolution
articles Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution International Chicken Genome Sequencing Consortium* *Lists of participants and affiliations appear at the end of the paper ........................................................................................................................................................................................................................... We present here a draft genome sequence of the red jungle fowl, Gallus gallus. Because the chicken is a modern descendant of the dinosaurs and the first non-mammalian amniote to have its genome sequenced, the draft sequence of its genome—composed of approximately one billion base pairs of sequence and an estimated 20,000–23,000 genes—provides a new perspective on vertebrate genome evolution, while also improving the annotation of mammalian genomes. For example, the evolutionary distance between chicken and human provides high specificity in detecting functional elements, both non-coding and coding. Notably, many conserved non-coding sequences are far from genes and cannot be assigned to defined functional classes. In coding regions the evolutionary dynamics of protein domains and orthologous groups illustrate processes that distinguish the lineages leading to birds and mammals. The distinctive properties of avian microchromosomes, together with the inferred patterns of conserved synteny, provide additional insights into vertebrate chromosome architecture. Genome sequence comparison is a modern extension of the long- standing use of other species as models to illuminate aspects of human biology and medicine. Large-scale genome analyses also highlight the evolutionary dynamics of selective and mutational processes at different chronological scales1–4. We present here results obtained from an extensive analysis of a draft sequence of the chicken genome, which has evolved separately from mammalian genomes for ,310 million years (Myr)4,5 (Fig. -
Analysis of Gga Null Mice Demonstrates a Non- Redundant Role for Mammalian GGA2 During Development
Analysis of Gga Null Mice Demonstrates a Non- Redundant Role for Mammalian GGA2 during Development Jennifer Govero., Balraj Doray., Hongdong Bai¤, Stuart Kornfeld* Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America Abstract Numerous studies using cultured mammalian cells have shown that the three GGAs (Golgi-localized, gamma-ear containing, ADP-ribosylation factor- binding proteins) function in the transport of cargo proteins between the trans- Golgi network and endosomes. However, the in vivo role(s) of these adaptor proteins and their possible functional redundancy has not been analyzed. In this study, the genes encoding GGAs1-3 were disrupted in mice by insertional mutagenesis. Loss of GGA1 or GGA3 alone was well tolerated whereas the absence of GGA2 resulted in embryonic or neonatal lethality, depending on the genetic background of the mice. Thus, GGA2 mediates a vital function that cannot be compensated for by GGA1and/or GGA3. The combined loss of GGA1 and GGA3 also resulted in a high incidence of neonatal mortality but in this case the expression level of GGA2 may be inadequate to compensate for the loss of the other two GGAs. We conclude that the three mammalian GGAs are essential proteins that are not fully redundant. Citation: Govero J, Doray B, Bai H, Kornfeld S (2012) Analysis of Gga Null Mice Demonstrates a Non-Redundant Role for Mammalian GGA2 during Development. PLoS ONE 7(1): e30184. doi:10.1371/journal.pone.0030184 Editor: Ludger Johannes, Institut Curie, France Received October 27, 2011; Accepted December 15, 2011; Published January 26, 2012 Copyright: ß 2012 Govero et al. -
Mouse Gga1 Conditional Knockout Project (CRISPR/Cas9)
https://www.alphaknockout.com Mouse Gga1 Conditional Knockout Project (CRISPR/Cas9) Objective: To create a Gga1 conditional knockout Mouse model (C57BL/6J) by CRISPR/Cas-mediated genome engineering. Strategy summary: The Gga1 gene (NCBI Reference Sequence: NM_145929 ; Ensembl: ENSMUSG00000033128 ) is located on Mouse chromosome 15. 17 exons are identified, with the ATG start codon in exon 1 and the TAG stop codon in exon 17 (Transcript: ENSMUST00000041587). Exon 2~3 will be selected as conditional knockout region (cKO region). Deletion of this region should result in the loss of function of the Mouse Gga1 gene. To engineer the targeting vector, homologous arms and cKO region will be generated by PCR using BAC clone RP24-83M14 as template. Cas9, gRNA and targeting vector will be co-injected into fertilized eggs for cKO Mouse production. The pups will be genotyped by PCR followed by sequencing analysis. Note: Mice homozygous for a gene-trapped allele display decreased birth weight, slow postnatal weight gain, hypoglycemia, increased plasma levels of acid hydrolases, and partial neonatal lethality. Exon 2 starts from about 2.31% of the coding region. The knockout of Exon 2~3 will result in frameshift of the gene. The size of intron 1 for 5'-loxP site insertion: 3420 bp, and the size of intron 3 for 3'-loxP site insertion: 1064 bp. The size of effective cKO region: ~1666 bp. The cKO region does not have any other known gene. Page 1 of 8 https://www.alphaknockout.com Overview of the Targeting Strategy Wildtype allele 5' gRNA region gRNA region 3' 1 2 3 4 5 17 Targeting vector Targeted allele Constitutive KO allele (After Cre recombination) Legends Exon of mouse Gga1 Homology arm cKO region loxP site Page 2 of 8 https://www.alphaknockout.com Overview of the Dot Plot Window size: 10 bp Forward Reverse Complement Sequence 12 Note: The sequence of homologous arms and cKO region is aligned with itself to determine if there are tandem repeats. -
Exploitation of the Ligand-Binding Properties of the Mannose 6
University of Nebraska Medical Center DigitalCommons@UNMC Theses & Dissertations Graduate Studies Spring 5-7-2016 Exploitation of the Ligand-Binding Properties of the Mannose 6-Phosphate/Insulin-Like Growth Factor II (IGF-II) Receptor to Inhibit IGF-II-Dependent Growth of Cancer Cells Megan Zavorka Thomas University of Nebraska Medical Center Follow this and additional works at: https://digitalcommons.unmc.edu/etd Part of the Biochemistry Commons, Cancer Biology Commons, and the Molecular Biology Commons Recommended Citation Zavorka Thomas, Megan, "Exploitation of the Ligand-Binding Properties of the Mannose 6-Phosphate/ Insulin-Like Growth Factor II (IGF-II) Receptor to Inhibit IGF-II-Dependent Growth of Cancer Cells" (2016). Theses & Dissertations. 106. https://digitalcommons.unmc.edu/etd/106 This Dissertation is brought to you for free and open access by the Graduate Studies at DigitalCommons@UNMC. It has been accepted for inclusion in Theses & Dissertations by an authorized administrator of DigitalCommons@UNMC. For more information, please contact [email protected]. EXPLOITATION OF THE LIGAND-BINDING PROPERTIES OF THE MANNOSE 6- PHOSPHATE/INSULIN-LIKE GROWTH FACTOR II (IGF-II) RECEPTOR TO INHIBIT IGF-II-DEPENDENT GROWTH OF CANCER CELLS By Megan E. Zavorka Thomas A Dissertation Presented to the Faculty of The Graduate College in the University of Nebraska In Partial Fullfilment of the Requirements For the Degree of Doctor of Philosophy Department of Biochemistry and Molecular Biology Under the Supervision of Professor Richard G. MacDonald University of Nebraska Medical Center Omaha, Nebraska April, 2015 EXPLOITATION OF THE LIGAND-BINDING PROPERTIES OF THE MANNOSE 6- PHOSPHATE/INSULIN-LIKE GROWTH FACTOR II (IGF-II) RECEPTOR TO INHIBIT IGF-II-DEPENDENT GROWTH OF CANCER CELLS Megan E. -
Novel Roles of SH2 and SH3 Domains in Lipid Binding
cells Review Novel Roles of SH2 and SH3 Domains in Lipid Binding Szabolcs Sipeki 1,†, Kitti Koprivanacz 2,†, Tamás Takács 2, Anita Kurilla 2, Loretta László 2, Virag Vas 2 and László Buday 1,2,* 1 Department of Molecular Biology, Institute of Biochemistry and Molecular Biology, Semmelweis University Medical School, 1094 Budapest, Hungary; [email protected] 2 Institute of Enzymology, Research Centre for Natural Sciences, 1117 Budapest, Hungary; [email protected] (K.K.); [email protected] (T.T.); [email protected] (A.K.); [email protected] (L.L.); [email protected] (V.V.) * Correspondence: [email protected] † Both authors contributed equally to this work. Abstract: Signal transduction, the ability of cells to perceive information from the surroundings and alter behavior in response, is an essential property of life. Studies on tyrosine kinase action fundamentally changed our concept of cellular regulation. The induced assembly of subcellular hubs via the recognition of local protein or lipid modifications by modular protein interactions is now a central paradigm in signaling. Such molecular interactions are mediated by specific protein interaction domains. The first such domain identified was the SH2 domain, which was postulated to be a reader capable of finding and binding protein partners displaying phosphorylated tyrosine side chains. The SH3 domain was found to be involved in the formation of stable protein sub-complexes by constitutively attaching to proline-rich surfaces on its binding partners. The SH2 and SH3 domains have thus served as the prototypes for a diverse collection of interaction domains that recognize not only proteins but also lipids, nucleic acids, and small molecules. -
GGA1 (D-6): Sc-271927
SANTA CRUZ BIOTECHNOLOGY, INC. GGA1 (D-6): sc-271927 BACKGROUND APPLICATIONS The GGA family of proteins (Golgi-localized, g-adaptin ear-containing, ARF- GGA1 (D-6) is recommended for detection of GGA1 of human origin by binding proteins) are ubiquitous coat proteins that facilitate the trafficking Western Blotting (starting dilution 1:100, dilution range 1:100-1:1000), of soluble proteins from the trans-Golgi network (TGN) to endosomes/lyso- immunoprecipitation [1-2 µg per 100-500 µg of total protein (1 ml of cell somes by means of interactions with TGN-sorting receptors, ARF (ADP-ribo- lysate)], immunofluorescence (starting dilution 1:50, dilution range 1:50- sylation factor) and Clathrin. Members of the GGA family, GGA1, GGA2 (also 1:500), immunohistochemistry (including paraffin-embedded sections) known as VEAR) and GGA3, are multidomain proteins that bind mannose 6- (starting dilution 1:50, dilution range 1:50-1:500) and solid phase ELISA phosphate receptors (MPRs). GGAs have modular structures with an N-termi- (starting dilution 1:30, dilution range 1:30-1:3000). nal VHS (VPS-27, Hrs and STAM) domain followed by a GAT (GGA and TOM1) Suitable for use as control antibody for GGA1 siRNA (h): sc-41167, GGA1 domain, a connecting hinge segment and a C-terminal GAE ( -adaptin ear) g shRNA Plasmid (h): sc-41167-SH and GGA1 shRNA (h) Lentiviral Particles: domain. The amino-terminal VHS domains of GGAs form complexes with sc-41167-V. the cytoplasmic domains of sorting receptors by recognizing acidic-cluster di-leucine (ACLL) sequences. GGA1 and GGA2 do not associate with each Molecular Weight of GGA1: 85 kDa. -
Association Between GGA1 Gene Polymorphisms and Occurrence of Mammary Mixed Tumors and Aging in Domestic Bitches1)
34 Med. Weter. 2016, 72 (1), 34-40 Praca oryginalna Original paper Association between GGA1 gene polymorphisms and occurrence of mammary mixed tumors and aging in domestic bitches1) WIESŁAWA KRANC*, ADRIAN CHACHUŁA**, KATARZYNA WOJTANOWICZ-MARKIEWICZ***, KATARZYNA ZAORSKA**, EDYTA OCIEPA***, ADAM PIOTROWSKI*, DOROTA BUKOWSKA***, SYLWIA CIESIÓŁKA**, SYLWIA BORYS****, HANNA PIOTROWSKA****, AGNIESZKA SKOWROŃSKA*****, MARCIN NOWAK******, PAWEŁ ANTOSIK***, KLAUS-PETER BRÜSSOW***, BARTOSZ KEMPISTY*, **, MAŁGORZATA BRUSKA*, MICHAŁ NOWICKI**, MACIEJ ZABEL**, ******* *Department of Anatomy, **Department of Histology and Embryology, Medicine Faculty I, Poznan University of Medical Sciences, Swiecickiego 6 St., 60-781 Poznan, Poland ***Institute of Veterinary Sciences, Faculty of Animal Breeding and Biology, Poznan University of Life Sciences, Wolynska 35 St., 60-637 Poznan, Poland ****Department of Toxicology, Faculty of Farmacy, Poznan University of Medical Sciences, Dojazd 30 St., 60-631 Poznan, Poland *****Department of Human Physiology, Faculty of Medical Sciences, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland ******Department of Pathology, Faculty of Veterinary Medicine, Wroclaw University of Life Sciences, C. K. Norwida 31 St., 50-375 Wrocław, Poland *******Department of Histology and Embryology, Wroclaw Medical University, 6a Chalubinskiego St., 50-368, Wroclaw, Poland Received 13.07.2015 Accepted 03.11.2015 Kranc W., Chachuła A., Wojtanowicz-Markiewicz K., Zaorska K., Ociepa E., Piotrowski A., Bukowska D., Ciesiółka S., Borys S., Piotrowska H., Skowrońska A., Nowak M., Antosik P., Brüssow K.-P., Kempisty B., Bruska M., Nowicki M., Zabel M. Association between GGA1 gene polymorphisms and occurrence of mammary mixed tumours and aging in domestic bitches Summary In recent years the number of malignant mammary gland tumor occurrences in domestic bitches has increased. -
Genome-Wide Association Study Reveals Putative Role of Gga-Mir
Yuan et al. BMC Genomics (2017) 18:699 DOI 10.1186/s12864-017-4092-9 ORIGINALPAPER Open Access Genome-wide association study reveals putative role of gga-miR-15a in controlling feed conversion ratio in layer chickens Jingwei Yuan1, Sirui Chen1, Fengying Shi2, Guiqin Wu2, Aiqiao Liu2, Ning Yang1 and Congjiao Sun1* Abstract Background: Efficient use of feed resources for farm animals is a critical concern in animal husbandry. Numerous genetic and nutritional studies have been conducted to investigate feed efficiency during the regular laying cycle of chickens. However, by prolonging the laying period of layers, the performance of feed utilization in the late- laying period becomes increasingly important. In the present study, we measured daily feed intake (FI), residual feed intake (RFI) and feed conversion ratio (FCR) of 808 hens during 81–82 weeks of age to evaluate genetic properties and then used a genome-wide association study (GWAS) to reveal the genetic determinants. Results: The heritability estimates for the investigated traits were medium and between 0.15 and 0.28 in both pedigree- and genomic-based estimates, whereas the genetic correlations among these traits were high and ranged from 0.49 to 0.90. Three genome-wide significant SNPs located on chromosome 1 (GGA1) were detected for FCR. Linkage disequilibrium (LD) and conditional GWA analysis indicated that these 3 SNPs were highly correlated with one another, located at 13.55–45.16 Kb upstream of gga-miR-15a. Results of quantitative real-time polymerase chain reaction (qRT-PCR) analysis in liver tissue showed that the expression of gga-miR-15a was significantly higher in the high FCR birds than that in the medium or low FCR birds. -
Review the Sorting and Trafficking of Lysosomal Proteins
Histol Histopathol (2006) 21: 899-913 Histology and http://www.hh.um.es Histopathology Cellular and Molecular Biology Review The sorting and trafficking of lysosomal proteins X. Ni, M. Canuel and C.R. Morales Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada Summary. For a long time lysosomes were considered phosphate, to allow its recognition by a sorting receptor. terminal organelles involved in the degradation of Protein sorting in most eukaryotic cells may also involve different substrates. However, this view is rapidly protein-protein interactions between the cargo and the changing by evidence demonstrating that these receptor. Consequently, eukaryotic cells may have an organelles and their content display specialized functions additional repertoire of receptors that recognize amino in addition to the degradation of substances. Many acid sequences and/or motifs in the lysosomal cargo. lysosomal proteins have been implicated in specialized Such motifs have the property to specify the sorting and cellular functions and disorders such as antigen final destination of the cargo. This possibility is processing, targeting of surfactant proteins, and most discussed in the present review. lysosomal storage disorders. To date, about fifty To exit a sorting compartment a receptor must lysosomal hydrolases have been identified, and the interact with cytoplasmic coat proteins such as adaptor majority of them are targeted to the lysosomes via the proteins, ARF and clathrin, that cause vesicles to bud mannose-6-phosphate receptor (M6P-Rc). However, from donor membranes (trans-Golgi network/TGN) and recent studies on the intracellular trafficking of the non- to traffic to acceptor membranes (late endosomes and enzymic lysosomal proteins prosaposin and GM2 lysosomes).