An Albumin-Binding Domain As a Scaffold for Bispecific Affinity Proteins

Total Page:16

File Type:pdf, Size:1020Kb

An Albumin-Binding Domain As a Scaffold for Bispecific Affinity Proteins An albumin-binding domain as a scaffold for bispecific affinity proteins J o h a n n i lv e B r a n T Doctoral Thesis in Biotechnology Stockholm, Sweden 2012 An albumin-binding domain as a scaffold An albumin-binding domain as a scaffold for bispecific affinity proteins for bispecific affinity proteins JOHAN NILVEBRANT JOHAN NILVEBRANT Royal Institute of Technology Royal Institute of Technology School of Biotechnology School of Biotechnology Stockholm 2012 Stockholm 2012 © Johan Nilvebrant © Johan Nilvebrant Stockholm 2012 Stockholm 2012 Royal Institute of Technology Royal Institute of Technology School of Biotechnology School of Biotechnology AlbaNova University Center AlbaNova University Center SE-106 91 Stockholm SE-106 91 Stockholm Sweden Sweden Printed by E-Print Printed by E-Print Oxtorgsgatan 9 Oxtorgsgatan 9 SE-111 57 Stockholm SE-111 57 Stockholm Sweden Sweden ISBN 978-91-7501-569-9 ISBN 978-91-7501-569-9 TRITA-BIO Report 2012:21 TRITA-BIO Report 2012:21 ISSN 1654-2312 ISSN 1654-2312 iii iii Johan Nilvebrant (2012): An albumin-binding domain as a scaffold for bispecific affinity Johan Nilvebrant (2012): An albumin-binding domain as a scaffold for bispecific affinity proteins. proteins. Division of Proteomics, School of Biotechnology, Royal Institute of Technology (KTH), Stockholm, Division of Proteomics, School of Biotechnology, Royal Institute of Technology (KTH), Stockholm, Sweden. Sweden. Abstract Abstract Protein engineering and in vitro selection systems are powerful methods to generate binding proteins. Protein engineering and in vitro selection systems are powerful methods to generate binding proteins. In nature, antibodies are the primary affinity proteins and their usefulness has led to a widespread use In nature, antibodies are the primary affinity proteins and their usefulness has led to a widespread use both in basic and applied research. By means of combinatorial protein engineering and protein library both in basic and applied research. By means of combinatorial protein engineering and protein library technology, smaller antibody fragments or alternative non-immunoglobulin protein scaffolds can be technology, smaller antibody fragments or alternative non-immunoglobulin protein scaffolds can be engineered for various functions based on molecular recognition. In this thesis, a 46 amino acid small engineered for various functions based on molecular recognition. In this thesis, a 46 amino acid small albumin-binding domain derived from streptococcal protein G was evaluated as a scaffold for the albumin-binding domain derived from streptococcal protein G was evaluated as a scaffold for the generation of affinity proteins. Using protein engineering, the albumin binding has been generation of affinity proteins. Using protein engineering, the albumin binding has been complemented with a new binding interface localized to the opposite surface of this three-helical complemented with a new binding interface localized to the opposite surface of this three-helical bundle domain. By using in vitro selection from a combinatorial library, bispecific protein domains bundle domain. By using in vitro selection from a combinatorial library, bispecific protein domains with ability to recognize several different target proteins were generated. In paper I, a bispecific with ability to recognize several different target proteins were generated. In paper I, a bispecific albumin-binding domain was selected by phage display and utilized as a purification tag for highly albumin-binding domain was selected by phage display and utilized as a purification tag for highly efficient affinity purification of fusion proteins. The results in paper II show how protein engineering, efficient affinity purification of fusion proteins. The results in paper II show how protein engineering, in vitro display and multi-parameter fluorescence-activated cell sorting can be used to accomplish the in vitro display and multi-parameter fluorescence-activated cell sorting can be used to accomplish the challenging task of incorporating two high affinity binding-sites, for albumin and tumor necrosis challenging task of incorporating two high affinity binding-sites, for albumin and tumor necrosis factor-alpha, into this new bispecific protein scaffold. Moreover, the native ability of this domain to factor-alpha, into this new bispecific protein scaffold. Moreover, the native ability of this domain to bind serum albumin provides a useful characteristic that can be used to extend the plasma half-lives bind serum albumin provides a useful characteristic that can be used to extend the plasma half-lives of proteins fused to it or potentially of the domain itself. When combined with a second targeting of proteins fused to it or potentially of the domain itself. When combined with a second targeting ability, a new molecular format with potential use in therapeutic applications is provided. The ability, a new molecular format with potential use in therapeutic applications is provided. The engineered binding proteins generated against the epidermal growth factor receptors 2 and 3 in papers engineered binding proteins generated against the epidermal growth factor receptors 2 and 3 in papers III and IV are aimed in this direction. Over-expression of these receptors is associated with the III and IV are aimed in this direction. Over-expression of these receptors is associated with the development and progression of various cancers, and both are well-validated targets for therapy. development and progression of various cancers, and both are well-validated targets for therapy. Small bispecific binding proteins based on the albumin-binding domain could potentially contribute Small bispecific binding proteins based on the albumin-binding domain could potentially contribute to this field. The new alternative protein scaffold described in this thesis is one of the smallest to this field. The new alternative protein scaffold described in this thesis is one of the smallest structured affinity proteins reported. The bispecific nature, with an inherent ability of the same structured affinity proteins reported. The bispecific nature, with an inherent ability of the same domain to bind to serum albumin, is unique for this scaffold. These non-immunoglobulin binding domain to bind to serum albumin, is unique for this scaffold. These non-immunoglobulin binding proteins may provide several advantages as compared to antibodies in several applications, proteins may provide several advantages as compared to antibodies in several applications, particularly when a small size and an extended half-life are of key importance. particularly when a small size and an extended half-life are of key importance. Keywords: albumin-binding domain, bispecific, albumin, affinity protein, phage display, Keywords: albumin-binding domain, bispecific, albumin, affinity protein, phage display, staphylococcal display, orthogonal affinity purification, TNF-α, ErbB2, ErbB3 staphylococcal display, orthogonal affinity purification, TNF-α, ErbB2, ErbB3 © Johan Nilvebrant 2012 © Johan Nilvebrant 2012 iv iv Papers in this thesis Papers in this thesis This thesis is based on the following papers, which are referred to in the text by their This thesis is based on the following papers, which are referred to in the text by their Roman numerals (I-IV). They are included in the appendix. Roman numerals (I-IV). They are included in the appendix. I Alm, T., Yderland, L., Nilvebrant, J., Halldin, A., Hober, S. (2010). A small I Alm, T., Yderland, L., Nilvebrant, J., Halldin, A., Hober, S. (2010). A small bispecific protein selected for orthogonal affinity purification, Biotechnol. J., 5: bispecific protein selected for orthogonal affinity purification, Biotechnol. J., 5: 605-617 605-617 II Nilvebrant, J., Alm, T., Hober, S., Löfblom, J. (2011). Engineering bispecificity II Nilvebrant, J., Alm, T., Hober, S., Löfblom, J. (2011). Engineering bispecificity into a single albumin-binding domain, PLoS ONE, 6(10): e25791 into a single albumin-binding domain, PLoS ONE, 6(10): e25791 III Nilvebrant, J., Åstrand, M., Georgieva, M., Björnmalm, M., Löfblom, J., Hober, III Nilvebrant, J., Åstrand, M., Georgieva, M., Björnmalm, M., Löfblom, J., Hober, S. Engineering of bispecific affinity proteins with nanomolar affinity for both S. Engineering of bispecific affinity proteins with nanomolar affinity for both ErbB2 and albumin, manuscript ErbB2 and albumin, manuscript IV Nilvebrant*, J., Åstrand*, M., Löfblom, J., Hober, S. Development and IV Nilvebrant*, J., Åstrand*, M., Löfblom, J., Hober, S. Development and characterization of small bispecific three-helical ErbB3/albumin-binding domains characterization of small bispecific three-helical ErbB3/albumin-binding domains aimed at therapeutic applications, manuscript aimed at therapeutic applications, manuscript * Authors contributed equally * Authors contributed equally All papers and figures derived from them have been reproduced with permission from All papers and figures derived from them have been reproduced with permission from copyright holders. copyright holders. v v Papers not included in the thesis Papers not included in the thesis Boström*, T., Nilvebrant* J., Hober, S. (2012). Purification systems based on bacterial Boström*, T., Nilvebrant* J., Hober, S. (2012). Purification systems based on bacterial surface proteins. Protein Purification, R. Ahmad (Ed.), ISBN: 978-953-307-831-1, InTech surface proteins. Protein Purification, R. Ahmad (Ed.), ISBN: 978-953-307-831-1, InTech
Recommended publications
  • Affibody Molecules for Epidermal Growth Factor Receptor Targeting
    Journal of Nuclear Medicine, published on January 21, 2009 as doi:10.2967/jnumed.108.055525 Affibody Molecules for Epidermal Growth Factor Receptor Targeting In Vivo: Aspects of Dimerization and Labeling Chemistry Vladimir Tolmachev1-3, Mikaela Friedman4, Mattias Sandstrom¨ 5, Tove L.J. Eriksson2, Daniel Rosik2, Monika Hodik1, Stefan Sta˚hl4, Fredrik Y. Frejd1,2, and Anna Orlova1,2 1Unit of Biomedical Radiation Sciences, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden; 2Affibody AB, Bromma, Sweden; 3Department of Medical Sciences, Nuclear Medicine, Uppsala University, Uppsala, Sweden; 4Division of Molecular Biotechnology, School of Biotechnology, Royal Institute of Technology, Stockholm, Sweden; and 5Section of Hospital Physics, Department of Oncology, Uppsala University Hospital, Uppsala, Sweden Noninvasive detection of epidermal growth factor receptor (EGFR) expression in malignant tumors by radionuclide molecu- he epidermal growth factor receptor (EGFR; other lar imaging may provide diagnostic information influencing pa- T designations are HER1 and ErbB-1) is a transmembrane tient management. The aim of this study was to evaluate a tyrosine kinase receptor that regulates cell proliferation, novel EGFR-targeting protein, the ZEGFR:1907 Affibody molecule, for radionuclide imaging of EGFR expression, to determine a motility, and suppression of apoptosis (1). Overexpression suitable tracer format (dimer or monomer) and optimal label. of EGFR is documented in several malignant tumors, such Methods: An EGFR-specific Affibody molecule, ZEGFR:1907, as carcinomas of the breast, urinary bladder, and lung, and 111 and its dimeric form, (ZEGFR:1907)2, were labeled with In using is associated with poor prognosis (2). A high level of EGFR 125 benzyl-diethylenetriaminepentaacetic acid and with I using expression could provide malignant cells with an advantage p-iodobenzoate.
    [Show full text]
  • Understanding and Exploiting Post-Translational Modifications for Plant Disease Resistance
    biomolecules Review Understanding and Exploiting Post-Translational Modifications for Plant Disease Resistance Catherine Gough and Ari Sadanandom * Department of Biosciences, Durham University, Stockton Road, Durham DH1 3LE, UK; [email protected] * Correspondence: [email protected]; Tel.: +44-1913341263 Abstract: Plants are constantly threatened by pathogens, so have evolved complex defence signalling networks to overcome pathogen attacks. Post-translational modifications (PTMs) are fundamental to plant immunity, allowing rapid and dynamic responses at the appropriate time. PTM regulation is essential; pathogen effectors often disrupt PTMs in an attempt to evade immune responses. Here, we cover the mechanisms of disease resistance to pathogens, and how growth is balanced with defence, with a focus on the essential roles of PTMs. Alteration of defence-related PTMs has the potential to fine-tune molecular interactions to produce disease-resistant crops, without trade-offs in growth and fitness. Keywords: post-translational modifications; plant immunity; phosphorylation; ubiquitination; SUMOylation; defence Citation: Gough, C.; Sadanandom, A. 1. Introduction Understanding and Exploiting Plant growth and survival are constantly threatened by biotic stress, including plant Post-Translational Modifications for pathogens consisting of viruses, bacteria, fungi, and chromista. In the context of agriculture, Plant Disease Resistance. Biomolecules crop yield losses due to pathogens are estimated to be around 20% worldwide in staple 2021, 11, 1122. https://doi.org/ crops [1]. The spread of pests and diseases into new environments is increasing: more 10.3390/biom11081122 extreme weather events associated with climate change create favourable environments for food- and water-borne pathogens [2,3]. Academic Editors: Giovanna Serino The significant estimates of crop losses from pathogens highlight the need to de- and Daisuke Todaka velop crops with disease-resistance traits against current and emerging pathogens.
    [Show full text]
  • Strategies and Challenges for the Next Generation of Therapeutic Antibodies
    FOCUS ON THERAPEUTIC ANTIBODIES PERSPECTIVES ‘validated targets’, either because prior anti- TIMELINE bodies have clearly shown proof of activity in humans (first-generation approved anti- Strategies and challenges for the bodies on the market for clinically validated targets) or because a vast literature exists next generation of therapeutic on the importance of these targets for the disease mechanism in both in vitro and in vivo pharmacological models (experi- antibodies mental validation; although this does not necessarily equate to clinical validation). Alain Beck, Thierry Wurch, Christian Bailly and Nathalie Corvaia Basically, the strategy consists of develop- ing new generations of antibodies specific Abstract | Antibodies and related products are the fastest growing class of for the same antigens but targeting other therapeutic agents. By analysing the regulatory approvals of IgG-based epitopes and/or triggering different mecha- biotherapeutic agents in the past 10 years, we can gain insights into the successful nisms of action (second- or third-generation strategies used by pharmaceutical companies so far to bring innovative drugs to antibodies, as discussed below) or even the market. Many challenges will have to be faced in the next decade to bring specific for the same epitopes but with only one improved property (‘me better’ antibod- more efficient and affordable antibody-based drugs to the clinic. Here, we ies). This validated approach has a high discuss strategies to select the best therapeutic antigen targets, to optimize the probability of success, but there are many structure of IgG antibodies and to design related or new structures with groups working on this class of target pro- additional functions.
    [Show full text]
  • 2010.01) C07k 14/74 (2006.01
    ( (51) International Patent Classification: su 215 123 (CN). LIN, Yanni; F2, Building B20, Sangt- C07K 19/00 (2006.0 1) C12N 5/0783 (20 10.01) ian Street 218, Suzhou Industrial Park, Suzhou, Jiangsu C07K 14/74 (2006.01) A61K 35/1 7 (2015.01) 215123 (CN). ZHENG, Xiaocui; F2, Building B20, Sangt- C12N 15/62 (2006.01) A61P 35/00 (2006.01) ian Street 218, Suzhou Industrial Park, Suzhou, Jiangsu 215123 (CN). KONG, Hongmei; F2, Building B20, Sangt- (21) International Application Number: ian Street 218, Suzhou Industrial Park, Suzhou, Jiangsu PCT/ CN2020/ 1081 16 215123 (CN). WANG, Wenbo; F2, Building B20, Sangtian (22) International Filing Date: Street 218, Suzhou Industrial Park, Suzhou, Jiangsu 215 123 10 August 2020 (10.08.2020) (CN). FENG, Aihua; F2, Building B20, Sangtian Street 218, Suzhou Industrial Park, Suzhou, Jiangsu 215 123 (CN). (25) Filing Language: English (74) Agent: J. Z. M. C. PATENT AND TRADEMARK LAW (26) Publication Language: English OFFICE (GENERAL PARTNERSHIP); YU, Mingwei, (30) Priority Data: Room 5022, No. 335, Guo Ding Road, Yang Pu District, 201910746355.8 13 August 2019 (13.08.2019) CN Shanghai 200433 (CN). PCT/ CN20 19/124321 (81) Designated States (unless otherwise indicated, for every 10 December 2019 (10. 12.2019) CN kind of national protection av ailable) . AE, AG, AL, AM, (71) Applicant: CURE GENETICS CO., LTD. [CN/CN]; AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, Biobay A4-5 10, Xinghu Street 218, Suzhou Industrial Park, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, Suzhou, Jiangsu 215 123 (CN).
    [Show full text]
  • Article in Press
    G Model MIMM-4561; No. of Pages 12 ARTICLE IN PRESS Molecular Immunology xxx (2015) xxx–xxx Contents lists available at ScienceDirect Molecular Immunology j ournal homepage: www.elsevier.com/locate/molimm Review Alternative molecular formats and therapeutic applications for ଝ bispecific antibodies ∗ Christoph Spiess, Qianting Zhai, Paul J. Carter Department of Antibody Engineering, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA a r t i c l e i n f o a b s t r a c t Article history: Bispecific antibodies are on the cusp of coming of age as therapeutics more than half a century after they Received 28 November 2014 ® were first described. Two bispecific antibodies, catumaxomab (Removab , anti-EpCAM × anti-CD3) and Received in revised form ® blinatumomab (Blincyto , anti-CD19 × anti-CD3) are approved for therapy, and >30 additional bispecific 30 December 2014 antibodies are currently in clinical development. Many of these investigational bispecific antibody drugs Accepted 2 January 2015 are designed to retarget T cells to kill tumor cells, whereas most others are intended to interact with two Available online xxx different disease mediators such as cell surface receptors, soluble ligands and other proteins. The modular architecture of antibodies has been exploited to create more than 60 different bispecific antibody formats. Keywords: These formats vary in many ways including their molecular weight, number of antigen-binding sites, Bispecific antibodies spatial relationship between different binding sites, valency for each antigen, ability to support secondary Antibody engineering Antibody therapeutics immune functions and pharmacokinetic half-life. These diverse formats provide great opportunity to tailor the design of bispecific antibodies to match the proposed mechanisms of action and the intended clinical application.
    [Show full text]
  • EURL ECVAM Recommendation on Non-Animal-Derived Antibodies
    EURL ECVAM Recommendation on Non-Animal-Derived Antibodies EUR 30185 EN Joint Research Centre This publication is a Science for Policy report by the Joint Research Centre (JRC), the European Commission’s science and knowledge service. It aims to provide evidence-based scientific support to the European policymaking process. The scientific output expressed does not imply a policy position of the European Commission. Neither the European Commission nor any person acting on behalf of the Commission is responsible for the use that might be made of this publication. For information on the methodology and quality underlying the data used in this publication for which the source is neither Eurostat nor other Commission services, users should contact the referenced source. EURL ECVAM Recommendations The aim of a EURL ECVAM Recommendation is to provide the views of the EU Reference Laboratory for alternatives to animal testing (EURL ECVAM) on the scientific validity of alternative test methods, to advise on possible applications and implications, and to suggest follow-up activities to promote alternative methods and address knowledge gaps. During the development of its Recommendation, EURL ECVAM typically mandates the EURL ECVAM Scientific Advisory Committee (ESAC) to carry out an independent scientific peer review which is communicated as an ESAC Opinion and Working Group report. In addition, EURL ECVAM consults with other Commission services, EURL ECVAM’s advisory body for Preliminary Assessment of Regulatory Relevance (PARERE), the EURL ECVAM Stakeholder Forum (ESTAF) and with partner organisations of the International Collaboration on Alternative Test Methods (ICATM). Contact information European Commission, Joint Research Centre (JRC), Chemical Safety and Alternative Methods Unit (F3) Address: via E.
    [Show full text]
  • Generation of Novel Intracellular Binding Reagents Based on the Human Γb-Crystallin Scaffold
    Generation of novel intracellular binding reagents based on the human γB-crystallin scaffold Dissertation zur Erlangung des akademischen Grades doctor rerum naturalium (Dr. rer. nat.) vorgelegt der Naturwissenschaftlichen Fakultät I-Biowissenschaften der Martin-Luther-Universität Halle-Wittenberg Institut für Biochemie und Biotechnologie von Ewa Mirecka geboren am 17. Dezember 1976 in Gdynia, Polen Table of contents Table of contents 1. INTRODUCTION.........................................................................................................1 1.1 Monoclonal antibodies as a biomolecular scaffold..........................................................1 1.2 Binding molecules derived from non-immunoglobulin scaffolds.....................................3 1.2.1 Alternative protein scaffolds – general considerations............................................................ 3 1.2.2 Application of alternative binding molecules ........................................................................... 6 1.3 Affilin – novel binding molecules based on the human γB-crystallin scaffold................... 6 1.3.1 Human γB-crystallin as a molecular scaffold........................................................................... 6 1.3.2 Generation of a human γB-crystallin library and selection of first-generation Affilin molecules ................................................................................................................................ 8 1.4 Selection of binding proteins by phage display ...................................................................
    [Show full text]
  • Monobodies and Other Synthetic Binding Proteins for Expanding Protein Science
    Reviews Protein Science DOI 10.1002/pro.3148 Monobodies and Other Synthetic Binding Proteins for Expanding Protein Science Fern Sha,1,4 Gabriel Salzman,1 Ankit Gupta1,2 and Shohei Koide1,2,3* 1Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA 2Perlmutter Cancer Center, New York University Langone Medical Center, New York, NY 10016, USA 3Department of Biochemistry and Molecular Pharmacology New York University School of Medicine, New York, NY 10016, USA 4Present address, Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20148, USA *Correspondence to: Shohei Koide, Perlmutter Cancer Center, New York University Langone Medical Center, New York, NY 10016, USA. E-mail: [email protected] Abstract Synthetic binding proteins are constructed using non-antibody molecular scaffolds. Over the last two decades, in-depth structural and functional analyses of synthetic binding proteins have improved combinatorial library designs and selection strategies, which have resulted in potent platforms that consistently generate binding proteins to diverse targets with affinity and specificity that rival those of antibodies. Favorable attributes of synthetic binding proteins, such as small size, freedom from disulfide bond formation and ease of making fusion proteins, have enabled their unique applications in protein science, cell biology and beyond. Here, we review recent studies that illustrate how synthetic binding proteins are powerful probes that can directly link structure and function,
    [Show full text]
  • Anticalins Versus Antibodies: Made-To-Order Binding Proteins for Small Molecules Gregory a Weiss * and Henry B Lowman
    Minireview R177 Anticalins versus antibodies: made-to-order binding proteins for small molecules Gregory A Weiss * and Henry B Lowman Engineering proteins to bind small molecules presents a challenge as daunting as Department of Protein Engineering, Genentech, Inc., drug discovery, for both hinge upon our understanding of receptor^ligand 1 DNA Way, South San Francisco, CA 94080, USA molecular recognition. However, powerful techniques from combinatorial *Present address: Department of Chemistry, molecular biology can be used to rapidly select arti¢cial receptors. While University of California, Irvine, CA 92697, USA traditionally researchers have relied upon antibody technologies as a source of new binding proteins, the lipocalin scaffold has recently emerged as an adaptable Correspondence: HB Lowman receptor for small molecule binding. `Anticalins', engineered lipocalin variants, E-mail: [email protected] offer some advantages over traditional antibody technology and illuminate Keywords: Antibody; Anticalin; Small molecule features of molecular recognition between receptors and small molecule ligands. ligand Received: 19 June 2000 Accepted: 10 July 2000 Published: 1 August 2000 Chemistry & Biology 2000, 7:R177^R184 1074-5521 / 00 / $ ^ see front matter ß 2000 Published by Elsevier Science Ltd. PII: S 1 0 7 4 - 5 5 2 1 ( 0 0 ) 0 0 0 1 6 - 8 Introduction of randomly mutated proteins displayed on the surface of The challenge of discovering small molecule ligands for ¢lamentous bacteriophage, viruses capable of infecting protein receptors is well appreciated by, among others, only bacteria (reviewed in [4]). Diversity can be targeted the pharmaceutical industry, which spent the majority of to particular regions of a displayed protein through stan- its $24 billion pharmaceutical research and development dard molecular biology techniques [5], or can be distrib- budget in 1999 on small molecule drug discovery [1].
    [Show full text]
  • WO 2017/013231 Al 26 January 2017 (26.01.2017) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization I International Bureau (10) International Publication Number (43) International Publication Date WO 2017/013231 Al 26 January 2017 (26.01.2017) P O P C T (51) International Patent Classification: BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, C07K 14/705 (2006.01) C07K 16/00 (2006.01) DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, (21) International Application Number: KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, PCT/EP20 16/067468 MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, (22) International Filing Date: PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, 2 1 July 20 16 (21 .07.2016) SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (25) Filing Language: English (84) Designated States (unless otherwise indicated, for every (26) Publication Language: English kind of regional protection available): ARIPO (BW, GH, (30) Priority Data: GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, 62/194,882 2 1 July 2015 (21.07.2015) TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, 62/364,414 20 July 2016 (20.07.2016) TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, (72) Inventors; and LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, (71) Applicants : XIANG, Sue D.
    [Show full text]
  • Protein Scaffolds Proteingerüste Structures Protéiques
    (19) TZZ _ _T (11) EP 2 215 246 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: of the grant of the patent: C12N 15/10 (2006.01) C12N 15/62 (2006.01) 07.01.2015 Bulletin 2015/02 C07K 14/78 (2006.01) C40B 40/10 (2006.01) (21) Application number: 08845766.8 (86) International application number: PCT/US2008/012398 (22) Date of filing: 31.10.2008 (87) International publication number: WO 2009/058379 (07.05.2009 Gazette 2009/19) (54) PROTEIN SCAFFOLDS PROTEINGERÜSTE STRUCTURES PROTÉIQUES (84) Designated Contracting States: US-B1- 6 482 410 US-B1- 6 818 418 AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT • KOIDE A ET AL: "The fibronectin type III domain RO SE SI SK TR as a scaffold for novel binding proteins", JOURNAL OF MOLECULAR BIOLOGY, LONDON, (30) Priority: 31.10.2007 US 984209 P GB, vol. 284, no. 4, 11 December 1998 (1998-12-11), pages 1141-1151, XP004455886, (43) Date of publication of application: ISSN: 0022-2836, DOI: DOI:10.1006/JMBI. 11.08.2010 Bulletin 2010/32 1998.2238 • BATORI V ET AL: "Exploring the potential of the (73) Proprietor: MedImmune, LLC monobody scaffold:effects of loop elongation on Gaithersburg, MD 20878 (US) the stability of a fibronectin type III domain", PROTEIN ENGINEERING, OXFORD UNIVERSITY (72) Inventors: PRESS, SURREY, GB, vol. 15, no. 12, 1 January • WU, Herren 2002 (2002-01-01), pages 1015-1020, Boyds,MD 20841 (US) XP002996047, ISSN: 0269-2139, DOI: DOI: • BACA, Manuel 10.1093/PROTEIN/15.12.1015 Gaithersburg,MD 20878 (US) • KOIDE AKIKO ET AL: "Monobodies: antibody •SWERS,Jeffrey mimics based on the scaffold of the fibronectin Rockville,MD 20852 (US) type III domain", METHODS IN MOLECULAR • CHACKO, Benoy BIOLOGY, HUMANA PRESS INC, NJ, US, vol.
    [Show full text]
  • An Affibody Molecule Is Actively Transported Into the Cerebrospinal
    International Journal of Molecular Sciences Article An Affibody Molecule Is Actively Transported into the Cerebrospinal Fluid via Binding to the Transferrin Receptor Sebastian W. Meister , Linnea C. Hjelm , Melanie Dannemeyer, Hanna Tegel, Hanna Lindberg, Stefan Ståhl and John Löfblom * Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, AlbaNova University Centre, SE-106 91 Stockholm, Sweden; [email protected] (S.W.M.); [email protected] (L.C.H.); [email protected] (M.D.); [email protected] (H.T.); [email protected] (H.L.); [email protected] (S.S.) * Correspondence: [email protected]; Tel.: +46-8-790-9659 Received: 6 March 2020; Accepted: 22 April 2020; Published: 23 April 2020 Abstract: The use of biotherapeutics for the treatment of diseases of the central nervous system (CNS) is typically impeded by insufficient transport across the blood–brain barrier. Here, we investigate a strategy to potentially increase the uptake into the CNS of an affibody molecule (ZSYM73) via binding to the transferrin receptor (TfR). ZSYM73 binds monomeric amyloid beta, a peptide involved in Alzheimer’s disease pathogenesis, with subnanomolar affinity. We generated a tri-specific fusion protein by genetically linking a single-chain variable fragment of the TfR-binding antibody 8D3 and an albumin-binding domain to the affibody molecule ZSYM73. Simultaneous tri-specific target engagement was confirmed in a biosensor experiment and the affinity for murine TfR was determined to 5 nM. Blockable binding to TfR on endothelial cells was demonstrated using flow cytometry and in a preclinical study we observed increased uptake of the tri-specific fusion protein into the cerebrospinal fluid 24 h after injection.
    [Show full text]