Mouse Gga1 Conditional Knockout Project (CRISPR/Cas9)

Total Page:16

File Type:pdf, Size:1020Kb

Mouse Gga1 Conditional Knockout Project (CRISPR/Cas9) https://www.alphaknockout.com Mouse Gga1 Conditional Knockout Project (CRISPR/Cas9) Objective: To create a Gga1 conditional knockout Mouse model (C57BL/6J) by CRISPR/Cas-mediated genome engineering. Strategy summary: The Gga1 gene (NCBI Reference Sequence: NM_145929 ; Ensembl: ENSMUSG00000033128 ) is located on Mouse chromosome 15. 17 exons are identified, with the ATG start codon in exon 1 and the TAG stop codon in exon 17 (Transcript: ENSMUST00000041587). Exon 2~3 will be selected as conditional knockout region (cKO region). Deletion of this region should result in the loss of function of the Mouse Gga1 gene. To engineer the targeting vector, homologous arms and cKO region will be generated by PCR using BAC clone RP24-83M14 as template. Cas9, gRNA and targeting vector will be co-injected into fertilized eggs for cKO Mouse production. The pups will be genotyped by PCR followed by sequencing analysis. Note: Mice homozygous for a gene-trapped allele display decreased birth weight, slow postnatal weight gain, hypoglycemia, increased plasma levels of acid hydrolases, and partial neonatal lethality. Exon 2 starts from about 2.31% of the coding region. The knockout of Exon 2~3 will result in frameshift of the gene. The size of intron 1 for 5'-loxP site insertion: 3420 bp, and the size of intron 3 for 3'-loxP site insertion: 1064 bp. The size of effective cKO region: ~1666 bp. The cKO region does not have any other known gene. Page 1 of 8 https://www.alphaknockout.com Overview of the Targeting Strategy Wildtype allele 5' gRNA region gRNA region 3' 1 2 3 4 5 17 Targeting vector Targeted allele Constitutive KO allele (After Cre recombination) Legends Exon of mouse Gga1 Homology arm cKO region loxP site Page 2 of 8 https://www.alphaknockout.com Overview of the Dot Plot Window size: 10 bp Forward Reverse Complement Sequence 12 Note: The sequence of homologous arms and cKO region is aligned with itself to determine if there are tandem repeats. No significant tandem repeat is found in the dot plot matrix. So this region is suitable for PCR screening or sequencing analysis. Overview of the GC Content Distribution Window size: 300 bp Sequence 12 Summary: Full Length(8166bp) | A(21.45% 1752) | C(28.46% 2324) | T(23.34% 1906) | G(26.75% 2184) Note: The sequence of homologous arms and cKO region is analyzed to determine the GC content. Significant high GC-content regions are found. It may be difficult to construct this targeting vector. Page 3 of 8 https://www.alphaknockout.com BLAT Search Results (up) QUERY SCORE START END QSIZE IDENTITY CHROM STRAND START END SPAN ----------------------------------------------------------------------------------------------- browser details YourSeq 3000 1 3000 3000 100.0% chr15 + 78877789 78880788 3000 browser details YourSeq 372 912 1325 3000 95.9% chr18 + 57457015 57457449 435 browser details YourSeq 369 913 1305 3000 97.0% chr1 + 20790406 20790798 393 browser details YourSeq 368 913 1312 3000 96.0% chr5 - 118450776 118451175 400 browser details YourSeq 366 874 1305 3000 95.6% chrX - 101969641 101970358 718 browser details YourSeq 366 910 1315 3000 94.9% chr1 - 31374905 31375309 405 browser details YourSeq 364 914 1331 3000 93.6% chr2 - 40491428 40491834 407 browser details YourSeq 364 913 1310 3000 95.0% chr14 - 45210306 45210701 396 browser details YourSeq 363 912 1305 3000 96.2% chr16 - 30713525 30713918 394 browser details YourSeq 363 881 1305 3000 95.6% chr15 - 94333148 94333600 453 browser details YourSeq 363 914 1470 3000 94.6% chr1 - 185843324 185844036 713 browser details YourSeq 363 914 1318 3000 94.8% chr2 + 174520302 174520705 404 browser details YourSeq 363 913 1309 3000 95.3% chr2 + 92792521 92792916 396 browser details YourSeq 362 899 1305 3000 95.5% chr15 - 7228265 7228676 412 browser details YourSeq 362 914 1305 3000 95.7% chr1 - 151033579 151033969 391 browser details YourSeq 361 914 1318 3000 94.7% chr18 - 6094323 6094725 403 browser details YourSeq 361 914 1310 3000 95.2% chr14 - 24417487 24417882 396 browser details YourSeq 361 912 1305 3000 96.0% chr12 - 26536441 26536834 394 browser details YourSeq 360 914 1310 3000 96.0% chr8 - 95216939 95217336 398 browser details YourSeq 360 905 1305 3000 96.0% chr17 - 56790425 56790831 407 Note: The 3000 bp section upstream of Exon 2 is BLAT searched against the genome. No significant similarity is found. BLAT Search Results (down) QUERY SCORE START END QSIZE IDENTITY CHROM STRAND START END SPAN ----------------------------------------------------------------------------------------------- browser details YourSeq 3000 1 3000 3000 100.0% chr15 + 78882455 78885454 3000 browser details YourSeq 176 2393 2584 3000 97.4% chr17 - 66460467 66460662 196 browser details YourSeq 173 2174 2557 3000 94.8% chr15 + 102327479 102327863 385 browser details YourSeq 170 2395 2569 3000 98.9% chr16 - 17965465 17965659 195 browser details YourSeq 168 1 2213 3000 96.2% chr2 - 34376011 34780573 404563 browser details YourSeq 164 2385 2578 3000 93.7% chr4 - 135405410 135405607 198 browser details YourSeq 162 2399 2573 3000 96.6% chr3 - 84827457 84827634 178 browser details YourSeq 161 2385 2559 3000 96.6% chr9 - 101127353 101127527 175 browser details YourSeq 159 2396 2567 3000 96.5% chrX + 152279278 152279463 186 browser details YourSeq 159 2395 2581 3000 94.9% chr10 + 56455297 56455834 538 browser details YourSeq 158 2395 2556 3000 97.6% chr6 - 142965589 142965749 161 browser details YourSeq 158 2395 2556 3000 98.8% chr5 - 109898791 109898952 162 browser details YourSeq 158 2393 2559 3000 95.8% chr3 + 66891001 66891165 165 browser details YourSeq 157 2395 2557 3000 98.2% chr2 - 132170883 132171045 163 browser details YourSeq 157 2395 2559 3000 97.6% chr12 + 54705987 54706151 165 browser details YourSeq 157 2392 2573 3000 96.0% chr11 + 104163218 104163407 190 browser details YourSeq 155 2363 2553 3000 95.4% chr7 - 45658871 45659184 314 browser details YourSeq 155 2395 2563 3000 96.5% chr5 - 90266506 90266677 172 browser details YourSeq 155 2385 2561 3000 93.3% chr16 - 64793029 64793195 167 browser details YourSeq 153 2395 2559 3000 95.2% chr7 - 79234526 79234689 164 Note: The 3000 bp section downstream of Exon 3 is BLAT searched against the genome. No significant similarity is found. Page 4 of 8 https://www.alphaknockout.com Gene and protein information: Gga1 golgi associated, gamma adaptin ear containing, ARF binding protein 1 [ Mus musculus (house mouse) ] Gene ID: 106039, updated on 10-Oct-2019 Gene summary Official Symbol Gga1 provided by MGI Official Full Name golgi associated, gamma adaptin ear containing, ARF binding protein 1 provided by MGI Primary source MGI:MGI:2146207 See related Ensembl:ENSMUSG00000033128 Gene type protein coding RefSeq status VALIDATED Organism Mus musculus Lineage Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Euarchontoglires; Glires; Rodentia; Myomorpha; Muroidea; Muridae; Murinae; Mus; Mus Also known as AU016030; AW209092; 4930406E12Rik Expression Ubiquitous expression in adrenal adult (RPKM 56.3), duodenum adult (RPKM 51.4) and 28 other tissues See more Orthologs human all Genomic context Location: 15; 15 E1 See Gga1 in Genome Data Viewer Exon count: 17 Annotation release Status Assembly Chr Location 108 current GRCm38.p6 (GCF_000001635.26) 15 NC_000081.6 (78877167..78894585) Build 37.2 previous assembly MGSCv37 (GCF_000001635.18) 15 NC_000081.5 (78707620..78725015) Chromosome 15 - NC_000081.6 Page 5 of 8 https://www.alphaknockout.com Transcript information: This gene has 5 transcripts Gene: Gga1 ENSMUSG00000033128 Description golgi associated, gamma adaptin ear containing, ARF binding protein 1 [Source:MGI Symbol;Acc:MGI:2146207] Gene Synonyms 4930406E12Rik Location Chromosome 15: 78,877,190-78,894,585 forward strand. GRCm38:CM001008.2 About this gene This gene has 5 transcripts (splice variants), 259 orthologues, 10 paralogues, is a member of 1 Ensembl protein family and is associated with 9 phenotypes. Transcripts Name Transcript ID bp Protein Translation ID Biotype CCDS UniProt Flags Gga1- ENSMUST00000041587.7 3034 635aa ENSMUSP00000035992.7 Protein coding CCDS27625 Q8R0H9 TSL:1 201 GENCODE basic APPRIS P1 Gga1- ENSMUST00000230192.1 2665 363aa ENSMUSP00000155780.1 Nonsense mediated - A0A2R8VI72 - 203 decay Gga1- ENSMUST00000230772.1 860 No - Retained intron - - - 205 protein Gga1- ENSMUST00000229353.1 842 No - Retained intron - - - 202 protein Gga1- ENSMUST00000230243.1 393 No - lncRNA - - - 204 protein Page 6 of 8 https://www.alphaknockout.com 37.40 kb Forward strand 78.87Mb 78.88Mb 78.89Mb 78.90Mb Genes (Comprehensive set... Gga1-201 >protein coding Sh3bp1-204 >nonsense mediated decay Gga1-203 >nonsense mediated decay Sh3bp1-206 >nonsense mediated decay Gga1-204 >lncRNA Mir6955-201 >miRNA Sh3bp1-207 >retained intron Gga1-205 >retained intron Gga1-202 >retained intron Gm49510-201 >protein coding Sh3bp1-203 >protein coding Sh3bp1-202 >protein coding Sh3bp1-201 >protein coding Sh3bp1-205 >protein coding Contigs < AL592169.14 Genes < Gm26634-201lncRNA (Comprehensive set... Regulatory Build 78.87Mb 78.88Mb 78.89Mb 78.90Mb Reverse strand 37.40 kb Regulation Legend CTCF Enhancer Open Chromatin Promoter Promoter Flank Gene Legend Protein Coding Ensembl protein coding merged Ensembl/Havana Non-Protein Coding processed transcript RNA gene Page 7 of 8 https://www.alphaknockout.com Transcript: ENSMUST00000041587 17.40 kb Forward strand Gga1-201 >protein coding ENSMUSP00000035... MobiDB lite Low complexity (Seg) Coiled-coils (Ncoils) Superfamily ENTH/VHS SSF89009 Clathrin adaptor, appendage, Ig-like subdomain superfamily SMART VHS domain Clathrin adaptor, alpha/beta/gamma-adaptin, appendage, Ig-like subdomain Pfam VHS domain GGA, N-GAT domain Clathrin adaptor, alpha/beta/gamma-adaptin, appendage, Ig-like subdomain GAT domain PROSITE profiles VHS domain GAT domain Gamma-adaptin ear (GAE) domain PANTHER PTHR45905 PTHR45905:SF4 Gene3D ENTH/VHS GAT domain superfamily 2.60.40.1230 1.20.5.170 CDD cd17009 cd14239 All sequence SNPs/i... Sequence variants (dbSNP and all other sources) Variant Legend missense variant synonymous variant Scale bar 0 60 120 180 240 300 360 420 480 540 635 We wish to acknowledge the following valuable scientific information resources: Ensembl, MGI, NCBI, UCSC.
Recommended publications
  • BACE1 Function and Inhibition: Implications of Intervention in the Amyloid Pathway of Alzheimer’S Disease Pathology
    Review BACE1 Function and Inhibition: Implications of Intervention in the Amyloid Pathway of Alzheimer’s Disease Pathology Gerald Koelsch CoMentis, Inc., South San Francisco, CA 94080, USA; [email protected] Received: 15 September 2017; Accepted: 10 October 2017; Published: 13 October 2017 Abstract: Alzheimer’s disease (AD) is a fatal progressive neurodegenerative disorder characterized by increasing loss in memory, cognition, and function of daily living. Among the many pathologic events observed in the progression of AD, changes in amyloid β peptide (Aβ) metabolism proceed fastest, and precede clinical symptoms. BACE1 (β-secretase 1) catalyzes the initial cleavage of the amyloid precursor protein to generate Aβ. Therefore inhibition of BACE1 activity could block one of the earliest pathologic events in AD. However, therapeutic BACE1 inhibition to block Aβ production may need to be balanced with possible effects that might result from diminished physiologic functions BACE1, in particular processing of substrates involved in neuronal function of the brain and periphery. Potentials for beneficial or consequential effects resulting from pharmacologic inhibition of BACE1 are reviewed in context of ongoing clinical trials testing the effect of BACE1 candidate inhibitor drugs in AD populations. Keywords: Alzheimer’s disease; amyloid hypothesis; BACE1; beta secretase; pharmacology 1. Introduction Alzheimer’s disease (AD) is a fatal progressive neurodegenerative disorder, slowly eroding memory, cognition, and functions of daily living, inevitably culminating in death from pneumonia and infectious diseases resulting from failure to thrive, loss of fine motor skills, and incapacitation. Treatment is limited to therapeutics that alleviate symptoms of memory loss, but are effective for a relatively short duration during and after which disease progression continues.
    [Show full text]
  • Rabbit Anti-RABEP1 Antibody-SL19721R
    SunLong Biotech Co.,LTD Tel: 0086-571- 56623320 Fax:0086-571- 56623318 E-mail:[email protected] www.sunlongbiotech.com Rabbit Anti-RABEP1 antibody SL19721R Product Name: RABEP1 Chinese Name: RABEP1蛋白抗体 Neurocrescin; Rab GTPase binding effector protein 1; RAB5EP; Rabaptin 4; Rabaptin Alias: 5; Rabaptin 5alpha; RABPT5; RABPT5A; Renal carcinoma antigen NY REN 17; Renal carcinoma antigen NYREN17. Organism Species: Rabbit Clonality: Polyclonal React Species: Human,Mouse,Rat, ELISA=1:500-1000IHC-P=1:400-800IHC-F=1:400-800ICC=1:100-500IF=1:100- 500(Paraffin sections need antigen repair) Applications: not yet tested in other applications. optimal dilutions/concentrations should be determined by the end user. Molecular weight: 99kDa Cellular localization: The cell membrane Form: Lyophilized or Liquid Concentration: 1mg/ml immunogen: KLH conjugated synthetic peptide derived from human RABEP1:501-600/862 Lsotype: IgGwww.sunlongbiotech.com Purification: affinity purified by Protein A Storage Buffer: 0.01M TBS(pH7.4) with 1% BSA, 0.03% Proclin300 and 50% Glycerol. Store at -20 °C for one year. Avoid repeated freeze/thaw cycles. The lyophilized antibody is stable at room temperature for at least one month and for greater than a year Storage: when kept at -20°C. When reconstituted in sterile pH 7.4 0.01M PBS or diluent of antibody the antibody is stable for at least two weeks at 2-4 °C. PubMed: PubMed RABEP1 is a Rab effector protein acting as linker between gamma-adaptin, RAB4A and RAB5A. It is involved in endocytic membrane fusion and membrane trafficking of Product Detail: recycling endosomes. Stimulates RABGEF1 mediated nucleotide exchange on RAB5A.
    [Show full text]
  • Sequence and Comparative Analysis of the Chicken Genome Provide Unique Perspectives on Vertebrate Evolution
    articles Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution International Chicken Genome Sequencing Consortium* *Lists of participants and affiliations appear at the end of the paper ........................................................................................................................................................................................................................... We present here a draft genome sequence of the red jungle fowl, Gallus gallus. Because the chicken is a modern descendant of the dinosaurs and the first non-mammalian amniote to have its genome sequenced, the draft sequence of its genome—composed of approximately one billion base pairs of sequence and an estimated 20,000–23,000 genes—provides a new perspective on vertebrate genome evolution, while also improving the annotation of mammalian genomes. For example, the evolutionary distance between chicken and human provides high specificity in detecting functional elements, both non-coding and coding. Notably, many conserved non-coding sequences are far from genes and cannot be assigned to defined functional classes. In coding regions the evolutionary dynamics of protein domains and orthologous groups illustrate processes that distinguish the lineages leading to birds and mammals. The distinctive properties of avian microchromosomes, together with the inferred patterns of conserved synteny, provide additional insights into vertebrate chromosome architecture. Genome sequence comparison is a modern extension of the long- standing use of other species as models to illuminate aspects of human biology and medicine. Large-scale genome analyses also highlight the evolutionary dynamics of selective and mutational processes at different chronological scales1–4. We present here results obtained from an extensive analysis of a draft sequence of the chicken genome, which has evolved separately from mammalian genomes for ,310 million years (Myr)4,5 (Fig.
    [Show full text]
  • Analysis of Gga Null Mice Demonstrates a Non- Redundant Role for Mammalian GGA2 During Development
    Analysis of Gga Null Mice Demonstrates a Non- Redundant Role for Mammalian GGA2 during Development Jennifer Govero., Balraj Doray., Hongdong Bai¤, Stuart Kornfeld* Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America Abstract Numerous studies using cultured mammalian cells have shown that the three GGAs (Golgi-localized, gamma-ear containing, ADP-ribosylation factor- binding proteins) function in the transport of cargo proteins between the trans- Golgi network and endosomes. However, the in vivo role(s) of these adaptor proteins and their possible functional redundancy has not been analyzed. In this study, the genes encoding GGAs1-3 were disrupted in mice by insertional mutagenesis. Loss of GGA1 or GGA3 alone was well tolerated whereas the absence of GGA2 resulted in embryonic or neonatal lethality, depending on the genetic background of the mice. Thus, GGA2 mediates a vital function that cannot be compensated for by GGA1and/or GGA3. The combined loss of GGA1 and GGA3 also resulted in a high incidence of neonatal mortality but in this case the expression level of GGA2 may be inadequate to compensate for the loss of the other two GGAs. We conclude that the three mammalian GGAs are essential proteins that are not fully redundant. Citation: Govero J, Doray B, Bai H, Kornfeld S (2012) Analysis of Gga Null Mice Demonstrates a Non-Redundant Role for Mammalian GGA2 during Development. PLoS ONE 7(1): e30184. doi:10.1371/journal.pone.0030184 Editor: Ludger Johannes, Institut Curie, France Received October 27, 2011; Accepted December 15, 2011; Published January 26, 2012 Copyright: ß 2012 Govero et al.
    [Show full text]
  • GGA1 (D-6): Sc-271927
    SANTA CRUZ BIOTECHNOLOGY, INC. GGA1 (D-6): sc-271927 BACKGROUND APPLICATIONS The GGA family of proteins (Golgi-localized, g-adaptin ear-containing, ARF- GGA1 (D-6) is recommended for detection of GGA1 of human origin by binding proteins) are ubiquitous coat proteins that facilitate the trafficking Western Blotting (starting dilution 1:100, dilution range 1:100-1:1000), of soluble proteins from the trans-Golgi network (TGN) to endosomes/lyso- immunoprecipitation [1-2 µg per 100-500 µg of total protein (1 ml of cell somes by means of interactions with TGN-sorting receptors, ARF (ADP-ribo- lysate)], immunofluorescence (starting dilution 1:50, dilution range 1:50- sylation factor) and Clathrin. Members of the GGA family, GGA1, GGA2 (also 1:500), immunohistochemistry (including paraffin-embedded sections) known as VEAR) and GGA3, are multidomain proteins that bind mannose 6- (starting dilution 1:50, dilution range 1:50-1:500) and solid phase ELISA phosphate receptors (MPRs). GGAs have modular structures with an N-termi- (starting dilution 1:30, dilution range 1:30-1:3000). nal VHS (VPS-27, Hrs and STAM) domain followed by a GAT (GGA and TOM1) Suitable for use as control antibody for GGA1 siRNA (h): sc-41167, GGA1 domain, a connecting hinge segment and a C-terminal GAE ( -adaptin ear) g shRNA Plasmid (h): sc-41167-SH and GGA1 shRNA (h) Lentiviral Particles: domain. The amino-terminal VHS domains of GGAs form complexes with sc-41167-V. the cytoplasmic domains of sorting receptors by recognizing acidic-cluster di-leucine (ACLL) sequences. GGA1 and GGA2 do not associate with each Molecular Weight of GGA1: 85 kDa.
    [Show full text]
  • Association Between GGA1 Gene Polymorphisms and Occurrence of Mammary Mixed Tumors and Aging in Domestic Bitches1)
    34 Med. Weter. 2016, 72 (1), 34-40 Praca oryginalna Original paper Association between GGA1 gene polymorphisms and occurrence of mammary mixed tumors and aging in domestic bitches1) WIESŁAWA KRANC*, ADRIAN CHACHUŁA**, KATARZYNA WOJTANOWICZ-MARKIEWICZ***, KATARZYNA ZAORSKA**, EDYTA OCIEPA***, ADAM PIOTROWSKI*, DOROTA BUKOWSKA***, SYLWIA CIESIÓŁKA**, SYLWIA BORYS****, HANNA PIOTROWSKA****, AGNIESZKA SKOWROŃSKA*****, MARCIN NOWAK******, PAWEŁ ANTOSIK***, KLAUS-PETER BRÜSSOW***, BARTOSZ KEMPISTY*, **, MAŁGORZATA BRUSKA*, MICHAŁ NOWICKI**, MACIEJ ZABEL**, ******* *Department of Anatomy, **Department of Histology and Embryology, Medicine Faculty I, Poznan University of Medical Sciences, Swiecickiego 6 St., 60-781 Poznan, Poland ***Institute of Veterinary Sciences, Faculty of Animal Breeding and Biology, Poznan University of Life Sciences, Wolynska 35 St., 60-637 Poznan, Poland ****Department of Toxicology, Faculty of Farmacy, Poznan University of Medical Sciences, Dojazd 30 St., 60-631 Poznan, Poland *****Department of Human Physiology, Faculty of Medical Sciences, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland ******Department of Pathology, Faculty of Veterinary Medicine, Wroclaw University of Life Sciences, C. K. Norwida 31 St., 50-375 Wrocław, Poland *******Department of Histology and Embryology, Wroclaw Medical University, 6a Chalubinskiego St., 50-368, Wroclaw, Poland Received 13.07.2015 Accepted 03.11.2015 Kranc W., Chachuła A., Wojtanowicz-Markiewicz K., Zaorska K., Ociepa E., Piotrowski A., Bukowska D., Ciesiółka S., Borys S., Piotrowska H., Skowrońska A., Nowak M., Antosik P., Brüssow K.-P., Kempisty B., Bruska M., Nowicki M., Zabel M. Association between GGA1 gene polymorphisms and occurrence of mammary mixed tumours and aging in domestic bitches Summary In recent years the number of malignant mammary gland tumor occurrences in domestic bitches has increased.
    [Show full text]
  • Genome-Wide Association Study Reveals Putative Role of Gga-Mir
    Yuan et al. BMC Genomics (2017) 18:699 DOI 10.1186/s12864-017-4092-9 ORIGINALPAPER Open Access Genome-wide association study reveals putative role of gga-miR-15a in controlling feed conversion ratio in layer chickens Jingwei Yuan1, Sirui Chen1, Fengying Shi2, Guiqin Wu2, Aiqiao Liu2, Ning Yang1 and Congjiao Sun1* Abstract Background: Efficient use of feed resources for farm animals is a critical concern in animal husbandry. Numerous genetic and nutritional studies have been conducted to investigate feed efficiency during the regular laying cycle of chickens. However, by prolonging the laying period of layers, the performance of feed utilization in the late- laying period becomes increasingly important. In the present study, we measured daily feed intake (FI), residual feed intake (RFI) and feed conversion ratio (FCR) of 808 hens during 81–82 weeks of age to evaluate genetic properties and then used a genome-wide association study (GWAS) to reveal the genetic determinants. Results: The heritability estimates for the investigated traits were medium and between 0.15 and 0.28 in both pedigree- and genomic-based estimates, whereas the genetic correlations among these traits were high and ranged from 0.49 to 0.90. Three genome-wide significant SNPs located on chromosome 1 (GGA1) were detected for FCR. Linkage disequilibrium (LD) and conditional GWA analysis indicated that these 3 SNPs were highly correlated with one another, located at 13.55–45.16 Kb upstream of gga-miR-15a. Results of quantitative real-time polymerase chain reaction (qRT-PCR) analysis in liver tissue showed that the expression of gga-miR-15a was significantly higher in the high FCR birds than that in the medium or low FCR birds.
    [Show full text]
  • Review the Sorting and Trafficking of Lysosomal Proteins
    Histol Histopathol (2006) 21: 899-913 Histology and http://www.hh.um.es Histopathology Cellular and Molecular Biology Review The sorting and trafficking of lysosomal proteins X. Ni, M. Canuel and C.R. Morales Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada Summary. For a long time lysosomes were considered phosphate, to allow its recognition by a sorting receptor. terminal organelles involved in the degradation of Protein sorting in most eukaryotic cells may also involve different substrates. However, this view is rapidly protein-protein interactions between the cargo and the changing by evidence demonstrating that these receptor. Consequently, eukaryotic cells may have an organelles and their content display specialized functions additional repertoire of receptors that recognize amino in addition to the degradation of substances. Many acid sequences and/or motifs in the lysosomal cargo. lysosomal proteins have been implicated in specialized Such motifs have the property to specify the sorting and cellular functions and disorders such as antigen final destination of the cargo. This possibility is processing, targeting of surfactant proteins, and most discussed in the present review. lysosomal storage disorders. To date, about fifty To exit a sorting compartment a receptor must lysosomal hydrolases have been identified, and the interact with cytoplasmic coat proteins such as adaptor majority of them are targeted to the lysosomes via the proteins, ARF and clathrin, that cause vesicles to bud mannose-6-phosphate receptor (M6P-Rc). However, from donor membranes (trans-Golgi network/TGN) and recent studies on the intracellular trafficking of the non- to traffic to acceptor membranes (late endosomes and enzymic lysosomal proteins prosaposin and GM2 lysosomes).
    [Show full text]
  • Genetic Architecture of Bone Quality Variation in Layer Chickens Revealed
    www.nature.com/scientificreports OPEN Genetic architecture of bone quality variation in layer chickens revealed by a genome-wide association Received: 26 October 2016 Accepted: 23 February 2017 study Published: 06 April 2017 Jun Guo1,*, Congjiao Sun2,*, Liang Qu1, Manman Shen1, Taocun Dou1, Meng Ma1, Kehua Wang1 & Ning Yang2 Skeletal problems in layer chickens are gaining attention due to animal welfare and economic losses in the egg industry. The genetic improvement of bone traits has been proposed as a potential solution to these issues; however, genetic architecture is not well understood. We conducted a genome-wide association study (GWAS) on bone quality using a sample of 1534 hens genotyped with a 600 K Chicken Genotyping Array. Using a linear mixed model approach, a novel locus close to GSG1L, associated with femur bone mineral density (BMD), was uncovered in this study. In addition, nine SNPs in genes were associated with bone quality. Three of these genes, RANKL, ADAMTS and SOST, were known to be associated with osteoporosis in humans, which makes them good candidate genes for osteoporosis in chickens. Genomic partitioning analysis supports the fact that common variants contribute to the variations of bone quality. We have identified several strong candidate genes and genomic regions associated with bone traits measured in end-of-lay cage layers, which accounted for 1.3–7.7% of the phenotypic variance. These SNPs could provide the relevant information to help elucidate which genes affect bone quality in chicken. Osteoporosis in hens is a common disease leading to increased risk to bone fracture, and is especially severe in caged layer populations, yet the underlying genetic architecture is poorly understood.
    [Show full text]
  • GGA1-Mediated Endocytic Traffic of LR11/Sorla Alters APP Intracellular Distribution and Amyloid-Β Production Jeremy H
    GGA1-mediated endocytic traffic of LR11/SorLA alters APP intracellular distribution and amyloid-β production Jeremy H. Herskowitz, Emory University Katrin Offe, Emory University Aniruddha Deshpande, Emory University Richard A Kahn, Emory University Allan I Levey, Emory University James J Lah, Emory University Journal Title: Molecular Biology of the Cell Volume: Volume 23, Number 14 Publisher: The American Society for Cell Biology | 2012-07-15, Pages 2645-2657 Type of Work: Article | Final Publisher PDF Publisher DOI: 10.1091/mbc.E12-01-0014 Permanent URL: http://pid.emory.edu/ark:/25593/cwsw4 Final published version: http://dx.doi.org/10.1091%2Fmbc.E12-01-0014 Copyright information: © 2012 Herskowitz et al. This is an Open Access work distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License (http://creativecommons.org/licenses/by-nc-sa/3.0/). Accessed October 4, 2021 10:12 AM EDT M BoC | ARTICLE GGA1-mediated endocytic traffic of LR11/SorLA alters APP intracellular distribution and amyloid- β production Jeremy H. Herskowitza, Katrin Offea, Aniruddha Deshpandea, Richard A. Kahnb, Allan I. Leveya, and James J. Laha aCenter for Neurodegenerative Disease, Department of Neurology, and bDepartment of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322 ABSTRACT Proteolytic processing of the amyloid-β precursor protein (APP) and generation Monitoring Editor of amyloid-β peptide (Aβ) are key events in Alzheimer’s disease (AD) pathogenesis. Cell bio- Adam Linstedt logical and genetic evidence has implicated the low-density lipoprotein and sorting receptor Carnegie Mellon University LR11/SorLA in AD through mechanisms related to APP and Aβ production.
    [Show full text]
  • Role of the Polycystins in Cell Migration, Polarity, and Tissue Morphogenesis
    Cells 2015, 4, 687-705; doi:10.3390/cells4040687 OPEN ACCESS cells ISSN 2073-4409 www.mdpi.com/journal/cells Review Role of the Polycystins in Cell Migration, Polarity, and Tissue Morphogenesis Elisa Agnese Nigro, Maddalena Castelli and Alessandra Boletta * Division of Genetics and Cell Biology, Dibit, IRCCS-San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milano, Italy; E-Mails: [email protected] (E.A.N.); [email protected] (M.C.) * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +39-02-2643-4805; Fax: +39-02-2643-4861. Academic Editor: Christoph Englert Received: 7 August 2015 / Accepted: 26 October 2015 / Published: 30 October 2015 Abstract: Cystic kidney diseases (CKD) is a class of disorders characterized by ciliary dysfunction and, therefore, belonging to the ciliopathies. The prototype CKD is autosomal dominant polycystic kidney disease (ADPKD), whose mutated genes encode for two membrane-bound proteins, polycystin-1 (PC-1) and polycystin-2 (PC-2), of unknown function. Recent studies on CKD-associated genes identified new mechanisms of morphogenesis that are central for establishment and maintenance of proper renal tubular diameter. During embryonic development in the mouse and lower vertebrates a convergent-extension (CE)-like mechanism based on planar cell polarity (PCP) and cellular intercalation is involved in “sculpting” the tubules into a narrow and elongated shape. Once the appropriate diameter is established, further elongation occurs through oriented cell division (OCD). The polycystins (PCs) regulate some of these essential processes. In this review we summarize recent work on the role of PCs in regulating cell migration, the cytoskeleton, and front-rear polarity.
    [Show full text]
  • GGA2 Interacts with EGFR Cytoplasmic Domain to Stabilize The
    www.nature.com/scientificreports Corrected: Author Correction OPEN GGA2 interacts with EGFR cytoplasmic domain to stabilize the receptor expression and promote Received: 23 August 2017 Accepted: 3 January 2018 cell growth Published online: 22 January 2018 Takefumi Uemura1, Satoshi Kametaka2 & Satoshi Waguri1 Epidermal growth factor receptor (EGFR) signaling and its downregulation upon ligand binding have been extensively documented. However, the mechanisms by which cells maintain steady-state EGFR expression remain poorly understood. Here, we report a novel role of Golgi-localized, γ-adaptin ear- containing, ADP ribosylation factor-binding protein 2 (GGA2) in the control of EGFR turnover. Whereas GGA1- or GGA3-depletion increased EGFR expression, GGA2-depletion by RNAi greatly reduced steady-state expression of EGFR, refecting enhanced lysosomal degradation of EGFR. Subsequent pull-down assays showed interactions of VHS-GAT domains from three GGAs with the cytoplasmic juxtamembrane region (jxt) of EGFR, which was dependent on N108 in the VHS domain. Proximity ligation assay also revealed the steady-state interaction between GGA2 and EGFR in situ. Moreover, reduced expression of EGFR in GGA2-depleted cells was reversed by additional depletion of GGA1 or GGA3, suggesting that GGA1 and GGA3 promote EGFR degradation. In addition, GGA2-depleted cells had reduced EGF signaling and cell proliferation in cell culture and xenograft experiments. Finally, GGA2 was upregulated in 30.8% of human hepatocellular carcinomas and 23.3% of colorectal cancers. Together, these results indicate that GGA2 supports cell growth by interacting with EGFR for sustaining the receptor expression. Epidermal growth factor receptor (EGFR; also known as ErbB1 or Her1) is a receptor tyrosine kinase (RTK) that is involved in eukaryotic development and cancer pathogenesis1.
    [Show full text]