Theta Functions, Gauss Sums and Modular Forms
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Lectures on Modular Forms. Fall 1997/98
Lectures on Modular Forms. Fall 1997/98 Igor V. Dolgachev October 26, 2017 ii Contents 1 Binary Quadratic Forms1 2 Complex Tori 13 3 Theta Functions 25 4 Theta Constants 43 5 Transformations of Theta Functions 53 6 Modular Forms 63 7 The Algebra of Modular Forms 83 8 The Modular Curve 97 9 Absolute Invariant and Cross-Ratio 115 10 The Modular Equation 121 11 Hecke Operators 133 12 Dirichlet Series 147 13 The Shimura-Tanyama-Weil Conjecture 159 iii iv CONTENTS Lecture 1 Binary Quadratic Forms 1.1 The theory of modular form originates from the work of Carl Friedrich Gauss of 1831 in which he gave a geometrical interpretation of some basic no- tions of number theory. Let us start with choosing two non-proportional vectors v = (v1; v2) and w = 2 (w1; w2) in R The set of vectors 2 Λ = Zv + Zw := fm1v + m2w 2 R j m1; m2 2 Zg forms a lattice in R2, i.e., a free subgroup of rank 2 of the additive group of the vector space R2. We picture it as follows: • • • • • • •Gv • ••• •• • w • • • • • • • • Figure 1.1: Lattice in R2 1 2 LECTURE 1. BINARY QUADRATIC FORMS Let v v B(v; w) = 1 2 w1 w2 and v · v v · w G(v; w) = = B(v; w) · tB(v; w): v · w w · w be the Gram matrix of (v; w). The area A(v; w) of the parallelogram formed by the vectors v and w is given by the formula v · v v · w A(v; w)2 = det G(v; w) = (det B(v; w))2 = det : v · w w · w Let x = mv + nw 2 Λ. -
The Riemann Mapping Theorem Christopher J. Bishop
The Riemann Mapping Theorem Christopher J. Bishop C.J. Bishop, Mathematics Department, SUNY at Stony Brook, Stony Brook, NY 11794-3651 E-mail address: [email protected] 1991 Mathematics Subject Classification. Primary: 30C35, Secondary: 30C85, 30C62 Key words and phrases. numerical conformal mappings, Schwarz-Christoffel formula, hyperbolic 3-manifolds, Sullivan’s theorem, convex hulls, quasiconformal mappings, quasisymmetric mappings, medial axis, CRDT algorithm The author is partially supported by NSF Grant DMS 04-05578. Abstract. These are informal notes based on lectures I am giving in MAT 626 (Topics in Complex Analysis: the Riemann mapping theorem) during Fall 2008 at Stony Brook. We will start with brief introduction to conformal mapping focusing on the Schwarz-Christoffel formula and how to compute the unknown parameters. In later chapters we will fill in some of the details of results and proofs in geometric function theory and survey various numerical methods for computing conformal maps, including a method of my own using ideas from hyperbolic and computational geometry. Contents Chapter 1. Introduction to conformal mapping 1 1. Conformal and holomorphic maps 1 2. M¨obius transformations 16 3. The Schwarz-Christoffel Formula 20 4. Crowding 27 5. Power series of Schwarz-Christoffel maps 29 6. Harmonic measure and Brownian motion 39 7. The quasiconformal distance between polygons 48 8. Schwarz-Christoffel iterations and Davis’s method 56 Chapter 2. The Riemann mapping theorem 67 1. The hyperbolic metric 67 2. Schwarz’s lemma 69 3. The Poisson integral formula 71 4. A proof of Riemann’s theorem 73 5. Koebe’s method 74 6. -
Abelian Solutions of the Soliton Equations and Riemann–Schottky Problems
Russian Math. Surveys 63:6 1011–1022 c 2008 RAS(DoM) and LMS Uspekhi Mat. Nauk 63:6 19–30 DOI 10.1070/RM2008v063n06ABEH004576 Abelian solutions of the soliton equations and Riemann–Schottky problems I. M. Krichever Abstract. The present article is an exposition of the author’s talk at the conference dedicated to the 70th birthday of S. P. Novikov. The talk con- tained the proof of Welters’ conjecture which proposes a solution of the clas- sical Riemann–Schottky problem of characterizing the Jacobians of smooth algebraic curves in terms of the existence of a trisecant of the associated Kummer variety, and a solution of another classical problem of algebraic geometry, that of characterizing the Prym varieties of unramified covers. Contents 1. Introduction 1011 2. Welters’ trisecant conjecture 1014 3. The problem of characterization of Prym varieties 1017 4. Abelian solutions of the soliton equations 1018 Bibliography 1020 1. Introduction The famous Novikov conjecture which asserts that the Jacobians of smooth alge- braic curves are precisely those indecomposable principally polarized Abelian vari- eties whose theta-functions provide explicit solutions of the Kadomtsev–Petviashvili (KP) equation, fundamentally changed the relations between the classical algebraic geometry of Riemann surfaces and the theory of soliton equations. It turns out that the finite-gap, or algebro-geometric, theory of integration of non-linear equa- tions developed in the mid-1970s can provide a powerful tool for approaching the fundamental problems of the geometry of Abelian varieties. The basic tool of the general construction proposed by the author [1], [2]which g+k 1 establishes a correspondence between algebro-geometric data Γ,Pα,zα,S − (Γ) and solutions of some soliton equation, is the notion of Baker–Akhiezer{ function.} Here Γis a smooth algebraic curve of genus g with marked points Pα, in whose g+k 1 neighborhoods we fix local coordinates zα, and S − (Γ) is a symmetric prod- uct of the curve. -
Mirror Symmetry of Abelian Variety and Multi Theta Functions
1 Mirror symmetry of Abelian variety and Multi Theta functions by Kenji FUKAYA (深谷賢治) Department of Mathematics, Faculty of Science, Kyoto University, Kitashirakawa, Sakyo-ku, Kyoto Japan Table of contents § 0 Introduction. § 1 Moduli spaces of Lagrangian submanifolds and construction of a mirror torus. § 2 Construction of a sheaf from an affine Lagrangian submanifold. § 3 Sheaf cohomology and Floer cohomology 1 (Construction of a homomorphism). § 4 Isogeny. § 5 Sheaf cohomology and Floer cohomology 2 (Proof of isomorphism). § 6 Extension and Floer cohomology 1 (0 th cohomology). § 7 Moduli space of holomorphic vector bundles on a mirror torus. § 8 Nontransversal or disconnected Lagrangian submanifolds. ∞ § 9 Multi Theta series 1 (Definition and A formulae.) § 10 Multi Theta series 2 (Calculation of the coefficients.) § 11 Extension and Floer cohomology 2 (Higher cohomology). § 12 Resolution and Lagrangian surgery. 2 § 0 Introduction In this paper, we study mirror symmetry of complex and symplectic tori as an example of homological mirror symmetry conjecture of Kontsevich [24], [25] between symplectic and complex manifolds. We discussed mirror symmetry of tori in [12] emphasizing its “noncom- mutative” generalization. In this paper, we concentrate on the case of a commutative (usual) torus. Our result is a generalization of one by Polishchuk and Zaslow [42], [41], who studied the case of elliptic curve. The main results of this paper establish a dictionary of mirror symmetry between symplectic geometry and complex geometry in the case of tori of arbitrary dimension. We wrote this dictionary in the introduction of [12]. We present the argument in a way so that it suggests a possibility of its generalization. -
Theta Function Review G = 1 Case
The genus 1 case - review Theta Function Review g = 1 case We recall the main de¯nitions of theta functions in the 1-dim'l case: De¯nition 0 Let· ¿ 2¸C such that Im¿ > 0: For "; " real numbers and z 2 C then: " £ (z;¿) = "0 n ¡ ¢ ¡ ¢ ¡ ¢ ³ ´o P 1 " " ² t ²0 l²Z2 exp2¼i 2 l + 2 ¿ l + 2 + l + 2 z + 2 The series· is uniformly¸ and absolutely convergent on compact subsets " C £ H: are called Theta characteristics "0 The genus 1 case - review Theta Function Properties Review for g = 1 case the following properties of theta functions can be obtained by manipulation of the series : · ¸ · ¸ " + 2m " 1. £ (z;¿) = exp¼i f"eg £ (z;¿) and e; m 2 Z "0 + 2e "0 · ¸ · ¸ " " 2. £ (z;¿) = £ (¡z;¿) ¡"0 "0 · ¸ " 3. £ (z + n + m¿; ¿) = "0 n o · ¸ t t 0 " exp 2¼i n "¡m " ¡ mz ¡ m2¿ £ (z;¿) 2 "0 The genus 1 case - review Remarks on the properties of Theta functions g=1 1. Property number 3 describes the transformation properties of theta functions under an element of the lattice L¿ generated by f1;¿g. 2. The same property implies that that the zeros of theta functions are well de¯ned on the torus given· ¸ by C=L¿ : In fact there is only a " unique such 0 for each £ (z;¿): "0 · ¸ · ¸ "i γj 3. Let 0 ; i = 1:::k and 0 ; j = 1:::l and "i γj 2 3 Q "i k θ4 5(z;¿) ³P ´ ³P ´ i=1 "0 k 0 l 0 2 i 3 "i + " ¿ ¡ γj + γ ¿ 2 L¿ Then i=1 i j=1 j Q l 4 γj 5 j=1 θ 0 (z;¿) γj is a meromorphic function on the elliptic curve de¯ned by C=L¿ : The genus 1 case - review Analytic vs. -
Appendices A. Quadratic Reciprocity Via Gauss Sums
1 Appendices We collect some results that might be covered in a first course in algebraic number theory. A. Quadratic Reciprocity Via Gauss Sums A1. Introduction In this appendix, p is an odd prime unless otherwise specified. A quadratic equation 2 modulo p looks like ax + bx + c =0inFp. Multiplying by 4a, we have 2 2ax + b ≡ b2 − 4ac mod p Thus in studying quadratic equations mod p, it suffices to consider equations of the form x2 ≡ a mod p. If p|a we have the uninteresting equation x2 ≡ 0, hence x ≡ 0, mod p. Thus assume that p does not divide a. A2. Definition The Legendre symbol a χ(a)= p is given by 1ifa(p−1)/2 ≡ 1modp χ(a)= −1ifa(p−1)/2 ≡−1modp. If b = a(p−1)/2 then b2 = ap−1 ≡ 1modp,sob ≡±1modp and χ is well-defined. Thus χ(a) ≡ a(p−1)/2 mod p. A3. Theorem a The Legendre symbol ( p ) is 1 if and only if a is a quadratic residue (from now on abbre- viated QR) mod p. Proof.Ifa ≡ x2 mod p then a(p−1)/2 ≡ xp−1 ≡ 1modp. (Note that if p divides x then p divides a, a contradiction.) Conversely, suppose a(p−1)/2 ≡ 1modp.Ifg is a primitive root mod p, then a ≡ gr mod p for some r. Therefore a(p−1)/2 ≡ gr(p−1)/2 ≡ 1modp, so p − 1 divides r(p − 1)/2, hence r/2 is an integer. But then (gr/2)2 = gr ≡ a mod p, and a isaQRmodp. -
THE IMPACT of RIEMANN's MAPPING THEOREM in the World
THE IMPACT OF RIEMANN'S MAPPING THEOREM GRANT OWEN In the world of mathematics, scholars and academics have long sought to understand the work of Bernhard Riemann. Born in a humble Ger- man home, Riemann became one of the great mathematical minds of the 19th century. Evidence of his genius is reflected in the greater mathematical community by their naming 72 different mathematical terms after him. His contributions range from mathematical topics such as trigonometric series, birational geometry of algebraic curves, and differential equations to fields in physics and philosophy [3]. One of his contributions to mathematics, the Riemann Mapping Theorem, is among his most famous and widely studied theorems. This theorem played a role in the advancement of several other topics, including Rie- mann surfaces, topology, and geometry. As a result of its widespread application, it is worth studying not only the theorem itself, but how Riemann derived it and its impact on the work of mathematicians since its publication in 1851 [3]. Before we begin to discover how he derived his famous mapping the- orem, it is important to understand how Riemann's upbringing and education prepared him to make such a contribution in the world of mathematics. Prior to enrolling in university, Riemann was educated at home by his father and a tutor before enrolling in high school. While in school, Riemann did well in all subjects, which strengthened his knowl- edge of philosophy later in life, but was exceptional in mathematics. He enrolled at the University of G¨ottingen,where he learned from some of the best mathematicians in the world at that time. -
Theta Function Identities
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 147, 97-121 (1990) Theta Function Identities RONALD J. EVANS Deparlment of Mathematics, University of California, San Diego, La Jolla, California 92093 Submitted by Bruce C. Berndt Received June 3. 1988 1. INTR~D~JcTI~N By 1986, all but one of the identities in the 21 chapters of Ramanujan’s Second Notebook [lo] had been proved; see Berndt’s books [Z-4]. The remaining identity, which we will prove in Theorem 5.1 below, is [ 10, Chap. 20, Entry 8(i)] 1 1 1 V2(Z/P) (1.1) G,(z) G&l + G&J G&J + G&l G,(z) = 4 + dz) ’ where q(z) is the classical eta function given by (2.5) and 2 f( _ q2miP, - q1 - WP) G,(z) = G,,,(z) = (- 1)” qm(3m-p)‘(2p) f(-qm,p, -q,-m,p) 9 (1.2) with q = exp(2niz), p = 13, and Cl(k2+k)/2 (k2pkV2 B . (1.3) k=--13 The author is grateful to Bruce Berndt for bringing (1.1) to his attention. The quotients G,(z) in (1.2) for odd p have been the subject of interest- ing investigations by Ramanujan and others. Ramanujan [ 11, p. 2071 explicitly wrote down a version of the famous quintuple product identity, f(-s’, +)J-(-~*q3, -w?+qfF~, -A2q9) (1.4) f(-43 -Q2) f(-Aq3, -Pq6) ’ which yields as a special case a formula for q(z) G,(z) as a linear combina- tion of two theta functions; see (1.7). In Chapter 16 of his Second 97 0022-247X/90 $3.00 Copyright % 1993 by Academc Press, Inc. -
An Addition Formula for the Jacobian Theta Function and Its Applications
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Advances in Mathematics 212 (2007) 389–406 www.elsevier.com/locate/aim An addition formula for the Jacobian theta function and its applications Zhi-Guo Liu 1 East China Normal University, Department of Mathematics, Shanghai 200062, People’s Republic of China Received 13 July 2005; accepted 17 October 2006 Available online 28 November 2006 Communicated by Alain Lascoux Abstract In this paper, we prove an addition formula for the Jacobian theta function using the theory of elliptic functions. It turns out to be a fundamental identity in the theory of theta functions and elliptic function, and unifies many important results about theta functions and elliptic functions. From this identity we can derive the Ramanujan cubic theta function identity, Winquist’s identity, a theta function identities with five parameters, and many other interesting theta function identities; and all of which are as striking as Winquist’s identity. This identity allows us to give a new proof of the addition formula for the Weierstrass sigma function. A new identity about the Ramanujan cubic elliptic function is given. The proofs are self contained and elementary. © 2006 Elsevier Inc. All rights reserved. MSC: 11F11; 11F12; 11F27; 33E05 Keywords: Weierstrass sigma function; Addition formula; Elliptic functions; Jacobi’s theta function; Winquist’s identity; Ramanujan’s cubic theta function theory E-mail addresses: [email protected], [email protected]. 1 The author was supported in part by the National Science Foundation of China. 0001-8708/$ – see front matter © 2006 Elsevier Inc. -
The Measurable Riemann Mapping Theorem
CHAPTER 1 The Measurable Riemann Mapping Theorem 1.1. Conformal structures on Riemann surfaces Throughout, “smooth” will always mean C 1. All surfaces are assumed to be smooth, oriented and without boundary. All diffeomorphisms are assumed to be smooth and orientation-preserving. It will be convenient for our purposes to do local computations involving metrics in the complex-variable notation. Let X be a Riemann surface and z x iy be a holomorphic local coordinate on X. The pair .x; y/ can be thoughtD C of as local coordinates for the underlying smooth surface. In these coordinates, a smooth Riemannian metric has the local form E dx2 2F dx dy G dy2; C C where E; F; G are smooth functions of .x; y/ satisfying E > 0, G > 0 and EG F 2 > 0. The associated inner product on each tangent space is given by @ @ @ @ a b ; c d Eac F .ad bc/ Gbd @x C @y @x C @y D C C C Äc a b ; D d where the symmetric positive definite matrix ÄEF (1.1) D FG represents in the basis @ ; @ . In particular, the length of a tangent vector is f @x @y g given by @ @ p a b Ea2 2F ab Gb2: @x C @y D C C Define two local sections of the complexified cotangent bundle T X C by ˝ dz dx i dy WD C dz dx i dy: N WD 2 1 The Measurable Riemann Mapping Theorem These form a basis for each complexified cotangent space. The local sections @ 1 Â @ @ Ã i @z WD 2 @x @y @ 1 Â @ @ Ã i @z WD 2 @x C @y N of the complexified tangent bundle TX C will form the dual basis at each point. -
The Riemann Mapping Theorem
University of Toronto – MAT334H1-F – LEC0101 Complex Variables 18 – The Riemann mapping theorem Jean-Baptiste Campesato December 2nd, 2020 and December 4th, 2020 Theorem 1 (The Riemann mapping theorem). Let 푈 ⊊ ℂ be a simply connected open subset which is not ℂ. −1 Then there exists a biholomorphism 푓 ∶ 푈 → 퐷1(0) (i.e. 푓 is holomorphic, bijective and 푓 is holomorphic). We say that 푈 and 퐷1(0) are conformally equivalent. Remark 2. Note that if 푓 ∶ 푈 → 푉 is bijective and holomorphic then 푓 −1 is holomorphic too. Indeed, we proved that if 푓 is injective and holomorphic then 푓 ′ never vanishes (Nov 30). Then we can conclude using the inverse function theorem. Note that this remark is false for ℝ-differentiability: define 푓 ∶ ℝ → ℝ by 푓(푥) = 푥3 then 푓 ′(0) = 0 and 푓 −1(푥) = √3 푥 is not differentiable at 0. Remark 3. The theorem is false if 푈 = ℂ. Indeed, by Liouville’s theorem, if 푓 ∶ ℂ → 퐷1(0) is holomorphic then it is constant (as a bounded entire function), so it can’t be bijective. The Riemann mapping theorem states that up to biholomorphic transformations, the unit disk is a model for open simply connected sets which are not ℂ. Otherwise stated, up to a biholomorphic transformation, there are only two open simply connected sets: 퐷1(0) and ℂ. Formally: Corollary 4. Let 푈, 푉 ⊊ ℂ be two simply connected open subsets, none of which is ℂ. Then there exists a biholomorphism 푓 ∶ 푈 → 푉 (i.e. 푓 is holomorphic, bijective and 푓 −1 is holomorphic). -
Math 311: Complex Analysis — Automorphism Groups Lecture
MATH 311: COMPLEX ANALYSIS | AUTOMORPHISM GROUPS LECTURE 1. Introduction Rather than study individual examples of conformal mappings one at a time, we now want to study families of conformal mappings. Ensembles of conformal mappings naturally carry group structures. 2. Automorphisms of the Plane The automorphism group of the complex plane is Aut(C) = fanalytic bijections f : C −! Cg: Any automorphism of the plane must be conformal, for if f 0(z) = 0 for some z then f takes the value f(z) with multiplicity n > 1, and so by the Local Mapping Theorem it is n-to-1 near z, impossible since f is an automorphism. By a problem on the midterm, we know the form of such automorphisms: they are f(z) = az + b; a; b 2 C; a 6= 0: This description of such functions one at a time loses track of the group structure. If f(z) = az + b and g(z) = a0z + b0 then (f ◦ g)(z) = aa0z + (ab0 + b); f −1(z) = a−1z − a−1b: But these formulas are not very illuminating. For a better picture of the automor- phism group, represent each automorphism by a 2-by-2 complex matrix, a b (1) f(z) = ax + b ! : 0 1 Then the matrix calculations a b a0 b0 aa0 ab0 + b = ; 0 1 0 1 0 1 −1 a b a−1 −a−1b = 0 1 0 1 naturally encode the formulas for composing and inverting automorphisms of the plane. With this in mind, define the parabolic group of 2-by-2 complex matrices, a b P = : a; b 2 ; a 6= 0 : 0 1 C Then the correspondence (1) is a natural group isomorphism, Aut(C) =∼ P: 1 2 MATH 311: COMPLEX ANALYSIS | AUTOMORPHISM GROUPS LECTURE Two subgroups of the parabolic subgroup are its Levi component a 0 M = : a 2 ; a 6= 0 ; 0 1 C describing the dilations f(z) = ax, and its unipotent radical 1 b N = : b 2 ; 0 1 C describing the translations f(z) = z + b.