Management of the Cumberland River System

Total Page:16

File Type:pdf, Size:1020Kb

Management of the Cumberland River System Management of the Cumberland River System Tennessee Silver Jackets Meeting Old Hickory Lock and Dam 09 April 2014 Benjamin L. Rohrbach, P.E. Hydrology & Hydraulics Branch Chief Nashville District US Army Corps of Engineers BUILDING STRONG® Agenda . Background . History and Authorizing Legislation . Authorized Purposes . The Water Management Challenge . Water Management Program . Flood Operations . Protecting the Lower Ohio and Mississippi . Summary BUILDING STRONG® Background BUILDING STRONG® US Army Corps of Engineers Division Boundaries BUILDING STRONG® Great Lakes & Ohio River Division District Boundaries BUILDING STRONG® Nashville District River Basins & Boundaries Lieutenant Colonel John L. Hudson Commander and District Engineer Nashville District BUILDING STRONG® Cumberland River Basin Reservoir System . Cumberland River Basin Flood Control Project Storage ► 2 Drainage area – 17,913 mi (acre-feet) ► Total length – 694 miles . System of 10 multi-purpose projects Wolf Creek 2,094,000 ► Flood Damage Reduction • 5.3 M acre-feet of flood storage Dale Hollow 353,000 • > $2 B in flood damages prevented ($115 M/yr) • 77 % of drainage area above Nashville is controlled Center Hill 762,000 ► Hydropower • 9/10 projects have hydropower J. Percy 350,000 • 914 MW capacity from 28 hydropower turbines Priest ► Navigation • 380 miles of navigable waterway (4 locks) Barkley 1,472,000 • 795 miles on TN River (10 locks) ► Recreation Total 5,031,000 • 5 Nashville District projects in top 25 nationally • 31.3 M visitors last year (> $700 M economic impact) ► Environmental Stewardship • Environmental restoration projects • Tremendous mussel and fish diversity • Home to two world record fish BUILDING STRONG® History and Authorizing Legislation BUILDING STRONG® Historic Flood 1926-1927 BUILDING STRONG® Historic Flood 1937 BUILDING STRONG® Low Water on the Cumberland River BUILDING STRONG® Authorizing Legislation . Flood Control Act of 1938: PL 75-761 ► Wolf Creek (construction finished in 1952) ► Dale Hollow (1953) ► Center Hill (1951) ► J. Percy Priest (1970) ► Three Islands ► Rossview ► Devil’s Jump . River and Harbor Act of 1946: PL 79-525 ► Celina ► Cordell Hull (1974) ► Old Hickory (1957) ► Cheatham (1959) ► Barkley (1966) . Flood Control Act of 1960: PL 86-645 ► Laurel (1977) . Flood Control Act of 1965: PL 89-298 ► Martins Fork (1978) BUILDING STRONG® Authorized Purposes BUILDING STRONG® Congressionally Authorized Project Purposes Flood Damage Commercial Project Hydropower Recreation Reduction Navigation Wolf Creek Dam Dale Hollow Dam Center Hill Dam J. Percy Priest Dam Cordell Hull Lock & Dam Old Hickory Lock & Dam Cheatham Lock & Dam Barkley Lock & Dam Project not designed for this purpose Project primarily designed BUILDING STRONG for this purpose ® BUILDING STRONG® Congressionally Authorized Project Purposes Wolf Creek Dam Old Hickory Lock & Dam . Project Design . Project Design ► Flood Damage Reduction ► Flood Surcharge Storage ► 37 ft zone ► 5 ft zone ► Volume - 2,094,000 acre-feet ► Volume - 125,000 acre-feet ► Hydropower ► Hydropower ► 50 ft zone ► 3 ft zone ► Volume – 2,142,000 acre-feet ► Volume – 63,000 acre-feet ► Commercial Navigation BUILDING STRONG® Scale and Impact to the System Lake Cumberland Available Storage Flood 760’ Control Pool 740’ Louisville District (20) 726’ May 2011 Level 700’ (Reduced Huntington District (35) flooding by 660’ 1.2’ at Cairo, IL) Elevation Elevation 620’ Pittsburgh District (17) 580’ 540’ 460 480 500 520 540 560 Cumberland River Mile BUILDING STRONG® The Water Management Challenge . Water Control . Water Quality . Balancing Act . Project Authorized Purposes . Environmental Statutes . Changing Societal Values/Expectations BUILDING STRONG® Hydropower Water Supply Environmental Stewardship USACE Navigation Water Management Flood Damage Reduction Recreation BUILDING STRONG® TDEC EPA Cumberland SEPA TVA River Compact Environmental Organizations Hydropower Water USFWS Private Supply Utilities Environmental Boaters Stewardship Towing Industry USACE KDFWR Navigation Water Emergency Management Management TVA TVA KDFWR Flood Damage Public Reduction NWS TWRA Recreation Recreation Recreation Interests FEMA Industry BUILDING STRONG® Water Management Program BUILDING STRONG® Water Management Program . Water Quality ► Data Collection • 7 real-time water quality monitors • 4 real-time temperature • 62 stream sampling sites • 95 reservoir sampling sites ► Water Quality Modeling • Project specific CE-QUAL-W2 models • System water quality modeling ► Water Quality Restoration • Dissolved oxygen • Minimum flow BUILDING STRONG® Water Management Program Water Control Program . Data Collection Program • Project data from 10 multi- purpose projects • 75 rainfall sites • 45 river stage sites . Hydrology, Hydraulic, and Reservoir Simulation Modeling . Reservoir System Operations • Daily analysis of reservoir conditions • Balance operating objectives • Prepare 8-day forecast BUILDING STRONG® Water Management Team . Nashville District Water Management ► Multidisciplinary staff – engineers & scientists ► Perform complete system analysis every day . Nashville District Hydropower Operators ► 24/7 operational support . Great Lakes & Ohio River Water Management ► Ohio/Mississippi flood control operations ► Program oversight . Federal Partners ► Tennessee Valley Authority (TVA) ► National Weather Service ► U. S. Geological Survey BUILDING STRONG® Water Management Center BUILDING STRONG® Flood Operations BUILDING STRONG® Flood Operations National Weather Service 1 NWS generates observed radar rainfall Nashville USACE Water Management Nashville WM runs hydrology models to 2 forecast reservoir releases National Weather Service NWS uses forecast reservoir releases 3 and rainfall to predict flood stages Public BUILDING STRONG® Wolf Creek Inflow & Discharge (2011) 150,000150,000 730 Discharge (cfs) (cfs) Inflow (cfs) (cfs) 725 Headwater (ft) 125,000125,000 720 715 100,000100,000 710 705 75,00075,000 700 Flow (cfs) Flow (cfs) 695 Headwater (ft) 50,00050,000 690 25,00025,000 685 680 00 675 2/12/1 2/82/8 2/152/15 2/222/22 3/13/1 3/83/8 3/153/15 3/223/22 3/293/29 4/54/5 4/124/12 4/194/19 4/264/26 5/35/3 5/105/10 BUILDING STRONG® Cumberland River Stage at Nashville (2011) Observed vs Natural River Stage for Nashville 45 40 35 30 25 Nashville Stage (ft) Stage Nashville 20 15 Observed with Projects 10 Natural River Conditions Flood Stage 5 2/1 2/8 2/15 2/22 3/1 3/8 3/15 3/22 3/29 4/5 4/12 4/19 4/26 5/3 5/10 BUILDING STRONG® 2013 Wolf Creek Dam Inflow & Discharge 120,000 Discharge Inflow 100,000 80,000 60,000 Flow (cfs) 40,000 20,000 0 1/1 1/16 1/31 2/15 3/2 3/17 4/1 4/16 5/1 5/16 6/1 6/16 7/1 7/16 BUILDING STRONG® Cumberland River Stage at Nashville Observed vs Natural Stage for Nashville (2013) 45 40 35 30 25 20 Nashville Stage (ft) 15 Observed with Projects 10 Natural River Conditions Flood Stage Low Water Navigation Impacts 5 1/1 1/16 1/31 2/15 3/2 3/17 4/1 4/16 5/1 5/16 6/1 6/16 7/1 7/16 BUILDING STRONG® Protecting the Lower Ohio and Mississippi Rivers BUILDING STRONG® Protecting the Lower Ohio and Mississippi Rivers Smithland Lock Lock 53 Lock 52 Paducah Canal Cairo Birds Point- New Madrid Floodway BUILDING STRONG® Kentucky-Barkley Canal BUILDING STRONG® Kentucky-Barkley Flood Operations National Weather NWS forecasts flooding on the lower 1 Service Ohio & upper Mississippi Rivers Tennessee Valley Authority & Nashville WM TVA & Nashville WM forecast inflows and 2 reservoir stages on Kentucky & Barkley Lakes Lakes & Rivers Division Headquarters LRD coordinates Kentucky & Barkley releases 3 to reduce flooding on the Ohio & Mississippi Kentucky & Barkley Operators BUILDING STRONG® Operation Watershed Operation Watershed - Wolf Creek Dam 730 Observed 4/26/2011 – 5/4/2011 Without Reductions 725 Top of Hydropower Pool Rainfall & Project Operations 720 715 710 Cumberland River Basin Elevation (ft) 705 700 Barkley Lock & Dam 695 4/12 4/22 5/2 5/12 5/22 6/1 Cordell Hull Lock & Dam Wolf Creek Dam Cheatham Lock & Dam Old Hickory Lock & Dam Operation Watershed - Dale Hollow Dam 664 Top of Flood Control Pool 662 Observed Without Reductions Storage conserved in 660 Barkley and Kentucky 658 4.65 feet 656 Dale Hollow Dam Elevation (ft) 654 Dale Hollow – 0.51’ 652 J. Percy Priest – 0.65’ Top of Hydropower Pool 650 4/12 4/22 5/2 5/12 5/22 6/1 Center Hill – 0.95’ Operation Watershed - Center Hill Dam 660 Observed Wolf Creek – 2.54’ Without Reductions J. Percy Priest Dam 655 650 Top of Hydropower Pool Operation Watershed - J. Percy Priest Dam 506 645 Top of Flood Control Pool 504 Observed Center Hill Dam 640 Without Reductions Elevation (ft) 502 635 500 498 630 496 Elevation (ft) 625 4/12 4/22 5/2 5/12 5/22 6/1 Storage at Peak Elevation 494 492 490 Available 488 4/12 4/22 5/2 5/12 5/22 6/1 Peak BUILDING STRONG® Pie area scaled to storage capacity Water Stored After February 24, 2011 Headwater Headwater Water Stored Project (02/24/2011) Crest (acre-feet) Wolf Creek1 681.12 725.96 1,992,000 Dale Hollow 643.75 660.16 459,000 Center Hill1 625.70 658.15 576,000 J. Percy Priest 483.75 501.65 280,000 Total 3,307,0002 1 Wolf Creek and Center Hill Dams have been classified as DSAC 1 dams and are under pool restrictions to assure the stability of the dams. 2 This volume of water is roughly equivalent to 1.08 quadrillion gallons of water BUILDING STRONG or if stacked on a football field it would be 3.2 million feet (606 miles) high. ® Protecting the Lower Ohio and Mississippi Rivers Smithland Lock Lock 53 Lock 52 Paducah Canal Cairo May 2011 Flood Stage Reduction at Cairo Birds Point- New . 2-ft (0.62-m) due to Madrid Floodway Cumberland River Projects .0.8-ft (0.24-m) due to Tennessee River Projects .3.8-ft (1.2-m) for all LRD Storage Projects BUILDING STRONG® Summary BUILDING STRONG® Cumberland River System Water Management . Requires coordinated operation of a complex system to fulfill a wide range of often competing purposes and benefits .
Recommended publications
  • Construction of Tremie Concrete Cutoff Wall, Wolf Creek Dam, Kentucky
    c / y (y ¥ f t D n a a n in_r uir D 0!ID§Ii I <__ -j M IS C E L L A N E O U S PAPER SL-80-10 CONSTRUCTION OF TREMIE CONCRETE CUTOFF WALL, WOLF CREEK DAM, KENTUCKY by Terence C. Holland, Joseph R. Turner Structures Laboratory U. S. Army Engineer Waterways Experiment Station P. O. Box 631, Vicksburg, Miss. 39180 September 1980 Final Report Approved For Public Release; Distribution Unlimited Prepared for Office, Chief of Engineers, U. S. Army TA Washington, D. C. 20314 7 .W34m Under C W IS 3 I5 5 3 SL-80-10 1980 », Ar ' \ 8 ;v ;>"* % * OCT 2 7 1980 Water & : as Service Denver, Colorado Destroy this report when no longer needed. Do not return it to the originator. The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents. The contents of this report are not to be used for advertising, publication, or promotional purposes. Citation of trade names does not constitute an official endorsement or approval of the use of such commercial products. SURÈAU OF RECLAMATrON DENVER u *W ff \& A /P 92059356 \y£ ,\s> , *c£p £ > b <0 Unclassified V * ie05*l35Ï.V SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered) O' READ INSTRUCTIONS REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM 1. REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER Miscellaneous Paper SL-80-10 ' 4. T I T L E (and Subtitle) 5. TYPE OF REPORT & PERIOD COVERED V CONSTRUCTION OF TREMIE CONCRETE CUTOFF WALL, Final report WOLF CREEK DAM, KENTUCKY 6.
    [Show full text]
  • Russell County, Kentucky
    THE POST OFFICES OF RUSSELL COUNTY, KENTUCKY The 254 square mile Russell is a well-watered county on a moderate to well dissected plateau in the eastern end of South Central Kentucky. The eighty first of the state's counties was established on December 14, 1825 from sections of Adair, Wayne, and Cumberland Counties and named for Col. William Russell. Russell (1758-1825), a veteran of the Revolu­ tionary War, the Indian campaigns of the 1790s, and the Battle of Tippe­ canoe (1811), succeeded William Henry Harrison as the commander of American forces on the frontier, and later served in the Kentucky legis­ lature. The county's original 270 square mile area was increased by ten from Pulaski County in 1840, but several small losses brought it to its present size by 1876. The southern and eastern sections of the county are drained by the Cumberland River and its main branches (Wolf and its Caney Fork, McFarland, and Alligator, the "Roaring" Lily, Greasy, Indian and Little Indian, Blackfish, and Miller Creeks), while the north is drained by Russell and Goose Creeks in the Green River system. Until the Second World War the county's economy was primarily agri­ cultural, limited mostly to the level and reasonably fertile bottoms of its main streams. Early industries included an iron furnace (1830s), several antebellum cotton and woolen mills in the Cumberland valley, relatively unprofitable oil drilling from the opening, in 1865, of the Gabbart Wells, mostly in the Creelsboro area and near the Cumberland County line, and some open quarry limestone mining for road construction.
    [Show full text]
  • Wolf Creek Dam: a Case Study of Foundation Remediation for Dams Built on Karst Foundations
    Scholars' Mine Masters Theses Student Theses and Dissertations Summer 2013 Wolf Creek Dam: a case study of foundation remediation for dams built on Karst foundations Kyla Justene Erich Follow this and additional works at: https://scholarsmine.mst.edu/masters_theses Part of the Geological Engineering Commons Department: Recommended Citation Erich, Kyla Justene, "Wolf Creek Dam: a case study of foundation remediation for dams built on Karst foundations" (2013). Masters Theses. 5387. https://scholarsmine.mst.edu/masters_theses/5387 This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the permission of the copyright holder. For more information, please contact [email protected]. WOLF CREEK DAM: A CASE STUDY OF FOUNDATION REMEDIATION FOR DAMS BUILT ON KARST FOUNDATIONS by KYLA JUSTENE ERICH A THESIS Presented to the Faculty of the Graduate School of the MISSOURI UNIVERSITY OF SCIENCE AND TECHNOLOGY In Partial Fulfillment of the Requirements for the Degree MASTER OF SCIENCE IN GEOLOGICAL ENGINEERING 2013 Approved by J. David Rogers, Advisor Norbert Maerz James Vandike ii iii ABSTRACT Wolf Creek Dam was completed in 1952 as a 5,736-foot long and 258-foot high combination embankment-concrete gravity dam. Its storage capacity of 6 million acre feet makes it the ninth largest reservoir in the nation. The dam was built on a heavily karstified limestone foundation and began exhibiting signs of excess foundation seepage in late 1967. This led to extensive corrective work in the 1970s beneath the earthen core of the embankment to reduce underseepage.
    [Show full text]
  • Draft Environmental Assessment for Lake Cumberland Marina Expansion
    Environmental Assessment U.S. Army Corps of Engineers Lake Cumberland Marina, Proposed Expansion Lake Cumberland, Kentucky m US Army Corps of Engineers ® Nashville District DRAFT ENVIRONMENTAL ASSESSMENT Proposed Expansion of Lake Cumberland Marina Wolf Creek Dam and Lake Cumberland Project Russell County, Kentucky April 13, 2020 For Further Information Contact: Travis Wiley, Biologist U.S Army Corps of Engineers, Nashville District Project Planning Branch i Environmental Assessment U.S. Army Corps of Engineers Lake Cumberland Marina, Proposed Expansion Lake Cumberland, Kentucky TABLE OF CONTENTS 1 PURPOSE AND NEED FOR ACTION ..................................................................... 1 1.1 Authorization ...................................................................................................... 1 1.2 Background ........................................................................................................ 1 1.3 Current Proposal ................................................................................................ 7 1.4 Purpose and Need ............................................................................................. 8 1.5 Issues and Opportunities ................................................................................... 9 2 ALTERNATIVES CONSIDERED ............................................................................. 9 2.1 Alternative 1 – No Action Alternative .................................................................. 9 2.2 Alternative 2 – Applicant’s Preferred
    [Show full text]
  • D6 Internal Erosion Risks for Embankments and Foundations
    TABLE OF CONTENTS Page D-6 Internal Erosion Risks for Embankments and Foundations ................. D-6-1 D-6.1 Key Concepts ....................................................................... D-6-1 D-6.2 Historical Background ......................................................... D-6-1 D-6.3 Physical Location of Internal Erosion Categories ............... D-6-2 D-6.4 Processes of Internal Erosion ............................................... D-6-4 D-6.4.1 Scour .................................................................. D-6-5 D-6.4.2 Backward Erosion Piping .................................. D-6-7 D-6.4.3 Internal Migration .............................................. D-6-9 D-6.4.4 Internal Instability – Suffusion and Suffosion .................................................... D-6-10 D-6.5 Conceptual Framework for the Internal Erosion Process ........................................................................... D-6-11 D-6.5.1 Internal Erosion Process .................................. D-6-11 D-6.5.2 Event Trees ...................................................... D-6-11 D-6.5.3 Physical Locations of Failure Paths and Processes Combined .................................. D-6-13 D-6.6 Loading Considerations ..................................................... D-6-19 D-6.6.1 Dams Operated for Storage .............................. D-6-19 D-6.6.2 Dams and Levees Operated for Flood Risk Management ...................................... D-6-20 D-6.7 Initiation – Erosion Starts .................................................
    [Show full text]
  • 2011 066.Pdf
    INTERNATIONAL SOCIETY FOR SOIL MECHANICS AND GEOTECHNICAL ENGINEERING This paper was downloaded from the Online Library of the International Society for Soil Mechanics and Geotechnical Engineering (ISSMGE). The library is available here: https://www.issmge.org/publications/online-library This is an open-access database that archives thousands of papers published under the Auspices of the ISSMGE and maintained by the Innovation and Development Committee of ISSMGE. Geotechnical Aspects of Underground Construction in Soft Ground – Viggiani (ed) © 2012 Taylor & Francis Group, London, ISBN 978-0-415-68367-8 Recent uses of directional drilling technology in the construction field D. Vanni & M. Siepi TREVI SpA, Cesena, Italy M. Croce Agenzia Governativa per la Bonifica di Discariche Pubbliche Manfredonia, Italy F. Melli & V. Specchio SOGESID SpA, Italy ABSTRACT: The increasing complexity of the modern projects requires a never ending process of innovation in the construction technologies. In fact, the constant need to improve the transportation networks in especially congested urban areas, entails the need of accurate technologies to cope with the increasing depth of excavation for underground structures. The improvement of the efficiency becomes therefore essential, to save time and money. As a result, the need to control the excavation process has become a must in most of the technologies involved in these projects. In recent years the use of the hydromill turned out to be fairly ordinary for the excavation of the deep shafts, where the compliance of tight tolerances is of paramount importance. The same tight tolerance is now required also for sub- horizontal drilling, when special technologies are used for drilling long holes.
    [Show full text]
  • Laboratory Modeling of Erosion Potential in Dam Foundations Due to Foundation Voids
    Utah State University DigitalCommons@USU All Graduate Theses and Dissertations Graduate Studies 5-2014 Laboratory Modeling of Erosion Potential in Dam Foundations Due to Foundation Voids Tyler K. Coy Utah State University Follow this and additional works at: https://digitalcommons.usu.edu/etd Part of the Civil and Environmental Engineering Commons Recommended Citation Coy, Tyler K., "Laboratory Modeling of Erosion Potential in Dam Foundations Due to Foundation Voids" (2014). All Graduate Theses and Dissertations. 3899. https://digitalcommons.usu.edu/etd/3899 This Thesis is brought to you for free and open access by the Graduate Studies at DigitalCommons@USU. It has been accepted for inclusion in All Graduate Theses and Dissertations by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. LABORATORY MODELING OF EROSION POTENTIAL IN DAM FOUNDATIONS DUE TO FOUNDATION VOIDS By Tyler K. Coy A thesis submitted in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE in Civil and Environmental Engineering Approved: __________________________ __________________________ Dr. John D. Rice Dr. James A. Bay Major Professor Committee Member __________________________ __________________________ Dr. Gilberto E. Urroz Dr. Mark R. McLellan Committee Member Vice President for Research and Dean of the School of Graduate Studies UTAH STATE UNIVERSITY Logan, Utah 2014 ii Copyright © Tyler K. Coy 2014 All Rights Reserved iii ABSTRACT Laboratory Modeling of Erosion Potential in Dam Foundations Due to Foundation Voids by Tyler K. Coy, Master of Science Utah State University, 2014 Major Professor: Dr. John D. Rice Department: Civil and Environmental Engineering Many earthen dams and levees throughout the United States and the world have been built on top of karst formations or jointed bedrock, leading to problems with internal erosion.
    [Show full text]
  • Wolf Creek Dam (Lake Cumberland) Reconnaissance–Level Evaluation of Dissolved Oxygen Improvement Study
    Wolf Creek Dam (Lake Cumberland) Reconnaissance–Level Evaluation of Dissolved Oxygen Improvement Study Section 1. Introduction. The purpose of this evaluation is to identify, compare and assess the costs of various technologies available to improve dissolved oxygen (DO) levels in hydropower discharges from Wolf Creek Dam (WOL). In 2017, the Southeastern Power Administration (SEPA) and other hydropower stakeholders requested that the Corps consider installation of technologies, such as oxygen diffusers, to prevent hydropower revenues lost through water releases via sluice and orifice gates during seasonal periods of poor water quality. Wolf Creek Dam is located at Cumberland River mile 460.9 in south central Kentucky with a vicinity map shown in Figure 1. The dam is 258 feet (ft) high and consists of a combination earth fill and concrete structure totaling 5,736 feet long. Wolf Creek powerhouse has six 45- megawatt (MW) turbines, for a total (non-overload) capacity of 270-MW. US Highway 127 currently crosses the crest of the dam but is expected to be relocated in the near future. Lake Cumberland, created by the dam, impounds 6,089,000 acre-feet (ac-ft) at the top of the Flood Control Pool elevation of 760 ft (National Geodetic Vertical Datum of 1929). All project uses except flood control, are drawn from the power pool located between elevations 673 ft and 723 ft. Under normal operations, summer pool elevation of 723 ft and is targeted in mid-May and held until mid-June. The lake is then gradually drawn down to reach the targeted winter pool elevation of 695 ft by January.
    [Show full text]
  • APPENDIX B Resource Agency Coordination
    APPENDIX B Resource Agency Coordination 2001, June 26 U.S. Army Corps of Engineers, Meeting Minutes 2002, September 24 Water Quality Branch, KY Natural Resources and Environmental Protection Cabinet, Correspondence 2002, September 24 Groundwater Branch, KY Department for Environmental Protection, Correspondence 2002, September 26 KY Department of Fish and Wildlife Resources, Correspondence 2002, September 27 Groundwater Branch, KY Department for Environmental Protection, Correspondence 2002, October 8 U.S. Fish and Wildlife Service, Correspondence 2002, October 10 KY State Nature Preserves Commission, Correspondence 2003, April 23 SHPO Meeting Minutes 2004, August 5 U.S. Army Corps of Engineers, Meeting Minutes 2004, October 21 U.S. Army Corps of Engineers, Correspondence 2007, February 22 U.S. Fish and Wildlife Service, Species List 2007, June 22 Groundwater Branch, KY Department for Environmental Protection, Correspondence 2007, June 25 KY Division of Forestry, E-Correspondence 2007, June 27 KY State Nature Preserves Commission, Correspondence 2007, July 2 KY State Nature Preserves Commission, Correspondence 2007, August 2 KY Department of Fish and Wildlife Resources, Correspondence 2007, September 14 Natural Resources Conservation Service, Correspondence re Form AD-1006 2007, December 20 U.S. Fish and Wildlife Service, Wolf Creek National Fish Hatchery Correspondence 2008, January 14 Natural Resources Conservation Service, Correspondence and Form AD-1006 Completed Form AD-1006 2008, January 17 KY Division of Water, KY Department for Environmental Protection, E-Correspondence Engineering Architecture Planning Landscape Architecture Environmental Science Land Acquisition PRESNELL ASSOCIATES INC MEETING MINUTES Project: US 127 Place: Nashville, Tennessee Date: June 26, 2001 Prepared by: Presnell Associates, Inc. In Attendance: US Army Corps of Engineers, Real Estate [email protected] Joe Pendergradt Division IL [email protected].
    [Show full text]
  • Development of the Cumberland River Basin by the US Army Corps Of
    . DEVELOPMENT OF THE. CUMBEFlAND RIVER . BASIN • BY THE U. S. &~Vff. CORPS OF ENGINEERS . NASHVILLE D~TRICT HISTORY The past; present and future of the Middle Tennessee and Southern Ken­ tucky Region is indelibly associated with the Cumberland River. · In 1714 one M. Charleville, a French trader from the colony at ·New Orleans, ca.me among the Shawnees to trade. He established his store upon a mound on the west side of the Cumberland near French Lick Creek and unknowingly laid at the same time the foundation upon which the City of Nashville grew to become a center of southern industry, commerce and culture. In 1748 the river received its name from Doctor Thomas Walker of Virginia who, on an explar~tory tour of the western waters, fou.nd a beauti­ ful mountain stream which he named "Cumberland11 in honor of the Duke of Cumbe:::'land, then Prime Minister of England. In r769 the "long hunters", MEi.nsco, Uriah Stone, John Baker, Thomas Gordon, Humphrey Hogan, Cash Brooks and others built two boats a.n.d two trapping canoes, loaded them. with the results of their hunting and descended the Cumberland River - the first . navigation and the, first .cot:mlerce probably ever carried on the stree.m by Anglo-Americans. The .later accounts of these hunters influenced Captain James Robertson to lead a hardy band ot settlers from the Watauga Settle­ ment in 1779 to establish a new home on the blu:f'fs of the Cumberland, where he was joined in 1780 by :Colonel John Donelson who commanded an intrepid group on the incredible voyage of the boat ''Adventure" down the Tennessee, up the Ohio and the Cumberland to :Nashville • From that early beginning, some 200 yea.rs ago, the Cumberland River has become increasingl,y more Un.portant to community life in this area.
    [Show full text]
  • Remedial Cutoff Walls for Dams: Great Leaps and Wolf Creek
    Remedial Cutoff Walls for Dams: Great Leaps and Wolf Creek Donald A. Bruce1 1 Geosystems, L.P., P.O. Box 237, Venetia, PA 15367; e-mail: [email protected] “The mind is not a vessel to be filled, but a fire to be ignited.” (Plutarch c 120 AD) ABSTRACT The theory is developed that advances in specialty geotechnical construction techniques are not gradual and progressive. Rather they take the form of “Great Leaps” triggered by specific project challenges. To qualify as a “Great Leap,” six successive criteria must be satisfied. The theory is tested by reference to the deep remedial cutoff recently completed at Wolf Creek Dam, KY. The theory can also be tested with reference to other techniques, such as drilling and grouting, Deep Mixing, micropiling, and anchoring. Similar validations will be explored in other papers. 1. DEVELOPMENT OF THE BASIC THEORY Between 1858 and 1865, the great Scottish historian Thomas Carlyle wrote a 6-volume opus on the life and times of King Frederick the Great of Prussia. This work had followed his 1841 masterpiece “On Heroes, Hero-Worship and the Heroic in History.” In these publications, Carlyle developed what we now call the “Great Man” theory of history, which postulates that “the history of the world is but a biography of great men.” He evaluated the “hero” as divinity (in the form of pagan myths), as prophet (Mohammed), as poet (Dante, Shakespeare), as pastor (Martin Luther, John Knox), as man of letters (Samuel Johnson, Robbie Burns), and as king (Oliver Cromwell and Napoleon Bonaparte – paradoxically, kings in all but name).
    [Show full text]
  • Draft Dale Hollow Lake Master Plan
    US Army Corps of Engineers Master Plan Revision Nashville District Dale Hollow Lake Dale Hollow Lake Master Plan Revision DRAFT January 2019 Draft Version 1 US Army Corps of Engineers Master Plan Revision Nashville District Dale Hollow Lake U.S Army Corps of Engineers, Dale Hollow Lake Master Plan Revision Commonly Used Acronyms and Abbreviations ADD – Area Development District of Engineers ARPA – Archeological Resources Protection LRN – Nashville District Act LTC – Lieutenant Colonel cfs – Cubic Feet per Second MFR – Memorandum for Record COL – Colonel MOU – Memorandum of Understanding CRM – Cumberland River Mile MP – Master Plan CW – Civil Works MR – Multiple Resource Management Lands CWA – Clean Water Act, 1977 MRLC – Multi-Resolution Land Characteristics DA – Department of Army Consortium DE – District Engineer/ Division Engineer MSD – Marine Sanitation Device DM – Design Manual MSL/msl – Mean Sea Level (based on the DO – Dissolved Oxygen National Geodetic Vertical Datum of 1929) DoD – Department of Defense MW – Megawatt DQC – District Quality Control NAGPRA – Native American Graves and dsf- Day Second Feet Repatriation Act EA – Environmental Assessment NEPA – National Environmental Policy Act EAB – Emerald Ash Borer NHPA – National Historic Preservation Act EC – Engineering Circular NRHP – National Register of Historic Places EDW – Enterprise Data Warehouse NRRS – National Recreation Reservation EIS – Environmental Impact Statement System EM – Engineering Memorandum NTE – Not to Exceed EO – Executive Order NVCS – National Vegetation
    [Show full text]