Algebraic Geometry

Total Page:16

File Type:pdf, Size:1020Kb

Algebraic Geometry Algebraic Geometry J.S. Milne Taiaroa Publishing Erehwon Version 5.00 February 20, 2005 Abstract These notes are an introduction to the theory of algebraic varieties. In contrast to most such accounts they study abstract algebraic varieties, and not just subvarieties of affine and projective space. This approach leads more naturally into scheme theory. v2.01 (August 24, 1996). First version on the web. v3.01 (June 13, 1998). v4.00 (October 30, 2003). Fixed errors; many minor revisions; added exercises; added two sections; 206 pages. v5.00 (February 20, 2005). Heavily revised; most numbering changed; 227 pages. Please send comments and lists of corrections to me at [email protected] Available at http://www.jmilne.org/math/ Copyright c 1996, 1998, 2003, 2005. J.S. Milne. This work is licensed under a Creative Commons Licence (Attribution-NonCommercial-NoDerivs 2.0) http://creativecommons.org/licenses/by-nc-nd/2.0/ Contents Introduction 3 1 Preliminaries 4 Algebras 4; Ideals 4; Noetherian rings 6; Unique factorization 8; Polynomial rings 10; Integrality 11; Direct limits (summary) 13; Rings of fractions 14; Tensor Products 17; Categories and functors 20; Algorithms for polynomials 22; Exercises 28 2 Algebraic Sets 29 Definition of an algebraic set 29; The Hilbert basis theorem 30; The Zariski topology 31; The Hilbert Nullstellensatz 31; The correspondence between algebraic sets and ideals 32; Finding the radical of an ideal 35; The Zariski topology on an algebraic set 36; The coor- dinate ring of an algebraic set 36; Irreducible algebraic sets 37; Dimension 40; Exercises 42 3 Affine Algebraic Varieties 43 Ringed spaces 43; The ringed space structure on an algebraic set 44; Morphisms of ringed spaces 47; Affine algebraic varieties 48; The category of affine algebraic varieties 49; Explicit description of morphisms of affine varieties 50; Subvarieties 53; Properties of the regular map defined by specm(α) 54; Affine space without coordinates 54; Exercises 56 4 Algebraic Varieties 57 Algebraic prevarieties 57; Regular maps 58; Algebraic varieties 59; Maps from varieties to affine varieties 60; Subvarieties 60; Prevarieties obtained by patching 61; Products of vari- eties 62; The separation axiom revisited 67; Fibred products 69; Dimension 70; Birational equivalence 71; Dominating maps 72; Algebraic varieties as a functors 72; Exercises 74 5 Local Study 75 Tangent spaces to plane curves 75; Tangent cones to plane curves 76; The local ring at a m point on a curve 77; Tangent spaces of subvarieties of A 78; The differential of a regular map 79; Etale maps 81; Intrinsic definition of the tangent space 83; Nonsingular points 85; Nonsingularity and regularity 87; Nonsingularity and normality 88; Etale neighbourhoods 88; Smooth maps 90; Dual numbers and derivations 91; Tangent cones 94; Exercises 95 6 Projective Varieties 97 n n n Algebraic subsets of P 97; The Zariski topology on P 100; Closed subsets of A and n n P 100; The hyperplane at infinity 101; P is an algebraic variety 102; The homogeneous n coordinate ring of a subvariety of P 103; Regular functions on a projective variety 104; Morphisms from projective varieties 105; Examples of regular maps of projective vari- eties 107; Projective space without coordinates 111; Grassmann varieties 111; Bezout’s theorem 115; Hilbert polynomials (sketch) 116; Exercises 117 7 Complete varieties 118 Definition and basic properties 118; Projective varieties are complete 119; Elimination theory 121; The rigidity theorem 123; Theorems of Chow 124; Nagata’s Embedding Prob- lem 124; Exercises 125 8 Finite Maps 126 Definition and basic properties 126; Noether Normalization Theorem 130; Zariski’s main theorem 131; The base change of a finite map 133; Proper maps 133; Exercises 134 9 Dimension Theory 135 Affine varieties 135; Projective varieties 141 10 Regular Maps and Their Fibres 144 Constructible sets 144; Orbits of group actions 147; The fibres of morphisms 148; The fibres of finite maps 150; Flat maps 152; Lines on surfaces 153; Stein factorization 158; Exercises 158 11 Algebraic spaces; geometry over an arbitrary field 160 Preliminaries 160; Affine algebraic spaces 163; Affine algebraic varieties. 164; Algebraic spaces; algebraic varieties. 165; Local study 169; Projective varieties. 171; Complete varieties. 171; Normal varieties; Finite maps. 171; Dimension theory 171; Regular maps and their fibres 172; Algebraic groups 172; Exercises 173 12 Divisors and Intersection Theory 174 Divisors 174; Intersection theory. 175; Exercises 179 13 Coherent Sheaves; Invertible Sheaves 180 Coherent sheaves 180; Invertible sheaves. 182; Invertible sheaves and divisors. 183; Direct images and inverse images of coherent sheaves. 184; Principal bundles 185 14 Differentials (Outline) 186 15 Algebraic Varieties over the Complex Numbers (Outline) 188 16 Descent Theory 191 Models 191; Fixed fields 191; Descending subspaces of vector spaces 192; Descending subvarieties and morphisms 193; Galois descent of vector spaces 194; Descent data 196; Galois descent of varieties 198; Weil restriction 199; Generic fibres 200; Rigid descent 200; Weil’s descent theorems 202; Restatement in terms of group actions 204; Faithfully flat descent 206 17 Lefschetz Pencils (Outline) 209 Definition 209 18 Algebraic Schemes 211 A Solutions to the exercises 212 B Annotated Bibliography 219 Index 221 1 Introduction Just as the starting point of linear algebra is the study of the solutions of systems of linear equations, n X aijXj = bi, i = 1, . , m, (1) j=1 the starting point for algebraic geometry is the study of the solutions of systems of polyno- mial equations, fi(X1,...,Xn) = 0, i = 1, . , m, fi ∈ k[X1,...,Xn]. Note immediately one difference between linear equations and polynomial equations: the- orems for linear equations don’t depend on which field k you are working over,1 but those for polynomial equations depend on whether or not k is algebraically closed and (to a lesser extent) whether k has characteristic zero. A better description of algebraic geometry is that it is the study of polynomial functions and the spaces on which they are defined (algebraic varieties), just as topology is the study of continuous functions and the spaces on which they are defined (topological spaces), differential topology the study of infinitely differentiable functions and the spaces on which they are defined (differentiable manifolds), and so on: algebraic geometry regular (polynomial) functions algebraic varieties topology continuous functions topological spaces differential topology differentiable functions differentiable manifolds complex analysis analytic (power series) functions complex manifolds. The approach adopted in this course makes plain the similarities between these different areas of mathematics. Of course, the polynomial functions form a much less rich class than the others, but by restricting our study to polynomials we are able to do calculus over any field: we simply define d X X a Xi = ia Xi−1. dX i i Moreover, calculations (on a computer) with polynomials are easier than with more general functions. Consider a nonzero differentiable function f(x, y, z). In calculus, we learn that the equation f(x, y, z) = C (2) 3 defines a surface S in R , and that the tangent plane to S at a point P = (a, b, c) has equation2 ∂f ∂f ∂f (x − a) + (y − b) + (z − c) = 0. (3) ∂x P ∂y P ∂z P 1 For example, suppose that the system (1) has coefficients aij ∈ k and that K is a field containing k. Then (1) has a solution in kn if and only if it has a solution in Kn, and the dimension of the space of solutions is the same for both fields. (Exercise!) 2Think of S as a level surface for the function f, and note that the equation is that of a plane through (a, b, c) perpendicular to the gradient vector (Of)P of f at P . 2 The inverse function theorem says that a differentiable map α: S → S0 of surfaces is a local isomorphism at a point P ∈ S if it maps the tangent plane at P isomorphically onto the tangent plane at P 0 = α(P ). Consider a nonzero polynomial f(x, y, z) with coefficients in a field k. In this course, we shall learn that the equation (2) defines a surface in k3, and we shall use the equation (3) to define the tangent space at a point P on the surface. However, and this is one of the essential differences between algebraic geometry and the other fields, the inverse function theorem doesn’t hold in algebraic geometry. One other essential difference is that 1/X is not the derivative of any rational function of X, and nor is Xnp−1 in characteristic p 6= 0 — these functions can not be integrated in the ring of polynomial functions. The first ten sections of the notes form a basic course on algebraic geometry. In these sections we generally assume that the ground field is algebraically closed in order to be able to concentrate on the geometry. The remaining sections treat more advanced topics, and are largely independent of one another except that Section 11 should be read first. The approach to algebraic geometry taken in these notes In differential geometry it is important to define differentiable manifolds abstractly, i.e., not as submanifolds of some Euclidean space. For example, it is difficult even to make sense of a statement such as “the Gauss curvature of a surface is intrinsic to the surface but the principal curvatures are not” without the abstract notion of a surface. Until the mid 1940s, algebraic geometry was concerned only with algebraic subvarieties of affine or projective space over algebraically closed fields. Then, in order to give substance to his proof of the congruence Riemann hypothesis for curves an abelian varieties, Weil was forced to develop a theory of algebraic geometry for “abstract” algebraic varieties over arbitrary fields,3 but his “foundations” are unsatisfactory in two major respects: — Lacking a topology, his method of patching together affine varieties to form abstract varieties is clumsy.
Recommended publications
  • EXERCISES 1 Exercise 1.1. Let X = (|X|,O X) Be a Scheme and I Is A
    EXERCISES 1 Exercise 1.1. Let X = (|X|, OX ) be a scheme and I is a quasi-coherent OX -module. Show that the ringed space X[I] := (|X|, OX [I]) is also a scheme. Exercise 1.2. Let C be a category and h : C → Func(C◦, Set) the Yoneda embedding. Show ∼ that for any arrows X → Y and Z → Y in C, there is a natural isomorphism hX×Z Y → hX ×hY hZ . Exercise 1.3. Let A → R be a ring homomorphism. Verify that under the identification 2 of DerA(R, ΩR/A) with the sections of the diagonal map R ⊗A R/J → R given in lecture, 1 the universal derivation d : R → ΩR/A corresponds to the section given by sending x ∈ R to 1 ⊗ x. Exercise 1.4. Let AffZ be the category of affine schemes. The Yoneda functor h gives rise to a related functor hAff : Sch → Func(Aff◦ , Set) Z Z which only considers the functor of points for affine schemes. Is this functor still fully faithful? Cultural note: since Aff◦ is equivalent to the category of rings ( -algebras!), we can also Z Z view h as defining a (covariant) functor on the category of rings. When X is an affine scheme Aff of the form Z[{xi}]/({fj}], the value of hX on A is just the set of solutions of the fj with coordinates in A. Exercise 1.5. Let R be a ring and H : ModR → Set a functor which commutes with finite products. Verify the claim in lecture that H(I) has an R-module structure.
    [Show full text]
  • Arxiv:1610.06871V4 [Math.AT] 13 May 2019 Se[A H.7506 N SG E.B.6.2.7]): Rem
    THE MOREL–VOEVODSKY LOCALIZATION THEOREM IN SPECTRAL ALGEBRAIC GEOMETRY ADEEL A. KHAN Abstract. We prove an analogue of the Morel–Voevodsky localization theorem over spectral algebraic spaces. As a corollary we deduce a “derived nilpotent invariance” result which, informally speaking, says that A1-homotopy invariance kills all higher homotopy groups of a connective commutative ring spectrum. 1. Introduction ´et Let R be a connective E∞-ring spectrum, and denote by CAlgR the ∞-category of ´etale E∞-algebras over R. The starting point for this paper is the following fundamental result of J. Lurie, which says that the small ´etale topos of R is equivalent to the small ´etale topos of π0(R) (see [HA, Thm. 7.5.0.6] and [SAG, Rem. B.6.2.7]): Theorem 1.0.1 (Lurie). For any connective E∞-ring R, let π0(R) denote its 0-truncation E ´et ´et (viewed as a discrete ∞-ring). Then restriction along the canonical functor CAlgR → CAlgπ0(R) ´et induces an equivalence from the ∞-category of ´etale sheaves of spaces CAlgπ0(R) → Spc to the ´et ∞-category of ´etale sheaves of spaces CAlgR → Spc. Theorem 1.0.1 can be viewed as a special case of the following result (see [SAG, Prop. 3.1.4.1]): ′ Theorem 1.0.2 (Lurie). Let R → R be a homomorphism of connective E∞-rings that is ´et ´et surjective on π0. Then restriction along the canonical functor CAlgR → CAlgR′ defines a fully ´et faithful embedding of the ∞-category of ´etale sheaves CAlgR′ → Spc into the ∞-category of ´etale ´et sheaves CAlgR → Spc.
    [Show full text]
  • Convergence Results for Projected Line-Search Methods on Varieties of Low-Rank Matrices Via Lojasiewicz Inequality∗
    SIAM J. OPTIM. c 2015 Society for Industrial and Applied Mathematics Vol. 25, No. 1, pp. 622–646 CONVERGENCE RESULTS FOR PROJECTED LINE-SEARCH METHODS ON VARIETIES OF LOW-RANK MATRICES VIA LOJASIEWICZ INEQUALITY∗ REINHOLD SCHNEIDER† AND ANDRE´ USCHMAJEW‡ Abstract. The aim of this paper is to derive convergence results for projected line-search meth- ods on the real-algebraic variety M≤k of real m×n matrices of rank at most k. Such methods extend Riemannian optimization methods, which are successfully used on the smooth manifold Mk of rank- k matrices, to its closure by taking steps along gradient-related directions in the tangent cone, and afterwards projecting back to M≤k. Considering such a method circumvents the difficulties which arise from the nonclosedness and the unbounded curvature of Mk. The pointwise convergence is obtained for real-analytic functions on the basis of aLojasiewicz inequality for the projection of the antigradient to the tangent cone. If the derived limit point lies on the smooth part of M≤k, i.e., in Mk, this boils down to more or less known results, but with the benefit that asymptotic convergence rate estimates (for specific step-sizes) can be obtained without an a priori curvature bound, simply from the fact that the limit lies on a smooth manifold. At the same time, one can give a convincing justification for assuming critical points to lie in Mk:ifX is a critical point of f on M≤k,then either X has rank k,or∇f(X)=0. Key words. convergence analysis, line-search methods, low-rank matrices, Riemannian opti- mization, steepest descent,Lojasiewicz gradient inequality, tangent cones AMS subject classifications.
    [Show full text]
  • Fundamental Algebraic Geometry
    http://dx.doi.org/10.1090/surv/123 hematical Surveys and onographs olume 123 Fundamental Algebraic Geometry Grothendieck's FGA Explained Barbara Fantechi Lothar Gottsche Luc lllusie Steven L. Kleiman Nitin Nitsure AngeloVistoli American Mathematical Society U^VDED^ EDITORIAL COMMITTEE Jerry L. Bona Peter S. Landweber Michael G. Eastwood Michael P. Loss J. T. Stafford, Chair 2000 Mathematics Subject Classification. Primary 14-01, 14C20, 13D10, 14D15, 14K30, 18F10, 18D30. For additional information and updates on this book, visit www.ams.org/bookpages/surv-123 Library of Congress Cataloging-in-Publication Data Fundamental algebraic geometry : Grothendieck's FGA explained / Barbara Fantechi p. cm. — (Mathematical surveys and monographs, ISSN 0076-5376 ; v. 123) Includes bibliographical references and index. ISBN 0-8218-3541-6 (pbk. : acid-free paper) ISBN 0-8218-4245-5 (soft cover : acid-free paper) 1. Geometry, Algebraic. 2. Grothendieck groups. 3. Grothendieck categories. I Barbara, 1966- II. Mathematical surveys and monographs ; no. 123. QA564.F86 2005 516.3'5—dc22 2005053614 Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy a chapter for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given. Republication, systematic copying, or multiple reproduction of any material in this publication is permitted only under license from the American Mathematical Society. Requests for such permission should be addressed to the Acquisitions Department, American Mathematical Society, 201 Charles Street, Providence, Rhode Island 02904-2294, USA.
    [Show full text]
  • Algebraic Stacks (Winter 2020/2021) Lecturer: Georg Oberdieck
    Algebraic Stacks (Winter 2020/2021) Lecturer: Georg Oberdieck Date: Wednesday 4-6, Friday 12-2. Oral Exam: February 19 and March 26, 2021. Exam requirement: You have to hand in solutions to at least half of all exercise problems to be admitted to the exam. Summary: The course is an introduction to the theory of algebraic stacks. We will discuss applications to the construction of moduli spaces. Prerequisites: Algebraic Geometry I and II (e.g. on the level of Hartshorne's book Chapter I and II plus some background on flat/etale morphisms). Some category theory (such as Vakil's Notes on Algebraic Geometry, Chapter 1). References: (1) Olsson, Algebraic Spaces and Stacks (2) Stacks Project (3) Vistoli, Notes on Grothendieck topologies, fibered categories and descent theory (available online) (4) Halpern-Leistner, The Moduli space, https://themoduli.space (5) Guide to the literature by Jarod Alper (6) Behrend, Introduction to algebraic stacks, lecture notes. The main reference of the coarse is Olsson and will be used throughout, in particular for many of the exercises. However, we will diverge in some details from Olsson's presentation, in particular on quasi-coherent sheaves on algebraic stacks where we follow the stacks project. The notes of Vistoli are also highly recommended for the first part which covers aspects of Grothendieck topologies, fibered categories and descent theory. In the second part we will use the notes of Halpern-Leistner. Exercises and student presentations: Friday's session will be used sometimes for informal discussion of the material covered in the problem sets. From time to time there will also be student presentations, see: http://www.math.uni-bonn.de/~georgo/stacks/presentations.pdf Schedule1 Oct 28: Motivation mostly.
    [Show full text]
  • On Tangent Cones in Wasserstein Space
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 145, Number 7, July 2017, Pages 3127–3136 http://dx.doi.org/10.1090/proc/13415 Article electronically published on December 8, 2016 ON TANGENT CONES IN WASSERSTEIN SPACE JOHN LOTT (Communicated by Guofang Wei) Abstract. If M is a smooth compact Riemannian manifold, let P (M)denote the Wasserstein space of probability measures on M.IfS is an embedded submanifold of M,andμ is an absolutely continuous measure on S,thenwe compute the tangent cone of P (M)atμ. 1. Introduction In optimal transport theory, a displacement interpolation is a one-parameter family of measures that represents the most efficient way of displacing mass between two given probability measures. Finding a displacement interpolation between two probability measures is the same as finding a minimizing geodesic in the space of probability measures, equipped with the Wasserstein metric W2 [9, Proposition 2.10]. For background on optimal transport and Wasserstein space, we refer to Villani’s book [14]. If M is a compact connected Riemannian manifold with nonnegative sectional curvature, then P (M) is a compact length space with nonnegative curvature in the sense of Alexandrov [9, Theorem A.8], [13, Proposition 2.10]. Hence one can define the tangent cone TμP (M)ofP (M)atameasureμ ∈ P (M). If μ is absolutely continuous with respect to the volume form dvolM ,thenTμP (M)isaHilbert space [9, Proposition A.33]. More generally, one can define tangent cones of P (M) without any curvature assumption on M, using Ohta’s 2-uniform structure on P (M) [11].
    [Show full text]
  • Convergence of Complete Ricci-Flat Manifolds Jiewon Park
    Convergence of Complete Ricci-flat Manifolds by Jiewon Park Submitted to the Department of Mathematics in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Mathematics at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY May 2020 © Massachusetts Institute of Technology 2020. All rights reserved. Author . Department of Mathematics April 17, 2020 Certified by. Tobias Holck Colding Cecil and Ida Green Distinguished Professor Thesis Supervisor Accepted by . Wei Zhang Chairman, Department Committee on Graduate Theses 2 Convergence of Complete Ricci-flat Manifolds by Jiewon Park Submitted to the Department of Mathematics on April 17, 2020, in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Mathematics Abstract This thesis is focused on the convergence at infinity of complete Ricci flat manifolds. In the first part of this thesis, we will give a natural way to identify between two scales, potentially arbitrarily far apart, in the case when a tangent cone at infinity has smooth cross section. The identification map is given as the gradient flow of a solution to an elliptic equation. We use an estimate of Colding-Minicozzi of a functional that measures the distance to the tangent cone. In the second part of this thesis, we prove a matrix Harnack inequality for the Laplace equation on manifolds with suitable curvature and volume growth assumptions, which is a pointwise estimate for the integrand of the aforementioned functional. This result provides an elliptic analogue of matrix Harnack inequalities for the heat equation or geometric flows. Thesis Supervisor: Tobias Holck Colding Title: Cecil and Ida Green Distinguished Professor 3 4 Acknowledgments First and foremost I would like to thank my advisor Tobias Colding for his continuous guidance and encouragement, and for suggesting problems to work on.
    [Show full text]
  • SHEAVES of MODULES 01AC Contents 1. Introduction 1 2
    SHEAVES OF MODULES 01AC Contents 1. Introduction 1 2. Pathology 2 3. The abelian category of sheaves of modules 2 4. Sections of sheaves of modules 4 5. Supports of modules and sections 6 6. Closed immersions and abelian sheaves 6 7. A canonical exact sequence 7 8. Modules locally generated by sections 8 9. Modules of finite type 9 10. Quasi-coherent modules 10 11. Modules of finite presentation 13 12. Coherent modules 15 13. Closed immersions of ringed spaces 18 14. Locally free sheaves 20 15. Bilinear maps 21 16. Tensor product 22 17. Flat modules 24 18. Duals 26 19. Constructible sheaves of sets 27 20. Flat morphisms of ringed spaces 29 21. Symmetric and exterior powers 29 22. Internal Hom 31 23. Koszul complexes 33 24. Invertible modules 33 25. Rank and determinant 36 26. Localizing sheaves of rings 38 27. Modules of differentials 39 28. Finite order differential operators 43 29. The de Rham complex 46 30. The naive cotangent complex 47 31. Other chapters 50 References 52 1. Introduction 01AD This is a chapter of the Stacks Project, version 77243390, compiled on Sep 28, 2021. 1 SHEAVES OF MODULES 2 In this chapter we work out basic notions of sheaves of modules. This in particular includes the case of abelian sheaves, since these may be viewed as sheaves of Z- modules. Basic references are [Ser55], [DG67] and [AGV71]. We work out what happens for sheaves of modules on ringed topoi in another chap- ter (see Modules on Sites, Section 1), although there we will mostly just duplicate the discussion from this chapter.
    [Show full text]
  • Algebra & Number Theory Vol. 10 (2016)
    Algebra & Number Theory Volume 10 2016 No. 4 msp Algebra & Number Theory msp.org/ant EDITORS MANAGING EDITOR EDITORIAL BOARD CHAIR Bjorn Poonen David Eisenbud Massachusetts Institute of Technology University of California Cambridge, USA Berkeley, USA BOARD OF EDITORS Georgia Benkart University of Wisconsin, Madison, USA Susan Montgomery University of Southern California, USA Dave Benson University of Aberdeen, Scotland Shigefumi Mori RIMS, Kyoto University, Japan Richard E. Borcherds University of California, Berkeley, USA Raman Parimala Emory University, USA John H. Coates University of Cambridge, UK Jonathan Pila University of Oxford, UK J-L. Colliot-Thélène CNRS, Université Paris-Sud, France Anand Pillay University of Notre Dame, USA Brian D. Conrad Stanford University, USA Victor Reiner University of Minnesota, USA Hélène Esnault Freie Universität Berlin, Germany Peter Sarnak Princeton University, USA Hubert Flenner Ruhr-Universität, Germany Joseph H. Silverman Brown University, USA Sergey Fomin University of Michigan, USA Michael Singer North Carolina State University, USA Edward Frenkel University of California, Berkeley, USA Vasudevan Srinivas Tata Inst. of Fund. Research, India Andrew Granville Université de Montréal, Canada J. Toby Stafford University of Michigan, USA Joseph Gubeladze San Francisco State University, USA Ravi Vakil Stanford University, USA Roger Heath-Brown Oxford University, UK Michel van den Bergh Hasselt University, Belgium Craig Huneke University of Virginia, USA Marie-France Vignéras Université Paris VII, France Kiran S. Kedlaya Univ. of California, San Diego, USA Kei-Ichi Watanabe Nihon University, Japan János Kollár Princeton University, USA Efim Zelmanov University of California, San Diego, USA Yuri Manin Northwestern University, USA Shou-Wu Zhang Princeton University, USA Philippe Michel École Polytechnique Fédérale de Lausanne PRODUCTION [email protected] Silvio Levy, Scientific Editor See inside back cover or msp.org/ant for submission instructions.
    [Show full text]
  • Compact Ringed Spaces
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector JOURNAL OF ALGEBRA 52, 41 l-436 (1978) Compact Ringed Spaces CHRISTOPHER J. MULVEY * Department of Mathematics, Columbia University, New York, New York 10027 and Mathematics Division, University of Sussex, Falmer, Brighton, BNl9QH, England Communicated by Saunders MacLane Received April 16, 1976 The properties of complete regularity, paracompactness, and compactness of a topological space X all may be described in terms of the ring R(X) of continuous real functions on X. In this paper we are concerned with extending these concepts from topological to ringed spaces, replacing the ring of continuous real functions on the space by the ring of sections of the ringed space. Our interest in the problem arose from attempting to construct the tangent module 7M of a smooth manifold IM directly from the sheaf QM of smooth real functions. For each open set U of M, the module rM( U)is the s2,( U)-module of derivations of In,(U). Yet, since taking derivations is not functorial, the evident restriction maps are not canonically forthcoming. For paracompact manifolds the construction needed was known to Boardman [5]. In general, it can be carried out using the complete regularity of the ringed space (M, 62,) [18, 321. Although spaces satisfying these conditions appear naturally in analytical contexts, there emerges a fundamental connection with sectional representations of rings [19, 21, 231. In turn, this has provided a technique for using intuitionistic mathematics in applying these representations [22]. Extending these properties to ringed spaces, we prove a compactness theorem for completely regular ringed spaces generalizing the Gelfand-Kolmogoroff criterion concerning maximal ideals in the ring R(X) of continuous real functions on a completely regular space X.
    [Show full text]
  • Tangent Cones, Tangent Spaces, Tangent Stars. Secant, Tangent, Tangent Star and Dual Varieties of an Algebraic Variety
    Chapter 1 Tangent cones, tangent spaces, tangent stars. Secant, tangent, tangent star and dual varieties of an algebraic variety 1.1 Tangent cones and tangent spaces of an algebraic variety and their associated varieties Let X be an algebraic variety, or more generally a scheme of finite type, over a fixed algebraically closed field K. Let x X be a closed point. We briefly recall the 2 definitions of tangent cone to X at x and of tangent space to X at x. For more details one can consult [150] or [189]. Definition 1.1.1. (Tangent cone at a point). Let U X be an open affine neighbor- ⇢ hood of x, let i : U AN be a closed immersion and let U be defined by the ideal ! N I K[X1,...,XN]. There is no loss of generality in supposing i(x)=(0,...,0) A . ⇢ 2 Given f K[X ,...,X ] with f (0,...,0)=0, we can define the leading form (or ini- 2 1 N tial form/term) f in of f as the non-zero homogeneous polynomial of lowest degree in its expression as a sum of homogenous polynomials in the variables Xi’s. Let Iin = the ideal generated by the leading form (or initial term) f in of all f I . { 2 } Then K[X ,...,X ] C X := Spec( 1 N ), (1.1) x Iin is called the affine tangent cone to X at x. The previous definition does not depend on the choice of U X or on the choice N ⇢ of i : U A .
    [Show full text]
  • Introduction to Algebraic Geometry
    Introduction to Algebraic Geometry Jilong Tong December 6, 2012 2 Contents 1 Algebraic sets and morphisms 11 1.1 Affine algebraic sets . 11 1.1.1 Some definitions . 11 1.1.2 Hilbert's Nullstellensatz . 12 1.1.3 Zariski topology on an affine algebraic set . 14 1.1.4 Coordinate ring of an affine algebraic set . 16 1.2 Projective algebraic sets . 19 1.2.1 Definitions . 19 1.2.2 Homogeneous Nullstellensatz . 21 1.2.3 Homogeneous coordinate ring . 22 1.2.4 Exercise: plane curves . 22 1.3 Morphisms of algebraic sets . 24 1.3.1 Affine case . 24 1.3.2 Quasi-projective case . 26 2 The Language of schemes 29 2.1 Sheaves and locally ringed spaces . 29 2.1.1 Sheaves on a topological spaces . 29 2.1.2 Ringed space . 34 2.2 Schemes . 36 2.2.1 Definition of schemes . 36 2.2.2 Morphisms of schemes . 40 2.2.3 Projective schemes . 43 2.3 First properties of schemes and morphisms of schemes . 49 2.3.1 Topological properties . 49 2.3.2 Noetherian schemes . 50 2.3.3 Reduced and integral schemes . 51 2.3.4 Finiteness conditions . 53 2.4 Dimension . 54 2.4.1 Dimension of a topological space . 54 2.4.2 Dimension of schemes and rings . 55 2.4.3 The noetherian case . 57 2.4.4 Dimension of schemes over a field . 61 2.5 Fiber products and base change . 62 2.5.1 Sum of schemes . 62 2.5.2 Fiber products of schemes .
    [Show full text]