Convergence of Complete Ricci-Flat Manifolds Jiewon Park
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
CMI Summer Schools
CMI Summer Schools 2007 Homogeneous flows, moduli spaces, and arithmetic De Giorgi Center, Pisa 2006 Arithmetic Geometry The Clay Mathematics Institute has Mathematisches Institut, conducted a program of research summer schools Georg-August-Universität, Göttingen since 2000. Designed for graduate students and PhDs within five years of their degree, the aim of 2005 Ricci Flow, 3-manifolds, and Geometry the summer schools is to furnish a new generation MSRI, Berkeley of mathematicians with the knowledge and tools needed to work successfully in an active research CMI summer schools 2004 area. Three introductory courses, each three weeks Floer Homology, Gauge Theory, and in duration, make up the core of a typical summer Low-dimensional Topology school. These are followed by one week of more Rényi Institute, Budapest advanced minicourses and individual talks. Size is limited to roughly 100 participants in order to 2003 Harmonic Analysis, Trace Formula, promote interaction and contact. Venues change and Shimura Varieties from year to year, and have ranged from Cambridge, Fields Institute, Toronto Massachusetts to Pisa, Italy. The lectures from each school are published in the CMI–AMS proceedings 2002 Geometry and String Theory series, usually within two years’ time. Newton Institute, Cambridge UK Summer Schools 2001 www.claymath.org/programs/summer_school Minimal surfaces MSRI, Berkeley Summer School Proceedings www.claymath.org/publications 2000 Mirror Symmetry Pine Manor College, Boston 2006 Arithmetic Geometry Summer School in Göttingen techniques are drawn from the theory of elliptic The 2006 summer school program will introduce curves, including modular curves and their para- participants to modern techniques and outstanding metrizations, Heegner points, and heights. -
THE S.V.D. of the POISSON KERNEL 1. Introduction This Paper
THE S.V.D. OF THE POISSON KERNEL GILES AUCHMUTY Abstract. The solution of the Dirichlet problem for the Laplacian on bounded regions N Ω in R , N 2 is generally described via a boundary integral operator with the Poisson kernel. Under≥ mild regularity conditions on the boundary, this operator is a compact 2 2 2 linear transformation of L (∂Ω,dσ) to LH (Ω) - the Bergman space of L harmonic functions on Ω. This paper describes the singular value decomposition (SVD)− of this operator and related results. The singular functions and singular values are constructed using Steklov eigenvalues and eigenfunctions of the biharmonic operator on Ω. These allow a spectral representation of the Bergman harmonic projection and the identification 2 of an orthonormal basis of the real harmonic Bergman space LH (Ω). A reproducing 2 2 kernel for LH (Ω) and an orthonormal basis of the space L (∂Ω,dσ) also are found. This enables the description of optimal finite rank approximations of the Poisson kernel with error estimates. Explicit spectral formulae for the normal derivatives of eigenfunctions for the Dirichlet Laplacian on ∂Ω are obtained and used to identify a constant in an inequality of Hassell and Tao. 1. Introduction This paper describes representation results for harmonic functions on a bounded region Ω in RN ; N 2. In particular a spectral representation of the Poisson kernel for solutions of the Dirichlet≥ problem for Laplace’s equation with L2 boundary data is described. This leads to an explicit description of the Reproducing− Kernel (RK) for 2 the harmonic Bergman space LH (Ω) and the singular value decomposition (SVD) of the Poisson kernel for the Laplacian. -
Genius Manual I
Genius Manual i Genius Manual Genius Manual ii Copyright © 1997-2016 Jiríˇ (George) Lebl Copyright © 2004 Kai Willadsen Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License (GFDL), Version 1.1 or any later version published by the Free Software Foundation with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. You can find a copy of the GFDL at this link or in the file COPYING-DOCS distributed with this manual. This manual is part of a collection of GNOME manuals distributed under the GFDL. If you want to distribute this manual separately from the collection, you can do so by adding a copy of the license to the manual, as described in section 6 of the license. Many of the names used by companies to distinguish their products and services are claimed as trademarks. Where those names appear in any GNOME documentation, and the members of the GNOME Documentation Project are made aware of those trademarks, then the names are in capital letters or initial capital letters. DOCUMENT AND MODIFIED VERSIONS OF THE DOCUMENT ARE PROVIDED UNDER THE TERMS OF THE GNU FREE DOCUMENTATION LICENSE WITH THE FURTHER UNDERSTANDING THAT: 1. DOCUMENT IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, WITHOUT LIMITATION, WARRANTIES THAT THE DOCUMENT OR MODIFIED VERSION OF THE DOCUMENT IS FREE OF DEFECTS MERCHANTABLE, FIT FOR A PARTICULAR PURPOSE OR NON-INFRINGING. THE ENTIRE RISK AS TO THE QUALITY, ACCURACY, AND PERFORMANCE OF THE DOCUMENT OR MODIFIED VERSION OF THE DOCUMENT IS WITH YOU. -