Applications of the Cauchy Theory

Total Page:16

File Type:pdf, Size:1020Kb

Applications of the Cauchy Theory Chapter 4 Applications Of The Cauchy Theory This chapter contains several applications of the material developed in Chapter 3. In the first section, we will describe the possible behavior of an analytic function near a singularity of that function. 4.1 Singularities We will say that f has an isolated singularity at z0 if f is analytic on D(z0,r) \{z0} for some r. What, if anything, can be said about the behavior of f near z0? The basic tool needed to answer this question is the Laurent series, an expansion of f(z)in powers of z − z0 in which negative as well as positive powers of z − z0 may appear. In fact, the number of negative powers in this expansion is the key to determining how f behaves near z0. From now on, the punctured disk D(z0,r) \{z0} will be denoted by D (z0,r). We will need a consequence of Cauchy’s integral formula. 4.1.1 Theorem Let f be analytic on an open set Ω containing the annulus {z : r1 ≤|z − z0|≤r2}, 0 <r1 <r2 < ∞, and let γ1 and γ2 denote the positively oriented inner and outer boundaries of the annulus. Then for r1 < |z − z0| <r2, we have 1 f(w) − 1 f(w) f(z)= − dw − dw. 2πi γ2 w z 2πi γ1 w z Proof. Apply Cauchy’s integral formula [part (ii)of (3.3.1)]to the cycle γ2 − γ1. ♣ 1 2 CHAPTER 4. APPLICATIONS OF THE CAUCHY THEORY 4.1.2 Definition For 0 ≤ s1 <s2 ≤ +∞ and z0 ∈ C, we will denote the open annulus {z : s1 < |z−z0| <s2} by A(z0,s1,s2). 4.1.3 Laurent Series Representation { }∞ If f is analytic on Ω = A(z0,s1,s2), then there is a unique two-tailed sequence an n=−∞ such that ∞ n f(z)= an(z − z0) ,z ∈ Ω. n=−∞ In fact, if r is such that s1 <r<s2, then the coefficients an are given by 1 f(w) a = dw, n =0, ±1, ±2,... n − n+1 2πi C(z0,r) (w z0) Also, the above series converges absolutely on Ω and uniformly on compact subsets of Ω. Proof. Choose r1 and r2 such that s1 <r1 <r2 <s2 and consider the Cauchy type integral 1 f(w) ∈ − dw, z D(z0,r2). 2πi C(z0,r2) w z Then proceeding just as we did in the proof of Theorem 2.2.16, we obtain ∞ 1 f(w) dw = a (z − z )n 2πi w − z n 0 C(z0,r2) n=0 where 1 f(w) a = dw. n − n+1 2πi C(z0,r2) (w z0) The series converges absolutely on D(z0,r2), and uniformly on compact subsets of D(z0,r). Next, consider the Cauchy type integral − 1 f(w) | − | − dw, z z0 >r1. 2πi C(z0,r1) w z This can be written as ∞ n−1 1 f(w) 1 (w − z0) − dw = f(w) dw. w z0 − n 2πi (z − z0)[1 − ] 2πi (z z0) C(z0,r1) z−z0 C(z0,r1) n=1 By the Weierstrass M-test, the series converges absolutely and uniformly for w ∈ C(z0,r1). Consequently, we may integrate term by term to obtain the series ∞ 1 f(w) b (z − z )−n, where b = dw. n 0 n 2πi (w − z )−n+1 n=1 C(z0,r1) 0 4.1. SINGULARITIES 3 This is a power series in 1/(z −z0), and it converges for |z −z0| >r1, and hence uniformly on sets of the form {z : |z − z0|≥1/ρ} where (1/ρ) >r1. It follows that the convergence is uniform on compact (indeed on closed)subsets of {z : z − z0| >r1. The existence part of the theorem now follows from (4.1.1)and the above computa- tions, if we note two facts. First, if s1 <r<s2 and k =0, ±1, ±2,..., f(w) f(w) f(w) dw = dw = dw. − k+1 − k+1 − k+1 C(z0,r) (w z0) C(z0,r1) (w z0) C(z0,r2) (w z0) Second, any compact subset of A(z0,s1,s2)is contained in {z : ρ1 ≤|z − z0|≤ρ2} for some ρ1 and ρ2 with s1 <ρ1 <ρ2 <s2. { } We turn now to the question of uniqueness. Let bn be a sequence such that f(z)= ∞ − n ∈ n=−∞ bn(z z0) for z A(z0,s1,s2). As in the above argument, this series must converge uniformly on compact subsets of A(z0,s1,s2). Therefore if k is any integer and s1 <r<s2, then ∞ 1 f(w) 1 dw = b (w − z )n−k−1 dw 2πi (w − z )k+1 2πi n 0 C(z0,r) 0 C(z0,r) n=−∞ ∞ 1 = b (w − z )n−k−1 dw n 2πi 0 n=−∞ C(z0,r) = bk, because − − − 1 n−k−1 1ifn k 1= 1 (w − z0) dw = 2πi C(z0,r) 0 otherwise. The theorem is completely proved. ♣ We are now in a position to analyze the behavior of f near an isolated singularity. As the preceding discussion shows, if f has an isolated singularity at z0, then f can be represented uniquely by ∞ n f(z)= an(z − z0) n=−∞ in some deleted neighborhood of z0. 4.1.4 Definition ∞ − n Suppose f has an isolated singularity at z0, and let n=−∞ an(z z0) be the Laurent expansion of f about z0, that is, the series given in (4.1.3). We say that f has a removable singularity at z0 if an = 0 for all n<0; f has a pole of order m at z0 if m is the largest positive integer such that a−m = 0. (A pole of order 1 is called a simple pole.)Finally, if an = 0 for infinitely many n<0, we say that f has an essential singularity at z0. The next theorem relates the behavior of f(z)for z near z0 to the type of singularity that f has at z0. 4 CHAPTER 4. APPLICATIONS OF THE CAUCHY THEORY 4.1.5 Theorem Suppose that f has an isolated singularity at z0. Then (a) f has a removable singularity at z0 iff f(z)approaches a finite limit as z → z0 iff f(z) is bounded on the punctured disk D (z0,δ)for some δ>0. m (b)For a given positive integer m, f has a pole of order m at z0 iff (z−z0) f(z)approaches a finite nonzero limit as z → z0. Also, f has a pole at z0 iff |f(z)|→+∞ as z → z0. (c) f has an essential singularity at z0 iff f(z)does not approach a finite or infinite limit as z → z , that is, f(z)has no limit in Cˆ as z → z . 0 0 { }∞ ∞ − n | − | Proof. Let an n=−∞ and r>0 be such that f(z)= −∞ an(z z0) for 0 < z z0 <r. (a)If an = 0 for all n<0, then limz→z0 f(z)=a0. Conversely, if limz→z0 f(z)exists (in C ), then f can be defined (or redefined)at z0 so that f is analytic on D(z0,r). It follows { }∞ ∞ − n ∈ that there is a sequence bn n=0 such that f(z)= n=0 bn(z z0) for z D (z0,r).By uniqueness of the Laurent expansion, we conclude that an = 0 for n<0 and an = bn for n ≥ 0. (Thus in this case, the Laurent and Taylor expansions coincide.)The remaining equivalence stated in (a)is left as an exercise (Problem 1). (b)If f has a pole of order m at z0, then for 0 < |z − z0| <r, ∞ −m −1 n f(z)=a−m(z − z0) + ···+ a−1(z − z0) + an(z − z0) n=0 m where a−m = 0. Consequently, (z − z0) f(z) → a−m =0as z → z0. Conversely, if − m − m limz→z0 (z z0) f(z) = 0, then by (a)applied to ( z z0) f(z), there is a sequence { }∞ bn n=0 such that ∞ m n (z − z0) f(z)= bn(z − z0) ,z ∈ D (z0,r). n=0 → − m Let z z0 to obtain b0 = limz→z0 (z z0) f(z) =0.Thusf(z)can be written as −m −m+1 b0(z − z0) + b1(z − z0) + ···, showing that f has a pole of order m at z0. The remaining equivalence in (b)is also left as an exercise (Problem 1). (c)If f(z)does not have a limit in Cˆ as z → z0, then by (a)and (b), f must have an essential singularity at z0. Conversely, if f has an essential singularity at z0, then (a)and Cˆ ♣ (b)again imply that lim z→z0 f(z)cannot exist in . The behavior of a function near an essential singularity is much more pathological even than (4.1.5c)suggests, as the next theorem shows. 4.1.6 Casorati-Weierstrass Theorem Let f have an isolated essential singularity at z0. Then for any complex number w, f(z)comes arbitrarily close to w in every deleted neighborhood of z0. That is, for any δ>0,f(D (z0,δ)) is a dense subset of C. Proof. Suppose that for some δ>0,f(D (z0,δ)) is not dense in C. Then for some w ∈ C, there exists >0 such that D(w, )does not meet f(D (z0,δ)). For z ∈ D (z0,δ), put 4.1. SINGULARITIES 5 g(z)=1/(f(z)−w)).
Recommended publications
  • Best Subordinant for Differential Superordinations of Harmonic Complex-Valued Functions
    mathematics Article Best Subordinant for Differential Superordinations of Harmonic Complex-Valued Functions Georgia Irina Oros Department of Mathematics and Computer Sciences, Faculty of Informatics and Sciences, University of Oradea, 410087 Oradea, Romania; [email protected] or [email protected] Received: 17 September 2020; Accepted: 11 November 2020; Published: 16 November 2020 Abstract: The theory of differential subordinations has been extended from the analytic functions to the harmonic complex-valued functions in 2015. In a recent paper published in 2019, the authors have considered the dual problem of the differential subordination for the harmonic complex-valued functions and have defined the differential superordination for harmonic complex-valued functions. Finding the best subordinant of a differential superordination is among the main purposes in this research subject. In this article, conditions for a harmonic complex-valued function p to be the best subordinant of a differential superordination for harmonic complex-valued functions are given. Examples are also provided to show how the theoretical findings can be used and also to prove the connection with the results obtained in 2015. Keywords: differential subordination; differential superordination; harmonic function; analytic function; subordinant; best subordinant MSC: 30C80; 30C45 1. Introduction and Preliminaries Since Miller and Mocanu [1] (see also [2]) introduced the theory of differential subordination, this theory has inspired many researchers to produce a number of analogous notions, which are extended even to non-analytic functions, such as strong differential subordination and superordination, differential subordination for non-analytic functions, fuzzy differential subordination and fuzzy differential superordination. The notion of differential subordination was adapted to fit the harmonic complex-valued functions in the paper published by S.
    [Show full text]
  • Harmonic Functions
    Lecture 1 Harmonic Functions 1.1 The Definition Definition 1.1. Let Ω denote an open set in R3. A real valued function u(x, y, z) on Ω with continuous second partials is said to be harmonic if and only if the Laplacian ∆u = 0 identically on Ω. Note that the Laplacian ∆u is defined by ∂2u ∂2u ∂2u ∆u = + + . ∂x2 ∂y2 ∂z2 We can make a similar definition for an open set Ω in R2.Inthatcase, u is harmonic if and only if ∂2u ∂2u ∆u = + =0 ∂x2 ∂y2 on Ω. Some basic examples of harmonic functions are 2 2 2 3 u = x + y 2z , Ω=R , − 1 3 u = , Ω=R (0, 0, 0), r − where r = x2 + y2 + z2. Moreover, by a theorem on complex variables, the real part of an analytic function on an open set Ω in 2 is always harmonic. p R Thus a function such as u = rn cos nθ is a harmonic function on R2 since u is the real part of zn. 1 2 1.2 The Maximum Principle The basic result about harmonic functions is called the maximum principle. What the maximum principle says is this: if u is a harmonic function on Ω, and B is a closed and bounded region contained in Ω, then the max (and min) of u on B is always assumed on the boundary of B. Recall that since u is necessarily continuous on Ω, an absolute max and min on B are assumed. The max and min can also be assumed inside B, but a harmonic function cannot have any local extrema inside B.
    [Show full text]
  • 23. Harmonic Functions Recall Laplace's Equation
    23. Harmonic functions Recall Laplace's equation ∆u = uxx = 0 ∆u = uxx + uyy = 0 ∆u = uxx + uyy + uzz = 0: Solutions to Laplace's equation are called harmonic functions. The inhomogeneous version of Laplace's equation ∆u = f is called the Poisson equation. Harmonic functions are Laplace's equation turn up in many different places in mathematics and physics. Harmonic functions in one variable are easy to describe. The general solution of uxx = 0 is u(x) = ax + b, for constants a and b. Maximum principle Let D be a connected and bounded open set in R2. Let u(x; y) be a harmonic function on D that has a continuous extension to the boundary @D of D. Then the maximum (and minimum) of u are attained on the bound- ary and if they are attained anywhere else than u is constant. Euivalently, there are two points (xm; ym) and (xM ; yM ) on the bound- ary such that u(xm; ym) ≤ u(x; y) ≤ u(xM ; yM ) for every point of D and if we have equality then u is constant. The idea of the proof is as follows. At a maximum point of u in D we must have uxx ≤ 0 and uyy ≤ 0. Most of the time one of these inequalities is strict and so 0 = uxx + uyy < 0; which is not possible. The only reason this is not a full proof is that sometimes both uxx = uyy = 0. As before, to fix this, simply perturb away from zero. Let > 0 and let v(x; y) = u(x; y) + (x2 + y2): Then ∆v = ∆u + ∆(x2 + y2) = 4 > 0: 1 Thus v has no maximum in D.
    [Show full text]
  • Arxiv:1911.03589V1 [Math.CV] 9 Nov 2019 1 Hoe 1 Result
    A NOTE ON THE SCHWARZ LEMMA FOR HARMONIC FUNCTIONS MAREK SVETLIK Abstract. In this note we consider some generalizations of the Schwarz lemma for harmonic functions on the unit disk, whereby values of such functions and the norms of their differentials at the point z = 0 are given. 1. Introduction 1.1. A summary of some results. In this paper we consider some generalizations of the Schwarz lemma for harmonic functions from the unit disk U = {z ∈ C : |z| < 1} to the interval (−1, 1) (or to itself). First, we cite a theorem which is known as the Schwarz lemma for harmonic functions and is considered as a classical result. Theorem 1 ([10],[9, p.77]). Let f : U → U be a harmonic function such that f(0) = 0. Then 4 |f(z)| 6 arctan |z|, for all z ∈ U, π and this inequality is sharp for each point z ∈ U. In 1977, H. W. Hethcote [11] improved this result by removing the assumption f(0) = 0 and proved the following theorem. Theorem 2 ([11, Theorem 1] and [26, Theorem 3.6.1]). Let f : U → U be a harmonic function. Then 1 − |z|2 4 f(z) − f(0) 6 arctan |z|, for all z ∈ U. 1+ |z|2 π As it was written in [23], it seems that researchers have had some difficulties to arXiv:1911.03589v1 [math.CV] 9 Nov 2019 handle the case f(0) 6= 0, where f is harmonic mapping from U to itself. Before explaining the essence of these difficulties, it is necessary to recall one mapping and some of its properties.
    [Show full text]
  • THE S.V.D. of the POISSON KERNEL 1. Introduction This Paper
    THE S.V.D. OF THE POISSON KERNEL GILES AUCHMUTY Abstract. The solution of the Dirichlet problem for the Laplacian on bounded regions N Ω in R , N 2 is generally described via a boundary integral operator with the Poisson kernel. Under≥ mild regularity conditions on the boundary, this operator is a compact 2 2 2 linear transformation of L (∂Ω,dσ) to LH (Ω) - the Bergman space of L harmonic functions on Ω. This paper describes the singular value decomposition (SVD)− of this operator and related results. The singular functions and singular values are constructed using Steklov eigenvalues and eigenfunctions of the biharmonic operator on Ω. These allow a spectral representation of the Bergman harmonic projection and the identification 2 of an orthonormal basis of the real harmonic Bergman space LH (Ω). A reproducing 2 2 kernel for LH (Ω) and an orthonormal basis of the space L (∂Ω,dσ) also are found. This enables the description of optimal finite rank approximations of the Poisson kernel with error estimates. Explicit spectral formulae for the normal derivatives of eigenfunctions for the Dirichlet Laplacian on ∂Ω are obtained and used to identify a constant in an inequality of Hassell and Tao. 1. Introduction This paper describes representation results for harmonic functions on a bounded region Ω in RN ; N 2. In particular a spectral representation of the Poisson kernel for solutions of the Dirichlet≥ problem for Laplace’s equation with L2 boundary data is described. This leads to an explicit description of the Reproducing− Kernel (RK) for 2 the harmonic Bergman space LH (Ω) and the singular value decomposition (SVD) of the Poisson kernel for the Laplacian.
    [Show full text]
  • Genius Manual I
    Genius Manual i Genius Manual Genius Manual ii Copyright © 1997-2016 Jiríˇ (George) Lebl Copyright © 2004 Kai Willadsen Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License (GFDL), Version 1.1 or any later version published by the Free Software Foundation with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. You can find a copy of the GFDL at this link or in the file COPYING-DOCS distributed with this manual. This manual is part of a collection of GNOME manuals distributed under the GFDL. If you want to distribute this manual separately from the collection, you can do so by adding a copy of the license to the manual, as described in section 6 of the license. Many of the names used by companies to distinguish their products and services are claimed as trademarks. Where those names appear in any GNOME documentation, and the members of the GNOME Documentation Project are made aware of those trademarks, then the names are in capital letters or initial capital letters. DOCUMENT AND MODIFIED VERSIONS OF THE DOCUMENT ARE PROVIDED UNDER THE TERMS OF THE GNU FREE DOCUMENTATION LICENSE WITH THE FURTHER UNDERSTANDING THAT: 1. DOCUMENT IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, WITHOUT LIMITATION, WARRANTIES THAT THE DOCUMENT OR MODIFIED VERSION OF THE DOCUMENT IS FREE OF DEFECTS MERCHANTABLE, FIT FOR A PARTICULAR PURPOSE OR NON-INFRINGING. THE ENTIRE RISK AS TO THE QUALITY, ACCURACY, AND PERFORMANCE OF THE DOCUMENT OR MODIFIED VERSION OF THE DOCUMENT IS WITH YOU.
    [Show full text]
  • Harmonic Forms, Minimal Surfaces and Norms on Cohomology of Hyperbolic 3-Manifolds
    Harmonic Forms, Minimal Surfaces and Norms on Cohomology of Hyperbolic 3-Manifolds Xiaolong Hans Han Abstract We bound the L2-norm of an L2 harmonic 1-form in an orientable cusped hy- perbolic 3-manifold M by its topological complexity, measured by the Thurston norm, up to a constant depending on M. It generalizes two inequalities of Brock and Dunfield. We also study the sharpness of the inequalities in the closed and cusped cases, using the interaction of minimal surfaces and harmonic forms. We unify various results by defining two functionals on orientable closed and cusped hyperbolic 3-manifolds, and formulate several questions and conjectures. Contents 1 Introduction2 1.1 Motivation and previous results . .2 1.2 A glimpse at the non-compact case . .3 1.3 Main theorem . .4 1.4 Topology and the Thurston norm of harmonic forms . .5 1.5 Minimal surfaces and the least area norm . .5 1.6 Sharpness and the interaction between harmonic forms and minimal surfaces6 1.7 Acknowledgments . .6 2 L2 Harmonic Forms and Compactly Supported Cohomology7 2.1 Basic definitions of L2 harmonic forms . .7 2.2 Hodge theory on cusped hyperbolic 3-manifolds . .9 2.3 Topology of L2-harmonic 1-forms and the Thurston Norm . 11 2.4 How much does the hyperbolic metric come into play? . 14 arXiv:2011.14457v2 [math.GT] 23 Jun 2021 3 Minimal Surface and Least Area Norm 14 3.1 Truncation of M and the definition of Mτ ................. 16 3.2 The least area norm and the L1-norm . 17 4 L1-norm, Main theorem and The Proof 18 4.1 Bounding L1-norm by L2-norm .
    [Show full text]
  • Convergence of Complete Ricci-Flat Manifolds Jiewon Park
    Convergence of Complete Ricci-flat Manifolds by Jiewon Park Submitted to the Department of Mathematics in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Mathematics at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY May 2020 © Massachusetts Institute of Technology 2020. All rights reserved. Author . Department of Mathematics April 17, 2020 Certified by. Tobias Holck Colding Cecil and Ida Green Distinguished Professor Thesis Supervisor Accepted by . Wei Zhang Chairman, Department Committee on Graduate Theses 2 Convergence of Complete Ricci-flat Manifolds by Jiewon Park Submitted to the Department of Mathematics on April 17, 2020, in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Mathematics Abstract This thesis is focused on the convergence at infinity of complete Ricci flat manifolds. In the first part of this thesis, we will give a natural way to identify between two scales, potentially arbitrarily far apart, in the case when a tangent cone at infinity has smooth cross section. The identification map is given as the gradient flow of a solution to an elliptic equation. We use an estimate of Colding-Minicozzi of a functional that measures the distance to the tangent cone. In the second part of this thesis, we prove a matrix Harnack inequality for the Laplace equation on manifolds with suitable curvature and volume growth assumptions, which is a pointwise estimate for the integrand of the aforementioned functional. This result provides an elliptic analogue of matrix Harnack inequalities for the heat equation or geometric flows. Thesis Supervisor: Tobias Holck Colding Title: Cecil and Ida Green Distinguished Professor 3 4 Acknowledgments First and foremost I would like to thank my advisor Tobias Colding for his continuous guidance and encouragement, and for suggesting problems to work on.
    [Show full text]
  • Complex Analysis
    Complex Analysis Andrew Kobin Fall 2010 Contents Contents Contents 0 Introduction 1 1 The Complex Plane 2 1.1 A Formal View of Complex Numbers . .2 1.2 Properties of Complex Numbers . .4 1.3 Subsets of the Complex Plane . .5 2 Complex-Valued Functions 7 2.1 Functions and Limits . .7 2.2 Infinite Series . 10 2.3 Exponential and Logarithmic Functions . 11 2.4 Trigonometric Functions . 14 3 Calculus in the Complex Plane 16 3.1 Line Integrals . 16 3.2 Differentiability . 19 3.3 Power Series . 23 3.4 Cauchy's Theorem . 25 3.5 Cauchy's Integral Formula . 27 3.6 Analytic Functions . 30 3.7 Harmonic Functions . 33 3.8 The Maximum Principle . 36 4 Meromorphic Functions and Singularities 37 4.1 Laurent Series . 37 4.2 Isolated Singularities . 40 4.3 The Residue Theorem . 42 4.4 Some Fourier Analysis . 45 4.5 The Argument Principle . 46 5 Complex Mappings 47 5.1 M¨obiusTransformations . 47 5.2 Conformal Mappings . 47 5.3 The Riemann Mapping Theorem . 47 6 Riemann Surfaces 48 6.1 Holomorphic and Meromorphic Maps . 48 6.2 Covering Spaces . 52 7 Elliptic Functions 55 7.1 Elliptic Functions . 55 7.2 Elliptic Curves . 61 7.3 The Classical Jacobian . 67 7.4 Jacobians of Higher Genus Curves . 72 i 0 Introduction 0 Introduction These notes come from a semester course on complex analysis taught by Dr. Richard Carmichael at Wake Forest University during the fall of 2010. The main topics covered include Complex numbers and their properties Complex-valued functions Line integrals Derivatives and power series Cauchy's Integral Formula Singularities and the Residue Theorem The primary reference for the course and throughout these notes is Fisher's Complex Vari- ables, 2nd edition.
    [Show full text]
  • Elementary Applications of Fourier Analysis
    ELEMENTARY APPLICATIONS OF FOURIER ANALYSIS COURTOIS Abstract. This paper is intended as a brief introduction to one of the very first applications of Fourier analysis: the study of heat conduction. We derive the steady state equation, which serves as our motivating PDE, and then iden- tify solutions to two fundamental scenarios: the first, a heat distribution on a circle; the second, one on a rod. In doing all of this there is much more room for depth that simply isn't explored for brevity's sake. A more comprehensive paper could explicitly define what constitutes a good kernel, the limitations of convergence of the Fourier transform, and different ways to circumvent these limitations. Theoretically, there's room to explore harmonic functions explic- itly, as well as Hilbert spaces and the L2 space. That would be the more analytic route to take; on the other hand there are many fascinating applica- tions that aren't broached either. In math, application is nearly synonymous with PDEs, and as far as partial differential equations are concerned, the most important feature that the Fourier transform has is the property of exchanging differentiation for multiplication. This property is really what makes bothering with the Fourier transforms of most functions worth it at all. Another equally important property of Fourier transforms is called scaling, which, in physics, directly leads to a concept called the Heisenberg Uncertainty Principle, which, like the whole of quantum physics, is very good at bothering people. Contents 1. Introduction 1 2. The heat equation 2 3. The Steady-state equation and the Laplacian 3 4.
    [Show full text]
  • Augustin-Louis Cauchy - Wikipedia, the Free Encyclopedia 1/6/14 3:35 PM Augustin-Louis Cauchy from Wikipedia, the Free Encyclopedia
    Augustin-Louis Cauchy - Wikipedia, the free encyclopedia 1/6/14 3:35 PM Augustin-Louis Cauchy From Wikipedia, the free encyclopedia Baron Augustin-Louis Cauchy (French: [oɡystɛ̃ Augustin-Louis Cauchy lwi koʃi]; 21 August 1789 – 23 May 1857) was a French mathematician who was an early pioneer of analysis. He started the project of formulating and proving the theorems of infinitesimal calculus in a rigorous manner, rejecting the heuristic Cauchy around 1840. Lithography by Zéphirin principle of the Belliard after a painting by Jean Roller. generality of algebra exploited by earlier Born 21 August 1789 authors. He defined Paris, France continuity in terms of Died 23 May 1857 (aged 67) infinitesimals and gave Sceaux, France several important Nationality French theorems in complex Fields Mathematics analysis and initiated the Institutions École Centrale du Panthéon study of permutation École Nationale des Ponts et groups in abstract Chaussées algebra. A profound École polytechnique mathematician, Cauchy Alma mater École Nationale des Ponts et exercised a great Chaussées http://en.wikipedia.org/wiki/Augustin-Louis_Cauchy Page 1 of 24 Augustin-Louis Cauchy - Wikipedia, the free encyclopedia 1/6/14 3:35 PM influence over his Doctoral Francesco Faà di Bruno contemporaries and students Viktor Bunyakovsky successors. His writings Known for See list cover the entire range of mathematics and mathematical physics. "More concepts and theorems have been named for Cauchy than for any other mathematician (in elasticity alone there are sixteen concepts and theorems named for Cauchy)."[1] Cauchy was a prolific writer; he wrote approximately eight hundred research articles and five complete textbooks. He was a devout Roman Catholic, strict Bourbon royalist, and a close associate of the Jesuit order.
    [Show full text]
  • Uniformization of Riemann Surfaces
    CHAPTER 3 Uniformization of Riemann surfaces 3.1 The Dirichlet Problem on Riemann surfaces 128 3.2 Uniformization of simply connected Riemann surfaces 141 3.3 Uniformization of Riemann surfaces and Kleinian groups 148 3.4 Hyperbolic Geometry, Fuchsian Groups and Hurwitz’s Theorem 162 3.5 Moduli of Riemann surfaces 178 127 128 3. UNIFORMIZATION OF RIEMANN SURFACES One of the most important results in the area of Riemann surfaces is the Uni- formization theorem, which classifies all simply connected surfaces up to biholomor- phisms. In this chapter, after a technical section on the Dirichlet problem (solutions of equations involving the Laplacian operator), we prove that theorem. It turns out that there are very few simply connected surfaces: the Riemann sphere, the complex plane and the unit disc. We use this result in 3.2 to give a general formulation of the Uniformization theorem and obtain some consequences, like the classification of all surfaces with abelian fundamental group. We will see that most surfaces have the unit disc as their universal covering space, these surfaces are the object of our study in 3.3 and 3.5; we cover some basic properties of the Riemaniann geometry, §§ automorphisms, Kleinian groups and the problem of moduli. 3.1. The Dirichlet Problem on Riemann surfaces In this section we recall some result from Complex Analysis that some readers might not be familiar with. More precisely, we solve the Dirichlet problem; that is, to find a harmonic function on a domain with given boundary values. This will be used in the next section when we classify all simply connected Riemann surfaces.
    [Show full text]