Refining Self-Propelled Particle Models for Collective Behaviour

Total Page:16

File Type:pdf, Size:1020Kb

Refining Self-Propelled Particle Models for Collective Behaviour CANADIAN APPLIED MATHEMATICS QUARTERLY Volume 18, Number 3, Fall 2010 REFINING SELF-PROPELLED PARTICLE MODELS FOR COLLECTIVE BEHAVIOUR CHRISTIAN A. YATES, RUTH E. BAKER, RADEK ERBAN AND PHILIP K. MAINI ABSTRACT. Swarming, schooling, flocking and herding are all names given to the wide variety of collective behaviours exhibited by groups of animals, bacteria and even individual cells. More generally, the term swarming describes the be- haviour of an aggregate of agents (not necessarily biological) of similar size and shape which exhibit some emergent property such as directed migration or group cohesion. In this paper we review various individual-based models of collective behaviour and discuss their merits and drawbacks. We further analyse some one-dimensional models in the context of locust swarm- ing. In specific models, in both one and two dimensions, we demonstrate how varying parameters relating to how much at- tention individuals pay to their neighbours can dramatically change the behaviour of the group. We also introduce leader individuals to these models. Leader individuals have the ability to guide the swarm to a greater or lesser degree as we vary the parameters of the model. Finally, we consider evolutionary sce- narios for models with leaders in which individuals are allowed to evolve the degree of influence neighbouring individuals have on their subsequent motion. 1 Introduction Often we need only look out of the window to see the principles of collective behaviour at work; in a flock of birds for example. Other collective behaviours which capture our imaginations are those of fish schools, locust plagues and bee swarms. Sometimes we almost forget that, as humans in crowded environments, we exhibit some of the most interesting collective behaviours of any species [14]. As well as the aesthetically pleasing aspect of watching a swarm in motion, studying collective behaviour has practical applications: understand- ing fish schooling can lead to more well developed fishing strategies; a knowledge of the way locusts interact and stay together in devastat- ingly large, coherent groups may shed light on potential strategies which Copyright c Applied Mathematics Institute, University of Alberta. 299 300 C. A. YATES ET AL. may be used to disrupt these groups and halt the swarm's destructive progress [8, 72]; studying how humans interact in crowds can be key in devising and implementing efficient and safe crowd control policies, which will help to avoid fatalities in possibly overcrowded situations such as football grounds, music concerts and shopping centres [14]. Over the course of the last twenty-five years several so called `self- propelled particle' (SPP) models (a specific class of individual-based model (IBM)) have been introduced and analysed, in one dimension [22], in higher dimensions [15, 19, 69], both without and with leaders [16, 41, 61], with and without internally or externally generated noise and incorporating more biologically realistic interaction rules [2, 15, 31, 39, 49, 60]. These models attempt to replicate naturally observed phenomena from not only animal groups but other self-propelled inter- acting groups of individuals such as robots. Several attempts have been made to evolve the characteristics of such models [63] and to compare the evolved characteristics with those of actual animal swarms [71] in order to understand better the possible mechanisms by which these char- acteristics may have evolved. Many of the models have been found, at least qualitatively, to replicate some of the complex emergent behaviours exhibited by these groups. In this paper we aim to give a brief overview of some of the above classes of SPP models or IBM. We will discuss a paradigmatic example of each in more detail, illustrating the highlights and pitfalls. For some of the most important and seminal models [22, 69] we derive novel re- sults pertaining to phase transitions as parameters of the model vary (see Sections 2 and 3). We also consider the effects of evolving these SPP models in the presence of an `informed individual' allowing param- eters to change in subsequent generations of particles in order to find stable parameter values in a manner analogous to [71]. The overview we give is by no means an exhaustive review of SPP models or IBMs. We have selected a variety of archetypal models which cover a wide range of biological situations and modelling regimes but there are, of course, several areas which we will not have space to discuss. These include traffic [36, 37] and human crowd modelling [38, 68] to name but two. The remainder of this paper is structured as follows. In Section 2 we discuss the most basic SPP model, formulated in one dimension by Czir´ok et al. [22]. After discussing alterations to the model we go on to consider suitable application areas in the specific context of locust swarming. We present higher dimensional models in Section 3. We be- gin by discussing the simple model proposed by Vicsek et al. [69] and show that complex emergent behaviours are possible given even the sim- REFINING SELF-PROPELLED PARTICLE MODELS 301 plest of interaction rules in two dimensions. We consider alterations to the model and summarise the analysis of the potential convergence of the individuals in the model to a common direction. We also consider the archetypal model of [19] in both a discrete and continuous formulation and the biologically motivated model of [15]. In Section 4 we introduce the concept of leadership in SPP models. We analyse three different types of leadership in the three paradigmatic models previously intro- duced and discuss possible effects these leader particles can have upon the behaviour of the group as a whole. Finally we discuss the concept of evolving SPP models in order to test theories about the selective pres- sures acting on individuals which give rise to specific behavioural types. We combine the work of previous sections by introducing evolvable pa- rameters to SPP models in one and two dimensions, studying how the parameters vary as a result of each individual's ability to follow an in- formed leader. We conclude with a short discussion of the current status of SPP modelling and possible avenues for further research. 2 One-dimensional models The simplest case of a SPP model is the Czir´ok model in one dimension. The system studied by Czir´ok et al. [22], for example, consists of N autonomous agents on a line of length L with periodic boundary conditions. The ith particle, with lateral po- sition xi moves in one direction or the other along the line with variable speed ui. The velocity of each agent is updated by considering an av- erage of its own velocity and those of its `neighbours'. The neighbours of agent i are those particles which lie within a distance r of agent i's position, xi. The interaction radius, r, is a predefined constant which, in the original model, was chosen to be the same for each particle in the r simulation. We use i to denote the set of neighbours of particle i, ex- J r cluding itself, and ni(t) = is the number of these neighbours. The jJi j particles are initialised with a random initial position, xi [0; L), and 2 a random initial velocity, ui 1; 1 . Their positions and nondimen- sionalised velocities are evolv2ed{−usinggthe following two rules, identical for each particle, i = 1; 2; : : : ; N, (2.1) xi(t + 1) = xi(t) + v0ui(t); (2.2) ui(t + 1) = G( u(t) i) + ∆Qi; f h i g 302 C. A. YATES ET AL. and 1 (2.3) u i = ui + uj : h i ni + 1 j2J r Xi u i is the mean of the nondimensionalised velocity of the particles in the h i interaction radius of particle i and v0 is a velocity scaling necessitated by choosing a specific time-step. The role of the function G is to scale the average nondimensional velocity measured by each particle towards unity. A generalisation of the odd function, G, representing this velocity adjustment, is as follows: z + β sign(z) (2.4) G(z) = ; 1 + β where 1; for z > 0; sign(z) = 8 0; for z = 0; <> 1; for z < 0; − and in [22] β is taken to be 1.:> ∆Qi represents noise drawn from a uniform distribution with support [ η=2; η=2] where η will be referred to as the amplitude of the noise. In this,− original, statement of the Czir´ok model (or adapted versions thereof) the time-step is simply taken to be unity, which avoids the necessity of scaling the noise with the time- step, but leaves the model with one fewer degree of freedom. When recapitulating the models we prefer to state them with generality and consistency, which necessitates, in some cases, the introduction of an arbitrary time-step, ∆t: (2.5) xi(t + ∆t) = xi(t) + ∆tvi(t) (2.6) vi(t + ∆t) = vi(t) + ∆t G( v(t) i) vi(t) + ∆Qi: f h i − g Note that vi now represents the dimensional velocity of particle i. The noise parameter η should scale with the square root of the time-step, ∆t. We note that the choice of distribution from which the noise is drawn is perhaps less than optimal. Mathematically, at least, it would make more sense to consider normal distributions, especially when con- sidering ensemble properties of the group, such as the average velocity. In order to obtain an update equation for the average velocity of the group, we must sum equation (2.6) over all individuals. Normal noise REFINING SELF-PROPELLED PARTICLE MODELS 303 has the convenient property that the sum of two (or more) normal dis- tributions is still normal, whereas the sum of two uniform distributions gives the nonstandard, nondifferentiable triangle distribution.
Recommended publications
  • Behavioural Plasticity and the Transition to Order in Jackdaw Flocks
    ARTICLE https://doi.org/10.1038/s41467-019-13281-4 OPEN Behavioural plasticity and the transition to order in jackdaw flocks Hangjian Ling 1,2, Guillam E. Mclvor 3, Joseph Westley3, Kasper van der Vaart1, Richard T. Vaughan4, Alex Thornton 3* & Nicholas T. Ouellette 1* Collective behaviour is typically thought to arise from individuals following fixed interaction rules. The possibility that interaction rules may change under different circumstances has 1234567890():,; thus only rarely been investigated. Here we show that local interactions in flocks of wild jackdaws (Corvus monedula) vary drastically in different contexts, leading to distinct group- level properties. Jackdaws interact with a fixed number of neighbours (topological interac- tions) when traveling to roosts, but coordinate with neighbours based on spatial distance (metric interactions) during collective anti-predator mobbing events. Consequently, mobbing flocks exhibit a dramatic transition from disordered aggregations to ordered motion as group density increases, unlike transit flocks where order is independent of density. The relationship between group density and group order during this transition agrees well with a generic self- propelled particle model. Our results demonstrate plasticity in local interaction rules and have implications for both natural and artificial collective systems. 1 Department of Civil and Environmental Engineering, Stanford University, Stanford, CA 94305, USA. 2 Department of Mechanical Engineering, University of Massachusetts Dartmouth, North Dartmouth,
    [Show full text]
  • 18641 Ahmed Israr Final E-Thesis (Master Copy).Pdf
    MATHEMATICAL AND COMPUTATIONAL MODELLING OF SOFT AND ACTIVE MATTER by ISRAR AHMED A thesis submitted in partial fulfilment for the requirements for the degree of Doctor of Philosophy at the University of Central Lancashire SEPTEMBER, 2016 Student Declaration Form I declare that while registered as a candidate for the research degree, I have not been a registered candidate or enrolled student for another award of the University or at another academic or professional institution. I declare that no material contained in the thesis has been used in any other submission for an academic award and is solely my own work. Signature of Candidate Type of Award Doctor of Philosophy (PhD) School Physical sciences and computing ACKNOWLEDGEMENTS Firstly, I would like to thank my supervisors, Dr. Dung Ly and Prof Waqar Ahmed for their help and encouragement throughout this research. The work presented in this thesis could not have been done without their inspirational ideas and valuable insights. I should most like to thank my family, for their support and trust. Without their unfailing love and encouragement, it would have proved much more difficult to get through my research. List of publications Ahmed I, Ly D and Ahmed W, “Collective behaviour of self-propelled particles in homogeneous and heterogeneous medium” , International Journal of Modelling, Simulation, and Scientific Computing (submitted). Ahmed I, Ly D and Ahmed W “Collective behaviour of self-propelled particles in the presence of moving obstacles” Physical Review Letter (under process of submission) Abstract The collective motion of organisms such as flights of birds, swimming of school of fish, migration of bacteria and movement of herds across long distances is a fascinating phenomenon that has intrigued man for centuries.
    [Show full text]
  • Swarming in Bounded Domains by Andrea Thatcher a Dissertation
    Swarming in Bounded Domains by Andrea Thatcher A Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy Approved November 2015 by the Graduate Supervisory Committee: Hans Armbruster, Chair Sebastien´ Motsch Christian Ringhofer Carl Gardner Rodrigo Platte ARIZONA STATE UNIVERSITY December 2015 ABSTRACT Swarms of animals, fish, birds, locusts etc. are a common occurrence but their coher- ence and method of organization poses a major question for mathematics and biology. The Vicsek and the Attraction-Repulsion are two models that have been proposed to explain the emergence of collective motion. A major issue for the Vicsek Model is that its particles are not attracted to each other, leaving the swarm with alignment in velocity but without spatial coherence. Restricting the particles to a bounded domain generates global spatial coherence of swarms while maintaining velocity alignment. While individual particles are specularly reflected at the boundary, the swarm as a whole is not. As a result, new dynam- ical swarming solutions are found. The Attraction-Repulsion Model set with a long-range attraction and short-range repul- sion interaction potential typically stabilizes to a well-studied flock steady state solution. The particles for a flock remain spatially coherent but have no spatial bound and explore all space. A bounded domain with specularly reflecting walls traps the particles within a specific region. A fundamental refraction law for a swarm impacting on a planar boundary is derived. The swarm reflection varies from specular for a swarm dominated by kinetic energy to inelastic for a swarm dominated by potential energy. Inelastic collisions lead to alignment with the wall and to damped pulsating oscillations of the swarm.
    [Show full text]
  • Study of Multi-Agent Systems with Reinforcement Learning
    UNIVERSITY OF TRIESTE Study of multi-agent systems with reinforcement learning by Mihir Suneel Durve Under the supervision of Prof. Antonio Celani and co-supervision of Prof. Edoardo Milotti A thesis submitted in fulfillment for the degree of Doctor of Philosophy in the Faculty of Physics February 2020 UNIVERSITY OF TRIESTE Abstract Faculty of Physics Doctor of Philosophy by Mihir Suneel Durve ii Collective behavior in biological systems is one of the most fascinating phenomena observed in nature. Many conspecifics form a large group together and behave col- lectively in a highly synchronized fashion. Flocks of birds, schools of fish, swarms of insects, bacterial colonies are some of the examples of such systems. Since the last few years, researchers have studied collective behavior to address challenging questions like how do animals synchronize their motion, how do they interact with each other, how much information about their surroundings do they share, and if there are any general laws that govern the collective behavior in animal groups, etc. Many models have been proposed to address these questions but most of them are still open for answers. In this thesis, we take a brief overview of models proposed from statistical physics to explain the observed collective in animals. We advocate for understanding the collective behavior of animal groups by studying the decision making process of individual animals within the group. In the first part of this thesis, we investigate the optimal decision making process of individuals by implementing reinforcement learning techniques. By encouraging congregation of the agents, we observe that the agents learn to form a highly polar ordered state i.e.
    [Show full text]
  • Inferring Symmetric and Asymmetric Interactions Between Animals and Groups from Positional Data
    RESEARCH ARTICLE Inferring symmetric and asymmetric interactions between animals and groups from positional data 1☯ 2☯ 1☯ Edward Hollingdale , Francisco Javier PeÂrez-BarberõÂaID , David McPetrie WalkerID * 1 Department of Mathematics and Statistics, University of Western Australia, Nedlands, Perth, WA, Australia, 2 Game and Livestock Resources Unit, University of Castilla-La Mancha IDR IREC, Albacete, Spain ☯ These authors contributed equally to this work. a1111111111 * [email protected] a1111111111 a1111111111 a1111111111 Abstract a1111111111 Interactions between domestic and wild species has become a global problem of growing interest. Global Position Systems (GPS) allow collection of vast records of time series of animal spatial movement, but there is need for developing analytical methods to efficiently OPEN ACCESS use this information to unravel species interactions. This study assesses different methods to infer interactions and their symmetry between individual animals, social groups or spe- Citation: Hollingdale E, PeÂrez-BarberÂõa FJ, Walker DMPetrie (2018) Inferring symmetric and cies. We used two data sets, (i) a simulated one of the movement of two grazing species asymmetric interactions between animals and under different interaction scenarios by-species and by-individual, and (ii) a real time groups from positional data. PLoS ONE 13(12): series of GPS data on the movements of sheep and deer grazing a large moorland plot. e0208202. https://doi.org/10.1371/journal. pone.0208202 Different time series transformations were applied to capture the behaviour of the data (convex hull area, kth nearest neighbour distance, distance to centre of mass, Voronoi tes- Editor: Bryan C Daniels, Arizona State University & Santa Fe Institute, UNITED STATES sellation area, distance to past position) to assess their efficiency in inferring the interac- tions using different techniques (cross correlation, Granger causality, network properties).
    [Show full text]
  • Arxiv:2105.08792V2 [Cond-Mat.Stat-Mech] 21 Jun 2021 Cles with Their Neighbours
    On-lattice Vicsek model in confined geometries Andreas Kuhn∗ and Sabine C. Fischery Center for Computationaland Theoretical Biology, Fakult¨atf¨urBiologie, Universit¨atW¨urzburg, Klara-Oppenheimer-Weg 32, 97074 W¨urzburg, Germany (Dated: June 22, 2021) The Vicsek model (Vicsek et al. 1995) is a very popular minimalist model to study active matter with a number of applications to biological systems at different length scales. With its off-lattice implementation and the periodic boundary conditions, it aims at the analysis of bulk behaviour of a limited number of particles. To expand the applicability of the model to further biological systems, we introduce an on-lattice implementation and analyse its behaviour for three different geometries with reflective boundary conditions. For sufficiently fine lattices, the model behaviour does not differ between off-lattice and on-lattice implementation. The reflective boundary conditions introduce an alignment of the particles with the boundary for low levels of noise. Numerical sensitivity analysis of the swarming behaviour results in a detailed characterisation of the Vicsek model for confined geometries with reflective boundary conditions. In a channel geometry, the boundary alignment causes swarms to move along the channel. In a box, the edges act as swarm traps and the trapping shows a discontinuous noise dependence. In a disk geometry, an ordered rotational state arises. This state is well described by a novel order parameter. These results provide the basis for applications of the Vicsek model to biological questions involving large particle numbers in confined environments. I. INTRODUCTION on a square simulation domain with periodic boundary conditions. Such a setup is useful for approximating bulk Swarms of fish, flocks of birds or herds of big mammals properties from finite size simulations.
    [Show full text]
  • Collective Motion in Active Systems
    Collective Motion in Active Systems Igor Aronson Materials Science Division Argonne National Laboratory Department of Applied Mathematics and Engineering Sciences, Northwestern University Outline of the course • Overview of experiments • Complex Ginzburg-Landau model and pattern-forming instabilities • Self-organization of active polar rods: application in vitro cytoskeletal networks • Collective motion of interacting self-propelled particles • Lectures • Purpose: to teach a variety of research tools Outline of the course • Overview of experiments • Self-organization of active polar rods: application in vitro cytoskeletal networks • Collective motion of interacting self-propelled particles • Purpose: to teach a variety of research tools at the interface of mathematics, physics and biology • Introduction • patterns in granular systems • in vitro cytoskeletal networks • suspensions of swimmers Where in the World is Argonne? • World-Class Science • Unique Scientific Facilities • Free and Abundant Parking • 25 min from Downtown Chicago • White Deer (almost extinct) Argonne National Laboratory • Argonne is a multidisciplinary science and engineering research center • Mission: address vital national challenges in clean energy, environment, technology and national security. • Total 3,350 employees, 1250 scientists • Budget: $800 million • 15 research division, 6 national user facilities World-Class User Facilities advanced photon source center for nanoscale materials leadership computing facility electron microscopy center Materials Science
    [Show full text]
  • How Birds Fly Together: the Dynamics of Flocking
    GENERAL ARTICLE How Birds Fly Together: The Dynamics of Flocking Kishore Dutta We explain the physical motivation for studying the collective coherent motion of large numbers of self-propelled biological organisms. Starting from a well-known discrete model, we discuss the fundamental microscopic mechanisms leading to collective behavior in bird flocks, and how appropriate be- havioral rules for the individuals can determine specific Kishore Dutta is working features of the aggregation at the group level. We further as a lecturer in physics at discuss the theoretical, experimental, and computational ef- Darrang College, Tezpur, fort undertaken to explore this phenomenon together with Assam (India). His possible directions for future research in this area. research interest is in nonlinear dynamics, Introduction statistical field theory and quantum computation. The intricacies, beauty and grace of collective coherent motion of self-propelled biological organisms namely, flocks of birds, schools of fish, swarms of insects, slime molds, herds of wilde- beests, has fascinated humans from ancient times. The sheer elegance of these extraordinary self-organizing events is captured in many paintings, animations and graphics. Its perfect harmony of form and function not only inspired poetry, art and literature, but it has challenged scientists, evolutionary biologists and math- ematicians for a long time. This kind of behavior often referred to as flocking, exists in nature at almost every length scale of observation: from human crowds, mammalian herds, bird flocks, fish schools to unicellular organisms such as amoebae and bacteria, individual cells, and even at a microscopic level in the dynamics of actin and tubulin filaments and molecular motors.
    [Show full text]
  • Collective Motion in Confining and Non-Differentiable Geometries
    UNIVERSITA` DEGLI STUDI DI PADOVA FACOLTA` DI SCIENZE MM.FF.NN. DIPARTIMENTO DI FISICA Tesi di Laurea Magistrale in Fisica Collective Motion in Confining and Non-Differentiable Geometries Relatore: Prof. Enzo Orlandini Laureando: Davide Michieletto Anno Accademico 2010–2011 A Stefania e alla mia Famiglia, le parti del mio Tutto. Contents 1 Introduction 1 1.1 Method .............................. 4 2 Vicsek Model 7 2.1 Vicsek Model as Langevin Process Approximation . 9 2.2 Algorithm............................. 10 2.3 Observables ............................ 12 2.3.1 Scaling Properties . 14 2.4 Clustering............................. 18 2.4.1 Clustering Algorithm . 23 2.5 Giant Fluctuations . 23 2.6 The limit for low values of velocity . 26 3 Collective Motion of Hard-Core Spheres 29 3.1 EffectsonPhaseTransition . 30 3.2 SpatialCorrelation . 32 4 Systems Confined in Stripes 35 4.1 Bouncing Back Conditions at the Walls . 36 4.1.1 Effects on the Phase Transition . 38 4.1.2 Density Distribution . 39 4.1.3 Cluster Size Distribution . 40 4.2 NarrowingtheChannel . 41 4.2.1 Effects on the Phase Transition . 41 4.2.2 Density Distribution . 43 4.2.3 Cluster Size Distribution . 44 4.3 Giant Fluctuations in Rectangular-Shape Systems . 45 5 Phenomenologically Inspired Boundary Conditions 47 5.1 StopCondition .......................... 48 5.1.1 Effects on the Phase Transition . 49 5.1.2 Effects on the Density Distribution . 51 5.1.3 Cluster Size Distribution . 53 5.2 SlipCondition .......................... 54 5.2.1 Effects on Phase Transition . 55 v vi CONTENTS 5.2.2 Effects on Density Distribution . 57 5.2.3 Cluster Size Distribution .
    [Show full text]
  • Collective Behavior of Vicsek Particles Without and with Obstacles
    EPJ manuscript No. (will be inserted by the editor) Collective behavior of Vicsek particles without and with obstacles Raul Martinez1;2;3, Francisco Alarcon1;3, Diego Rogel Rodriguez1;3, Juan Luis Aragones2, and Chantal Valeriani1;3 1 Departamento de estructura de la materia, f´ısicat´ermicay electr´onica,Facultad de Ciencias F´ısicas,Universidad Complutense de Madrid, 28040 Madrid, Spain 2 IFIMAC, Facultad de Ciencias, Universidad Aut´onomade Madrid, Ciudad Universitaria de Cantoblanco, 28049, Madrid, Spain 3 GISC - Grupo Interdisciplinar de Sistemas Complejos, Madrid, Spain the date of receipt and acceptance should be inserted later Abstract. In our work we have studied a two-dimensional suspension of finite-size Vicsek hard-disks, whose time evolution follows an event-driven dynamics between subsequent time steps. Having compared its collective behaviour with the one expected for a system of scalar Vicsek point-like particles, we have analysed the effect of considering two possible bouncing rules between the disks: a Vicsek-like rule and a pseudo-elastic one, focusing on the order-disorder transition. Next, we have added to the two-dimensional suspension of hard-disk Vicsek particles disk-like passive obstacles of two types: either fixed in space or moving according to the same event-driven dynamics. We have performed a detailed analysis of the particles' collective behaviour observed for both fixed and moving obstacles. In the fixed obstacles case, we have observed formation of clusters at low noise, in agreement with previous studies. When using moving passive obstacles, we found that that order of active particles is better destroyed as the drag of obstacles increases.
    [Show full text]
  • Active Cluster Crystals with Vicsek-Like Alignment Interaction
    Active cluster crystals with Vicsek-like alignment interaction Javier Aguilar-Sánchez Master’s Thesis Master’s degree in Physics of Complex Systems at the Universitat De Les Illes Balears 2017 - 2018 September 2018 Thesis Supervisor : Cristóbal López 1 ACKNOWLEDGMENTS I would like to thank my supervisor, Cristóbal López, for his dedication to this project besides his professional and personal advice. I also acknowledge my relatives from Mallorca, especially to my auntie Silvia and her unconditional support through the entire year. I am grateful for the help received from the researchers of IFISC Emilio Hernández, for his corrections and discussion about active matter and Tomás Sintes and Pere Colet for their comments on the numerical methods. I have to show my recognition to Yaouen Fily1 for helping me to fully understand his work [1]. The last, but not the least, I honor my dear colleagues from the master; for they reinforced my idea that cooperation is much more ecient than competition. Non-equilibrium statistical mechanics largely remains messy, elusive and non-rigurous ... and this is precisely why it is such an interesting eld [2] 1 Wilkes Honors College, Florida Atlantic University. 2 CONTENTS Acknowledgments 1 Abstract 3 I. Introduction 3 II. Background 4 Passive matter: Brownian Motion4 Active matter 6 Vicsek Model 7 Active cluster crystals9 III. The model 13 Low diusion regime: eect on empty clusters 14 Phase diagrams 15 Large diusion regime 18 IV. Conclusions 19 V. Appendix 21 A. Diusion equation: dimension argument 21 B. Numerical methods for solving SDE 22 C. Equivalence between Active Ornstein-Uhlenbeck process and Active Brownian particle.
    [Show full text]
  • Collective Motion Patterns Occurring in a Highly a Balanced Account of the Various Experimental and Diverse Selection of Biological Systems
    Collective motion Tam´as Vicsek1,2 & Anna Zafeiris1,3 1 Department of Biological Physics, E¨otv¨os University - P´azm´any P´eter stny. 1A, Budapest, Hungary H-1117 2 Statistical and Biological Physics Research Group of HAS - P´azm´any P´eter stny. 1A, Budapest, Hungary H-1117 3 Department of Mathematics, National University of Athens - Panepistimioupolis 15784 Athens, Greece Abstract We review the observations and the basic laws describing the essential aspects of collective motion – being one of the most common and spectacular manifestation of coordinated behavior. Our aim is to provide a balanced discussion of the various facets of this highly multidisciplinary field, including experiments, mathematical methods and models for simulations, so that readers with a variety of background could get both the basics and a broader, more detailed picture of the field. The observations we report on include systems consisting of units ranging from macromolecules through metallic rods and robots to groups of animals and people. Some emphasis is put on models that are simple and realistic enough to reproduce the numerous related observations and are useful for developing concepts for a better understanding of the complexity of systems consisting of many simultaneously moving entities. As such, these models allow the establishing of a few fundamental principles of flocking. In particular, it is demonstrated, that in spite of considerable differences, a number of deep analogies exist between equilibrium statistical physics systems and those made of self-propelled (in most cases living) units. In both cases only a few well defined macroscopic/collective states occur and the transitions between these states follow a similar scenario, involving discontinuity and algebraic divergences.
    [Show full text]