RESEARCH ARTICLE Inferring symmetric and asymmetric interactions between animals and groups from positional data 1☯ 2☯ 1☯ Edward Hollingdale , Francisco Javier PeÂrez-BarberõÂaID , David McPetrie WalkerID * 1 Department of Mathematics and Statistics, University of Western Australia, Nedlands, Perth, WA, Australia, 2 Game and Livestock Resources Unit, University of Castilla-La Mancha IDR IREC, Albacete, Spain ☯ These authors contributed equally to this work. a1111111111 *
[email protected] a1111111111 a1111111111 a1111111111 Abstract a1111111111 Interactions between domestic and wild species has become a global problem of growing interest. Global Position Systems (GPS) allow collection of vast records of time series of animal spatial movement, but there is need for developing analytical methods to efficiently OPEN ACCESS use this information to unravel species interactions. This study assesses different methods to infer interactions and their symmetry between individual animals, social groups or spe- Citation: Hollingdale E, PeÂrez-BarberÂõa FJ, Walker DMPetrie (2018) Inferring symmetric and cies. We used two data sets, (i) a simulated one of the movement of two grazing species asymmetric interactions between animals and under different interaction scenarios by-species and by-individual, and (ii) a real time groups from positional data. PLoS ONE 13(12): series of GPS data on the movements of sheep and deer grazing a large moorland plot. e0208202. https://doi.org/10.1371/journal. pone.0208202 Different time series transformations were applied to capture the behaviour of the data (convex hull area, kth nearest neighbour distance, distance to centre of mass, Voronoi tes- Editor: Bryan C Daniels, Arizona State University & Santa Fe Institute, UNITED STATES sellation area, distance to past position) to assess their efficiency in inferring the interac- tions using different techniques (cross correlation, Granger causality, network properties).