Regulation of Alternative Splice Site Selection by Reversible Protein Phosphorylation

Total Page:16

File Type:pdf, Size:1020Kb

Regulation of Alternative Splice Site Selection by Reversible Protein Phosphorylation Regulation of alternative splice site selection by reversible protein phosphorylation Den Naturwissenschaftlichen Fakultäten der Friedrich-Alexander-Universität Erlangen-Nürnberg zur Erlangung des Doktorgrades vorgelegt von Tatyana Novoyatleva aus Baku, Aserbaidschan 2006 Als Dissertation genehmigt von den Naturwissenschaftlichen Fakultäten der Universität Erlangen-Nürnberg. Tag der mündlichen Prüfung: 21 Dezember 2006 Vorsitzender der Prüfungskomission: Prof. Dr. Eberhard Bänsch Erstberichterstatter: PD Dr. Fritz Titgemeyer Zweitberichterstatter: Prof. Dr. Michael Wegner To my parents ACKNOWLEDGMENTS The work presented here was performed in the Institute of Biochemistry at Friedrich- Alexander-University Erlangen-Nürnberg and was supported by the Families of Spinal Muscular Atrophy. I would like to thank Prof. Dr. Stefan Stamm for giving me the opportunity to work in his lab and for his strong motivated support and kind guidance during my Ph.D. research. I acknowledge my past and current colleagues, who became good friends during my graduation: Nataliya Benderskaya, Bettina Heinrich, Shivendra Kishore, Dominique Olbert, Zhaiyi Zhang, Yesheng Tang for their help and for creating a good atmosphere in the group. Also I would like to thank previous lab members: Annette Hartmann, Oliver Stoss, Peter Stoilov, Marieta Gencheva and Ilona Rafalska for their advise. I would like to thank Prof. Mathieu Bollen for his scientific remarks and for providing the opportunity for fruitful collaborations during my Ph.D research. I would like to thank Laurent Bracco and Pascale Fehlbaum for performing CHIP splicearray analysis. I would like to thank Dr. Matthew Buthcbach and Prof. Arthur Burges for performing experiments on transgenic mice. I would like to thank Prof. Michael Wegner and his group for sharing their resources with us. Many thanks to my friends for their encouragement and support throughout my time here in Erlangen: Larisa Ivashina, Kseniya Kashkevich, Tatiana Cheusova. Special thanks go to all my friends from home. I am very grateful to my sister for giving me strength and a comfortable atmosphere at home. My sincere thanks go to my dear husband who was always with me, in all good and bad moments, staying my best friend. Спасибо ВАМ мои родные мама и папа за все что для меня сделали. PUBLICATIONS Novoyatleva, T., Heinrich, B., Tang, Y., Benderska, N., Ben-Dov, C., Bracco, L., Bollen, M. and Stamm, S. Protein phosphatase 1 binds to the RNA recognition motif of several splicing factors and regulates alternative pre-mRNA processing (submitted). Novoyatleva, T., Rafalska, I., Tang, Y. and Stamm, S. (2006). Pre-mRNA missplicing as a cause of human disease. Prog. Mol. Subcell. Biol., 44, 27-46. Novoyatleva, T. and Stamm, S. (2005). Friedrich-Alexander-Universität European Patent Erlangen-Nürnberg, Protein phosphatase 1 regulates the usage of Tra2-beta1 dependent alternative exons. Use of PP-1 inhibitors to prevent missplicing events. EP# 05 013659.7. Stoss, O.,1 Novoyatleva, T.,1 Gencheva, M., Olbrich, M., Benderska, N. and Stamm, S. (2004). p59fyn mediated phosphorylation regulates the activity of the tissue-specific splicing factor rSLM-1. Mol. Cell. Neurosci., 27, 8-21. (1-equal contribution to the manuscript). Heinrich, B., Zhang, Z., Novoyatleva, T. and Stamm, S. Aberrant pre-mRNA splicing as a cause of human disease (2005). Journal of Clinical Ligand Assay, 7, 68-74. Tang, Y., Novoyatleva, T., Benderska, N., Kishore, S., Thanaraj, T.A., Stamm, S. (2004). Analysis of alternative splicing in vivo using minigenes. Handbook of RNA Biochemistry, WILEY-VCH Verlag GmbH & Co. KHaA, Weinheim. Contents CONTENTS CONTENTS....................................................................................................... I TABLE OF FIGURES AND TABLES ................................................................... IV ABBREVIATIONS ..........................................................................................VII ZUSAMMENFASSUNG .......................................................................................X ABSTRACT ....................................................................................................XII 1. INTRODUCTION...........................................................................................1 1.1. CONSTITUTIVE SPLICING AND THE BASAL SPLICING MACHINERY .....................................2 1.1.2. Mode of alternative splicing...............................................................3 1.1.3. Spliceosome commitment .................................................................3 1.1.4. Action of splicing factors ...................................................................5 1.1.5. The SR and SR-related family of proteins ............................................6 1.1.6. Role of SR and SR related proteins in constitutive and alternative splicing7 1.1.7. hnRNPs ..........................................................................................9 1.1.8. Human Transformer-2 beta .............................................................10 1.1.9. SLM-1 and SLM-2 are Sam68 like mammalian proteins ....................... 12 1.1.10. Coupling of splicing and transcription..............................................14 1.2. PHOSPHORYLATION DEPENDENT CONTROL OF THE PRE-MRNA SPLICING MACHINERY............ 15 1.2.1. Protein Phosphatase 1 ....................................................................16 1.2.2. Combinatorial control of PP1c ..........................................................19 1.2.3. Regulation of PP1 by diverse mechanisms .........................................19 1.3. ALTERNATIVE SPLICING AND HUMAN DISEASE........................................................24 1.3.1. Human diseases that are caused by mutation in splicing signals ...........24 1.3.2. Mutation of cis-acting elements .......................................................25 1.3.3. Spinal muscular atrophy (SMA)........................................................27 1.3.4. Current Cellular Models for Evaluating SMA Therapeutics..................... 28 1.3.5. Changes of trans-factors associated with diseases .............................. 30 1.3.6. Treatment of diseases caused by missplicing .....................................31 1.3.6.1. Gene Transfer Methods............................................................................31 1.3.6.2. Low molecular weight drugs.....................................................................32 1.3.7. Diagnostics ...................................................................................32 1.4. MECHANISM OF SPLICING...............................................................................32 2. RESEARCH OVERVIEW...............................................................................36 3. MATERIALS AND METHODS .......................................................................37 3.1. MATERIALS ...............................................................................................37 3.1.1. Chemicals.....................................................................................37 3.1.2. Enzymes ......................................................................................38 3.1.3. Cell lines and media .......................................................................38 3.1.4. Preparation of LB media .................................................................39 3.1.5. Bacterial strains and media .............................................................39 3.1.6. Antibiotics ....................................................................................39 3.1.7. Antibodies ....................................................................................40 3.1.8. Plasmids.......................................................................................40 3.1.9. Primers ........................................................................................42 3.2. METHODS ................................................................................................44 3.2.1. Amplification of DNA by PCR............................................................44 3.2.2. Plasmid DNA isolation (“mini-prep” method) ......................................45 3.2.3. Determination of nucleic acids concentration .....................................46 3.2.4. Electrophoresis of DNA ...................................................................46 3.2.5. Elution of DNA from agarose gels .....................................................46 3.2.6. Site-directed mutagenesis of DNA ....................................................46 i Contents 3.2.7. Preparation of competent E.coli cells ................................................ 47 3.2.8. Transformation of E.coli cells...........................................................48 3.2.9. Expression and purification of GST-tagged proteins in bacteria .............48 3.2.10. Expression and purification of HIS-tagged proteins in Baculovirus Expression System..................................................................................49 3.2.11. Determination of protein concentration ........................................... 52 3.2.12. Dephosphorylation assay of HIS Tra2-beta1 recombinant protein........52 3.2.13. In vitro transcription / translation of DNA into radiolabelled protein and GST pull-down assay ...............................................................................53 3.2.14. Freezing, thawing and subculturing of eukaryotic cells....................... 53 3.2.15. Subculturing of primary
Recommended publications
  • A 475 Years-Old Founder Effect Involving IL12RB1: a Highly Prevalent Mutation Conferring Mendelian Susceptibility to Mycobacterial Diseases in European Descendants
    Infection, Genetics and Evolution 9 (2009) 574–580 Contents lists available at ScienceDirect Infection, Genetics and Evolution journal homepage: www.elsevier.com/locate/meegid A 475 years-old founder effect involving IL12RB1: A highly prevalent mutation conferring Mendelian Susceptibility to Mycobacterial Diseases in European descendants J. Yancoski a, C. Rocco a, A. Bernasconi a, M. Oleastro a, L. Bezrodnik b, C. Vra´tnica c, F. Haerynck d, S.D. Rosenzweig a,* a Hospital Nacional de Pediatrı´a J. P. Garrahan, Buenos Aires, Argentina b Hospital de Nin˜os Ricardo Gutierrez, Buenos Aires, Argentina c Hospital de Nin˜os Juan Pablo II, Corrientes, Argentina d Ghent University Hospital, Ghent, Belgium ARTICLE INFO ABSTRACT Article history: Mutations in IFNGR1, IFNGR2, IL12RB1, IL12B, STAT1 and NEMO result in a common clinical phenotype Received 11 December 2008 known as Mendelian Susceptibility to Mycobacterial Diseases (MSMD). Interleukin-12 receptor b1 (IL- Received in revised form 13 February 2009 12Rb1) deficiency is the most common genetic etiology for MSMD. Known mutations affecting IL12RB1 Accepted 16 February 2009 are recessively inherited and are associated with null response to both IL-12 and IL-23. Mutation IL12RB1 Available online 9 March 2009 1623_1624delinsTT was originally described in 5 families from European origin (2 from Germany; 1 from Cyprus, France and Belgium). Interestingly, this same mutation was found in an unexpectedly high Keywords: prevalence among IL-12Rb1 deficient patients in Argentina: 5-out-of-6 individuals born to unrelated Hot spot families carried this particular change. To determine whether mutation 1623_1624delinsTT represents a Salmonella Bacillus Calmette Guerin DNA mutational hotspot or a founder effect, 34 polymorphic markers internal or proximal to IL12RB1 Interferon gamma were studied in the Argentinean and the Belgian patients.
    [Show full text]
  • Lupus-Associated Endogenous Retroviral LTR Polymorphism and Epigenetic Imprinting Promote HRES-1/Rab4 Expression and Mtor Activation
    Lupus-associated endogenous retroviral LTR polymorphism and epigenetic imprinting promote HRES-1/Rab4 expression and mTOR activation Aparna Godavarthy, … , Katalin Banki, Andras Perl JCI Insight. 2019. https://doi.org/10.1172/jci.insight.134010. Research In-Press Preview Immunology Graphical abstract Find the latest version: https://jci.me/134010/pdf LUPUS-ASSOCIATED ENDOGENOUS RETROVIRAL LTR POLYMORPHISM AND EPIGENETIC IMPRINTING PROMOTE HRES-1/RAB4 EXPRESSION AND MTOR ACTIVATION Aparna Godavarthy*1, Ryan Kelly*1, John Jimah1, Miguel Beckford1, Tiffany Caza1,2, David Fernandez1,2, Nick Huang1,3, Manuel Duarte1,2, Joshua Lewis1,2, Hind J. Fadel4, Eric M. Poeschla4, Katalin Banki5, and Andras Perl1,2,3 * These authors contributed equally to the study. 1, Division of Rheumatology, Department of Medicine; 2, Department of Microbiology and Immunology; 3, Department of Biochemistry and Molecular Biology, and 5, Department of Pathology, State University of New York, Upstate Medical University, College of Medicine, 750 East Adams Street, Syracuse, New York 13210; 4, Department of Molecular Medicine; Mayo Clinic College of Medicine, 200 First Street SW, Rochester 55905, USA; Correspondence: Andras Perl, M.D., Ph.D. , State University of New York, College of Medicine, 750 East Adams Street, Syracuse, New York 13210; Phone: (315) 464-4194; Fax: (315) 464- 4176; E-mail: [email protected] Key Words: Systemic Lupus Erythematosus, T Cells, HRES-1/Rab4. mTOR, Autoimmunity The authors have declared that no conflict of interest exists. Supplementary Materials include Supplemental Methods and Supplementary Figures S1-S26. 1 ABSTRACT Overexpression and long terminal repeat (LTR) polymorphism of the HRES-1/Rab4 human endogenous retrovirus locus have been associated with T-cell activation and disease manifestations in systemic lupus erythematosus (SLE).
    [Show full text]
  • SFRS14 Antibody (Monoclonal) (M01) Mouse Monoclonal Antibody Raised Against a Partial Recombinant SFRS14
    苏州工业园区双圩路9号1幢 邮 编 : 215000 电 话 : 0512-88856768 SFRS14 Antibody (monoclonal) (M01) Mouse monoclonal antibody raised against a partial recombinant SFRS14. Catalog # AT3845a Specification SFRS14 Antibody (monoclonal) (M01) - Product info Application WB, IHC, IF, E Primary Accession Q8IX01 Other Accession NM_014884 Reactivity Human Host mouse Clonality monoclonal Isotype IgG2a Kappa Clone Names 3C5 Calculated MW 120207 SFRS14 Antibody (monoclonal) (M01) - Additional info Gene ID 10147 Antibody Reactive Against Recombinant Protein.Western Blot detection against Other Names Immunogen (36.3 KDa) . SURP and G-patch domain-containing protein 2, Arginine/serine-rich-splicing factor 14, Splicing factor, arginine/serine-rich 14, SUGP2, KIAA0365, SFRS14 Target/Specificity SFRS14 (NP_055699, 579 a.a. ~ 674 a.a) partial recombinant protein with GST tag. MW of the GST tag alone is 26 KDa. Dilution WB~~1:500~1000 Format Clear, colorless solution in phosphate buffered saline, pH 7.2 . Storage Store at -20°C or lower. Aliquot to avoid repeated freezing and thawing. SFRS14 monoclonal antibody (M01), Precautions clone 3C5 Western Blot analysis of SFRS14 Antibody (monoclonal) (M01) is for research use only SFRS14 expression in Hela S3 NE ( (Cat # and not for use in diagnostic or therapeutic procedures. AT3845a ) SFRS14 Antibody (monoclonal) (M01) - Protocols Provided below are standard protocols that you may find useful for product applications. • Western Blot • Blocking Peptides • Dot Blot • Immunohistochemistry • Immunofluorescence • Immunoprecipitation Immunoperoxidase of monoclonal • Flow Cytomety antibody to SFRS14 on formalin-fixed • Cell Culture paraffin-embedded human testis. SFRS14 Antibody (monoclonal) (M01) - Background [antibody concentration 3 ug/ml] This gene encodes a member of the arginine/serine-rich family of splicing factors.
    [Show full text]
  • 1 Mutational Heterogeneity in Cancer Akash Kumar a Dissertation
    Mutational Heterogeneity in Cancer Akash Kumar A dissertation Submitted in partial fulfillment of requirements for the degree of Doctor of Philosophy University of Washington 2014 June 5 Reading Committee: Jay Shendure Pete Nelson Mary Claire King Program Authorized to Offer Degree: Genome Sciences 1 University of Washington ABSTRACT Mutational Heterogeneity in Cancer Akash Kumar Chair of the Supervisory Committee: Associate Professor Jay Shendure Department of Genome Sciences Somatic mutation plays a key role in the formation and progression of cancer. Differences in mutation patterns likely explain much of the heterogeneity seen in prognosis and treatment response among patients. Recent advances in massively parallel sequencing have greatly expanded our capability to investigate somatic mutation. Genomic profiling of tumor biopsies could guide the administration of targeted therapeutics on the basis of the tumor’s collection of mutations. Central to the success of this approach is the general applicability of targeted therapies to a patient’s entire tumor burden. This requires a better understanding of the genomic heterogeneity present both within individual tumors (intratumoral) and amongst tumors from the same patient (intrapatient). My dissertation is broadly organized around investigating mutational heterogeneity in cancer. Three projects are discussed in detail: analysis of (1) interpatient and (2) intrapatient heterogeneity in men with disseminated prostate cancer, and (3) investigation of regional intratumoral heterogeneity in
    [Show full text]
  • (P -Value<0.05, Fold Change≥1.4), 4 Vs. 0 Gy Irradiation
    Table S1: Significant differentially expressed genes (P -Value<0.05, Fold Change≥1.4), 4 vs. 0 Gy irradiation Genbank Fold Change P -Value Gene Symbol Description Accession Q9F8M7_CARHY (Q9F8M7) DTDP-glucose 4,6-dehydratase (Fragment), partial (9%) 6.70 0.017399678 THC2699065 [THC2719287] 5.53 0.003379195 BC013657 BC013657 Homo sapiens cDNA clone IMAGE:4152983, partial cds. [BC013657] 5.10 0.024641735 THC2750781 Ciliary dynein heavy chain 5 (Axonemal beta dynein heavy chain 5) (HL1). 4.07 0.04353262 DNAH5 [Source:Uniprot/SWISSPROT;Acc:Q8TE73] [ENST00000382416] 3.81 0.002855909 NM_145263 SPATA18 Homo sapiens spermatogenesis associated 18 homolog (rat) (SPATA18), mRNA [NM_145263] AA418814 zw01a02.s1 Soares_NhHMPu_S1 Homo sapiens cDNA clone IMAGE:767978 3', 3.69 0.03203913 AA418814 AA418814 mRNA sequence [AA418814] AL356953 leucine-rich repeat-containing G protein-coupled receptor 6 {Homo sapiens} (exp=0; 3.63 0.0277936 THC2705989 wgp=1; cg=0), partial (4%) [THC2752981] AA484677 ne64a07.s1 NCI_CGAP_Alv1 Homo sapiens cDNA clone IMAGE:909012, mRNA 3.63 0.027098073 AA484677 AA484677 sequence [AA484677] oe06h09.s1 NCI_CGAP_Ov2 Homo sapiens cDNA clone IMAGE:1385153, mRNA sequence 3.48 0.04468495 AA837799 AA837799 [AA837799] Homo sapiens hypothetical protein LOC340109, mRNA (cDNA clone IMAGE:5578073), partial 3.27 0.031178378 BC039509 LOC643401 cds. [BC039509] Homo sapiens Fas (TNF receptor superfamily, member 6) (FAS), transcript variant 1, mRNA 3.24 0.022156298 NM_000043 FAS [NM_000043] 3.20 0.021043295 A_32_P125056 BF803942 CM2-CI0135-021100-477-g08 CI0135 Homo sapiens cDNA, mRNA sequence 3.04 0.043389246 BF803942 BF803942 [BF803942] 3.03 0.002430239 NM_015920 RPS27L Homo sapiens ribosomal protein S27-like (RPS27L), mRNA [NM_015920] Homo sapiens tumor necrosis factor receptor superfamily, member 10c, decoy without an 2.98 0.021202829 NM_003841 TNFRSF10C intracellular domain (TNFRSF10C), mRNA [NM_003841] 2.97 0.03243901 AB002384 C6orf32 Homo sapiens mRNA for KIAA0386 gene, partial cds.
    [Show full text]
  • Pirfenidone Is Renoprotective in Diabetic Kidney Disease
    BASIC RESEARCH www.jasn.org Pirfenidone Is Renoprotective in Diabetic Kidney Disease ʈ Satish P. RamachandraRao,*†‡ Yanqing Zhu,‡ Timothy Ravasi,§ Tracy A. McGowan,‡ Irene Toh,‡ Stephen R. Dunn,‡¶ Shinichi Okada,*† Michael A. Shaw,** and Kumar Sharma*†‡ *Center for Renal Translational Medicine, Division of Nephrology-Hypertension, Department of Medicine, and ʈ §Department of Bioengineering, Jacobs School of Engineering, University of California, San Diego, Scripps NeuroAIDS Preclinical Studies Centre, and †Veterans Administration San Diego Healthcare System, La Jolla, California, ‡Center for Novel Therapies in Kidney Disease, Department of Medicine, ¶Cancer Genomics Facility, Kimmel Cancer Center, and **Proteomics and Mass Spectrometry Core Facility, Department of Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania ABSTRACT Although several interventions slow the progression of diabetic nephropathy, current therapies do not halt progression completely. Recent preclinical studies suggested that pirfenidone (PFD) prevents fibrosis in various diseases, but the mechanisms underlying its antifibrotic action are incompletely understood. Here, we evaluated the role of PFD in regulation of the extracellular matrix. In mouse mesangial cells, PFD decreased TGF-␤ promoter activity, reduced TGF-␤ protein secretion, and inhibited TGF-␤–induced Smad2-phosphor- ylation, 3TP-lux promoter activity, and generation of reactive oxygen species. To explore the therapeutic potential of PFD, we administered PFD to 17-wk-old db/db mice for 4 wk. PFD treatment significantly reduced mesangial matrix expansion and expression of renal matrix genes but did not affect albuminuria. Using liquid chromatography with subsequent electrospray ionization tandem mass spectrometry, we iden- tified 21 proteins unique to PFD-treated diabetic kidneys. Analysis of gene ontology and protein–protein interactions of these proteins suggested that PFD may regulate RNA processing.
    [Show full text]
  • Genome Wide Association Study of Hippocampal Subfield Volume in PTSD Cases and Trauma-Exposed Controls
    bioRxiv preprint doi: https://doi.org/10.1101/456988; this version posted October 30, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Hippocampal subfield GWAS in PTSD Revision date: October 18, 2018 Genome wide association study of hippocampal subfield volume in PTSD cases and trauma-exposed controls Rajendra A. Morey, M.D., M.S. a, b, c, Melanie E. Garrett, M.S. a, d, Jennifer S. Stevens, Ph.D. e, Emily Clarke, M.A. a, c, Courtney C. Haswell, M.S. a, c, Sanne J.H. van Rooij, Ph.D. e, Negar Fani, Ph.D. e, Adriana Lori, Ph.D. e, VA Mid-Atlantic MIRECC Workgroup†, Christine E. Marx, M.D. a, b, Jean C. Beckham, Ph.D. a, Gregory McCarthy, Ph.D. f, Michael A. Hauser, Ph.D. a, d, Allison E. Ashley-Koch, Ph.D. a, d †The VA Mid-Atlantic MIRECC Workgroup includes the following contributors: Mira Brancu, Ph.D., Patrick S. Calhoun, Ph.D., Eric Dedert, Ph.D., Eric B. Elbogen, Ph.D., John A. Fairbank, Ph.D., Robin A. Hurley, M.D., Jason D. Kilts, Ph.D., Nathan Kimbrel, Ph.D., Angela Kirby, M.S., Scott D. McDonald, Ph.D., Ph.D., Scott D. Moore, M.D., Ph.D., Jennifer C. Naylor, Ph.D., Jared Rowland, Ph.D., Cindy Swinkels, Ph.D., Steven T. Szabo, M.D., Ph.D., Katherine H. Taber, Ph.D., Larry A. Tupler, Ph.D., Elizabeth E. Van Voorhees, Ph.D., H.
    [Show full text]
  • Final Draft.Docx
    Three-Dimensional Modeling of Chicken Anemia Virus VP3 and Porcine Circovirus Type 1 VP3 A Major Qualifying Project Submitted to the faculty of WORCESTER POLYTECHNIC INSTITUTE in partial fulfillment of the requirements for the Degree of Bachelor of Science in Biochemistry and Chemistry by: __________________________ Sam Eisenberg __________________________________________ Lee Hermsdorf-Krasin __________________________ Curtis Innamorati September 12th, 2013 Approved: _________________________________ Dr. Destin Heilman, Advisor Department of Chemistry and Biochemistry, WPI Abstract The third viral protein (VP3) of the Chicken Anemia Virus (Apoptin) and Porcine Circovirus Type 1 (PCV1VP3) have potential therapeutic cancer killing properties. Though advances have been made in understanding their apoptotic mechanisms, the reasons behind their cancer cell selectivity have thus far eluded researchers. Further, researchers have been unable to isolate and crystallize these proteins, and this lack of a known structure greatly contributes to the difficulty of studying their selectivity. In the past decade protein prediction algorithms have made great strides in the ability to accurately predict secondary and tertiary structures of proteins. This project aimed to generate possible functional models of these proteins using the available prediction techniques. One significant and well defined function of these proteins is their ability to specifically localize to the cell nucleus or cytoplasm. In order to link and evaluate the results generated from tertiary structure predictions with possible mechanisms for localization, experiments regarding the activity of nuclear export signals in the proteins were performed. The generated models strongly suggest that a conformational change plays a significant role regarding the localization of Apoptin and that the export capabilities of PCV1VP3 are CRM1-dependent.
    [Show full text]
  • Effects of Chronic Stress on Prefrontal Cortex Transcriptome in Mice Displaying Different Genetic Backgrounds
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Springer - Publisher Connector J Mol Neurosci (2013) 50:33–57 DOI 10.1007/s12031-012-9850-1 Effects of Chronic Stress on Prefrontal Cortex Transcriptome in Mice Displaying Different Genetic Backgrounds Pawel Lisowski & Marek Wieczorek & Joanna Goscik & Grzegorz R. Juszczak & Adrian M. Stankiewicz & Lech Zwierzchowski & Artur H. Swiergiel Received: 14 May 2012 /Accepted: 25 June 2012 /Published online: 27 July 2012 # The Author(s) 2012. This article is published with open access at Springerlink.com Abstract There is increasing evidence that depression signaling pathway (Clic6, Drd1a,andPpp1r1b). LA derives from the impact of environmental pressure on transcriptome affected by CMS was associated with genetically susceptible individuals. We analyzed the genes involved in behavioral response to stimulus effects of chronic mild stress (CMS) on prefrontal cor- (Fcer1g, Rasd2, S100a8, S100a9, Crhr1, Grm5,and tex transcriptome of two strains of mice bred for high Prkcc), immune effector processes (Fcer1g, Mpo,and (HA)and low (LA) swim stress-induced analgesia that Igh-VJ558), diacylglycerol binding (Rasgrp1, Dgke, differ in basal transcriptomic profiles and depression- Dgkg,andPrkcc), and long-term depression (Crhr1, like behaviors. We found that CMS affected 96 and 92 Grm5,andPrkcc) and/or coding elements of dendrites genes in HA and LA mice, respectively. Among genes (Crmp1, Cntnap4,andPrkcc) and myelin proteins with the same expression pattern in both strains after (Gpm6a, Mal,andMog). The results indicate significant CMS, we observed robust upregulation of Ttr gene contribution of genetic background to differences in coding transthyretin involved in amyloidosis, seizures, stress response gene expression in the mouse prefrontal stroke-like episodes, or dementia.
    [Show full text]
  • WO 2012/174282 A2 20 December 2012 (20.12.2012) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2012/174282 A2 20 December 2012 (20.12.2012) P O P C T (51) International Patent Classification: David [US/US]; 13539 N . 95th Way, Scottsdale, AZ C12Q 1/68 (2006.01) 85260 (US). (21) International Application Number: (74) Agent: AKHAVAN, Ramin; Caris Science, Inc., 6655 N . PCT/US20 12/0425 19 Macarthur Blvd., Irving, TX 75039 (US). (22) International Filing Date: (81) Designated States (unless otherwise indicated, for every 14 June 2012 (14.06.2012) kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, English (25) Filing Language: CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, Publication Language: English DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, (30) Priority Data: KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, 61/497,895 16 June 201 1 (16.06.201 1) US MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, 61/499,138 20 June 201 1 (20.06.201 1) US OM, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SC, SD, 61/501,680 27 June 201 1 (27.06.201 1) u s SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, 61/506,019 8 July 201 1(08.07.201 1) u s TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
    [Show full text]
  • Transcriptional Recapitulation and Subversion Of
    Open Access Research2007KaiseretVolume al. 8, Issue 7, Article R131 Transcriptional recapitulation and subversion of embryonic colon comment development by mouse colon tumor models and human colon cancer Sergio Kaiser¤*, Young-Kyu Park¤†, Jeffrey L Franklin†, Richard B Halberg‡, Ming Yu§, Walter J Jessen*, Johannes Freudenberg*, Xiaodi Chen‡, Kevin Haigis¶, Anil G Jegga*, Sue Kong*, Bhuvaneswari Sakthivel*, Huan Xu*, Timothy Reichling¥, Mohammad Azhar#, Gregory P Boivin**, reviews Reade B Roberts§, Anika C Bissahoyo§, Fausto Gonzales††, Greg C Bloom††, Steven Eschrich††, Scott L Carter‡‡, Jeremy E Aronow*, John Kleimeyer*, Michael Kleimeyer*, Vivek Ramaswamy*, Stephen H Settle†, Braden Boone†, Shawn Levy†, Jonathan M Graff§§, Thomas Doetschman#, Joanna Groden¥, William F Dove‡, David W Threadgill§, Timothy J Yeatman††, reports Robert J Coffey Jr† and Bruce J Aronow* Addresses: *Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA. †Departments of Medicine, and Cell and Developmental Biology, Vanderbilt University and Department of Veterans Affairs Medical Center, Nashville, TN 37232, USA. ‡McArdle Laboratory for Cancer Research, University of Wisconsin, Madison, WI 53706, USA. §Department of Genetics and Lineberger Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA. ¶Molecular Pathology Unit and Center for Cancer Research, Massachusetts deposited research General Hospital, Charlestown, MA 02129, USA. ¥Division of Human Cancer Genetics, The Ohio State University College of Medicine, Columbus, Ohio 43210-2207, USA. #Institute for Collaborative BioResearch, University of Arizona, Tucson, AZ 85721-0036, USA. **University of Cincinnati, Department of Pathology and Laboratory Medicine, Cincinnati, OH 45267, USA. ††H Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA. ‡‡Children's Hospital Informatics Program at the Harvard-MIT Division of Health Sciences and Technology (CHIP@HST), Harvard Medical School, Boston, Massachusetts 02115, USA.
    [Show full text]
  • Genetic Analyses of Human Fetal Retinal Pigment Epithelium Gene Expression Suggest Ocular Disease Mechanisms
    ARTICLE https://doi.org/10.1038/s42003-019-0430-6 OPEN Genetic analyses of human fetal retinal pigment epithelium gene expression suggest ocular disease mechanisms Boxiang Liu 1,6, Melissa A. Calton2,6, Nathan S. Abell2, Gillie Benchorin2, Michael J. Gloudemans 3, 1234567890():,; Ming Chen2, Jane Hu4, Xin Li 5, Brunilda Balliu5, Dean Bok4, Stephen B. Montgomery 2,5 & Douglas Vollrath2 The retinal pigment epithelium (RPE) serves vital roles in ocular development and retinal homeostasis but has limited representation in large-scale functional genomics datasets. Understanding how common human genetic variants affect RPE gene expression could elu- cidate the sources of phenotypic variability in selected monogenic ocular diseases and pin- point causal genes at genome-wide association study (GWAS) loci. We interrogated the genetics of gene expression of cultured human fetal RPE (fRPE) cells under two metabolic conditions and discovered hundreds of shared or condition-specific expression or splice quantitative trait loci (e/sQTLs). Co-localizations of fRPE e/sQTLs with age-related macular degeneration (AMD) and myopia GWAS data suggest new candidate genes, and mechan- isms by which a common RDH5 allele contributes to both increased AMD risk and decreased myopia risk. Our study highlights the unique transcriptomic characteristics of fRPE and provides a resource to connect e/sQTLs in a critical ocular cell type to monogenic and complex eye disorders. 1 Department of Biology, Stanford University, Stanford, CA 94305, USA. 2 Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA. 3 Program in Biomedical Informatics, Stanford University School of Medicine, Stanford 94305 CA, USA. 4 Department of Ophthalmology, Jules Stein Eye Institute, UCLA, Los Angeles 90095 CA, USA.
    [Show full text]