Bluetooth Low Energy
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
5G INDOOR ROUTER Fx2000e USER GUIDE 2
USER GUIDE Inseego WavemakerTM PRO 5G Indoor Router FX2000e INSEEGO COPYRIGHT STATEMENT © 2021 Inseego Corp. All rights reserved. Complying with all copyright laws is the responsibility of the user. Without limiting the rights under copyright, no part of this document may be reproduced, stored in or introduced into a retrieval system, or transmitted in any form or by any means (electronic, mechanical, photocopying, recording or otherwise), or for any purpose without the expressed written permission of Inseego Corp. SOFTWARE LICENSE Proprietary Rights Provisions: Any software drivers provided with this product are copyrighted by Inseego Corp. and/or Inseego Corp.’s suppliers. Although copyrighted, the software drivers are unpublished and embody valuable trade secrets proprietary to Inseego Corp. and/or Inseego Corp. suppliers. The disassembly, decompilation, and/or Reverse Engineering of the software drivers for any purpose is strictly prohibited by international law. The copying of the software drivers, except for a reasonable number of back-up copies is strictly prohibited by international law. It is forbidden by international law to provide access to the software drivers to any person for any purpose other than processing the internal data for the intended use of the software drivers. U.S. Government Restricted Rights Clause: The software drivers are classified as “Commercial Computing device Software” and the U.S. Government is acquiring only “Restricted Rights” in the software drivers and their Documentation. U.S. Government Export Administration Act Compliance Clause: It is forbidden by US law to export, license or otherwise transfer the software drivers or Derivative Works to any country where such transfer is prohibited by the United States Export Administration Act, or any successor legislation, or in violation of the laws of any other country. -
Downloaded (Thus Far, by More Than 262 Million People) Software Such As Skype
Consortium Standards Bulletin A ConsortiumInfo.org publication February 2006 Vol V, No. 2 FEATURE ARTICLE CASE STUDY: THE UNRULY EMERGENCE OF THE DIGITAL HOME Andrew Updegrove Abstract: Although basic electrical devices like thermostats, phones and radios entered our dwellings many decades ago, the long-awaited vision of the "digital home" is only now becoming a reality. The emergence of the futuristic home, controlled by and for the fulfillment of the comfort, safety and enjoyment of its owners, has become possible only with the development of the hundreds of telecommunications, wireless, data format, networking and other standards that have been created by scores of accredited standards development organizations and unaccredited consortia, some venerable, and others new and created specifically for this purpose. An examination of how this new standards development ecosystem has evolved demonstrates how complex standards infrastructures come into existence through the reordering of relationships among existing, and the formation of new, standard setting organizations. Such a review also illustrates how participants behave when commercial opportunities are great, and the stakes for success (or failure) are high. Introduction: Through the coincidental maturation of a variety of technologies, the New Year has brought a rash of news stories and product announcements relating to innovations in digital home technology. All at once, multi-year research, standards development and commercialization efforts in video delivery and storage technology, wireless services (both "last mile" and in-home), multiple types of display technology, and new PC capabilities are converging at roughly the same time, allowing long- anticipated innovations in home services and systems to become available to consumers. -
User's Manual
54M/150M/300Mbps USB WIRELESS ADAPTER User’s Manual Version 2.0 User’s Manual Wireless USB Adapter 1. Introduction Thank you for purchasing the IEEE 802.11b/g or 802.11n Wireless USB Adapter. This Wireless Adapter is easy to use and easy to setup. If you have been tired of dealing with all those messy wires to connect a laptop or PC to office or home network, this Wireless adapter is an ideal access solution for wireless Internet connection. A typical Internet access application for the USB wireless adapter is shown as the following figure: There are two different ways to access Internet: 1. With a wireless adaptor, receiving and transferring signal via a wireless router, then passed to an ADSL modem, then to local ISP (Internet service supplier) through a telephone line. 2. With a wireless adaptor, receiving and transferring signal via local AP (Access Point) or so called Hotpoint directly. Tips: An 802.11 LAN is based on a cellular architecture where the system is subdivided into cells, where each cell (called Basic Service Set or BSS) is controlled by a Base Station (called Access Point, or in short AP). 2. Package Contents: One 54 Mbps 802.11b/g or 150Mbps or 300Mbps 802.11n USB Wireless Adapter. Adapter Installation disc. User’s Manual. Antenna (optional) Warranty The warrants for the end user (“Customer”) that this hardware product will be free from defects in workmanship and materials, under normal use and service, for twelve (12) months from the date of purchase from its authorized reseller. Information in this document is subject to change without prior notice. -
How Smart Tvs, Smart Cars, Smart Homes, and Smart Cities Are Changing the World
The Internet of Things How Smart TVs, Smart Cars, Smart Homes, and Smart Cities Are Changing the World MICHAEL MILLER 800 East 96th Street, Indianapolis, Indiana 46240 USA The Internet of Things Editor-in-Chief How Smart TVs, Smart Cars, Smart Homes, and Greg Wiegand Smart Cities Are Changing the World Executive Editor Copyright © 2015 by Pearson Education, Inc. Rick Kughen All rights reserved. No part of this book shall be reproduced, stored in a retrieval system, or transmitted by any means, electronic, mechani- Managing Editor cal, photocopying, recording, or otherwise, without written permis- Sandra Schroeder sion from the publisher. No patent liability is assumed with respect to the use of the information contained herein. Although every precau- Senior Project Editor tion has been taken in the preparation of this book, the publisher and author assume no responsibility for errors or omissions. Nor is any Tonya Simpson liability assumed for damages resulting from the use of the informa- Copy Editor tion contained herein. Anne Goebel ISBN-13: 978-0-7897-5400-4 ISBN-10: 0-7897-5400-2 Indexer Library of Congress Control Number: 2015932632 Erika Millen Printed in the United States of America Proofreader Jess DeGabriele First Printing: April 2015 Trademarks Technical Editor Gareth Branwyn All terms mentioned in this book that are known to be trademarks or service marks have been appropriately capitalized. Que Publishing Publishing Coordinator cannot attest to the accuracy of this information. Use of a term in this Kristin Watterson book should not be regarded as affecting the validity of any trademark or service mark. -
Chapter 14 Wireless Sensor Nodes
Chapter 14 Wireless Sensor Nodes Serge Chaumette and Damien Sauveron Abstract This chapter addresses the key points of wireless sensor nodes: applica- tions, constraints, architecture, operating systems, and security concerns. It does not pretend to be exhaustive but to provide the major references on these topics. 14.1 Introduction Huge advances in Microelectromechanical systems (MEMS) and Wireless commu- nications in the last decade of the twentieth century gave birth to new paradigms, where cheap, small size communicating sensors have been developed and integrated in many devices and large hardware/software environments. In this chapter, we target standalone wireless sensing devices, so-called wireless sensor nodes, which means that we focus on the device itself and not on the way it can be integrated within a global wireless sensor network. These small hardware pieces are becoming a key component of the digitization of the real world, thanks to their ease of deployment and the benefits that they can bring to human life in general, like infrastructure man- agement (such as power grids) and environmental protection for instance. They are quite different from expensive isolated sensors (i.e., not intended to be a part of a whole swarm) and achieve complex measurements (related to a given phenomenon), and subsequent computation operations. Indeed, the strength of small sensor nodes is their ability to self-organize as a large network which enables measurement very close to a possibly dangerous phenomenon. They can cover a wide area and so are able to observe the evolution and spreading of complex events. In Sect.14.2 we S. -
Wireless Technologies Cellular, GNSS, RFID, Short
Committed to excellence Wireless Technologies V5.0 Cellular, GNSS, RFID, Short- & Long Range Wireless Solutions Content Introduction/Linecard 3 LPWAN ............................. 72 – 81 Unlicensed Modules 73 – 74 GSM ................................ 4 – 15 Licensed Modules 75 – 79 Cellular Modules 6 – 7 Selection Guide 80 – 81 Cellular Data Cards 8 – 9 ANT TM .............................. 82 – 85 M2M Terminals 10 – 11 Selection Guide 85 Selection Guide 12 – 15 RFID/NFC ........................... 86 – 99 GNSS .............................. 16 – 25 NFC Tags 88 – 90 GNSS Wireless Modules 17 – 19 NFC Readers & Modules 91 – 93 Smart Antenna GNSS Modules 20 – 21 Selection Guide 94 – 99 Selection Guide 22 – 25 Protocols .......................... 100 – 101 WLAN .............................. 26 – 41 Wireless Protocols / Proprietary Protocols 100 – 101 Single Band Wi-Fi Modules 28 – 29 Antennas .......................... 102 – 109 Dual Band Wi-Fi Modules 30 – 33 Embedded Antennas 102 – 105 Selection Guide 34 – 41 Internal Antennas 106 – 107 Bluetooth® ........................... 42 – 61 External Antennas 108 – 109 Bluetooth® Dual Mode 44 SIM Card Holders ........................ 110 Bluetooth® Low Energy 45 – 54 Bluetooth® Mesh 55 Timing Devices ......................... 111 Selection Guide 56 – 61 Security .......................... 112 – 117 ISM ................................ 62 – 71 Energy Harvesting ................... 118 – 119 SubGHz Radio Frequency Solution 64 – 65 Selection Guide 66 – 69 RUTRONIK Initiatives ................. 120 -
Wireless Communication Technologies for Smart Metering
ISSN (Print) : 2320 – 3765 ISSN (Online): 2278 – 8875 International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering (A High Impact Factor, Monthly, Peer Reviewed Journal) Website: www.ijareeie.com Vol. 7, Issue 8, August 2018 Wireless Communication Technologies for Smart Metering-Opportunities and Challenges Biteshnath Tiwari1, Chandra Mouli Upadhyay2, Sanket Agarwal3, Sreekesh Udupa4 Senior Design Engineer, Dept. of Electrical and Automation, Larsen and Toubro, Mysore, India1, 2, 3 Design Engineer, Dept. of Electrical and Automation, Larsen and Toubro, Mysore, India4 ABSTRACT:A smart meter is an electronic device which intends to compute energy, store and transmit the data to the central server.The central idea behind the smart metering initiative stems from the logic that the use of analytics on the energy consumption data of the consumer will result in insights, enabling utilities to engineer better solutions for providing more reliable and efficient power supply at a lower cost. In the era of a smart grid, where devices are interconnected in anetwork and enabled with the two-way communication. In order to ensure safe, secure and efficient operation of a Smart grid, deploying a suitable communication technology has become the need of the hour. Wireless communication options includes but not limited to such as RF, cellular communication, Wi-Fi, Zigbee, NB-IoT, Wi- SUN etc. This paper aims to investigate wireless communication technologies like RF, GPRS and NB-IoT in terms of – Concepts,Features, Opportunities and Challenges. The paper also discuss about the communication conundrum in a smart metering given the contingencies involved in a few of the technologies. -
Introducing the Sprint 3G/4G USB Modem Section 1A Your Sprint 3G/4G USB Modem
Get Started� Sprint 3G/4G USB Modem U300 www.sprint.com ©2008 Sprint. Sprint and the logo are trademarks of Sprint. Other marks are the property of their respective owners. Ver. U300QSG-V1.6 Table of Contents Using the USB Y-Extension Cable and Laptop Clip ..............................................................................10 How to Use This Guide . i Viewing the User Guide ...................................................10 Removing the USB Modem ...........................................11 Section 1: Introducing the Sprint 3G/4G Contacting Sprint Customer Service ........................11 USB Modem . 1 Troubleshooting .....................................................................11 1A . Introducing the Sprint 3G/4G Section 3: Technical Specifications, USB Modem . 2 Regulatory and Safety Information, Your Sprint 3G/4G USB Modem ...................................2 and Warranty . 13 System Requirements..........................................................3 3A . Technical Specifications . 14 Package Contents ..................................................................3 Radio Frequency and Electrical Specifications . 14 Care and Maintenance .......................................................3 Software Specifications .................................................... 14 Section 2: Installing and Using the Environmental Specifications ....................................... 14 USB Modem . .5 Mechanical Specifications ............................................. 14 2A . Installing the Software . 6 CDMA -
High-Speed Wireless Personal Area Networks: an Application of UWB Technologies
7 High-Speed Wireless Personal Area Networks: An Application of UWB Technologies H. K. Lau The Open University of Hong Kong Hong Kong 1. Introduction Recently, a large number of wireless networks are being developed and deployed in the market. According to the communication range, wireless networks can be classified into wireless wide area networks (WWANs), wireless metropolitan area networks (WMANs), wireless local area networks (WLANs), wireless personal area networks (WPANs), and wireless body area networks (WBANs). With the advances in wireless technologies, latest generation of WPANs can provide a data rate of hundreds (or even thousands) of Mbps at a distance of less than 10 meters. Ultra-wideband (UWB) is an emerging technology that offers distinct advantages, e.g. high bandwidth and small communication ranges, for WPAN applications (Park & Rappaport, 2007; Chong et al., 2006; Fontana, 2004; Intel, 2004; Porcino & Hirt, 2003). One of the ‘killer’ applications of high-speed WPAN is wireless video area network (WVAN) that offers wireless transmission of high-definition videos (several Gbps) within a small communication distance (Singh et al., 2008; Wirelesshd 2009; Whdi 2009). This chapter provides a comprehensive summary on the latest development and standardization progress of high-speed WPANs. There are seven sections in this chapter. The first section describes the background of WPANs and introduces the IEEE networking standards for WPAN. The second section discusses characteristics of UWB signals and explains why they are particularly suitable for high-speed WPAN applications. The third section discusses technical challenges and standardization issues. The fourth section reports on the latest development of high-speed WPANs. -
MOD6320-T Wirelesshd Transmitter Module
MOD6320-T WirelessHD Transmitter Module Data Sheet SB-DS-02003-F April 2018 MOD6320-T WirelessHD Transmitter Module Data Sheet Contents Glossary ................................................................................................................................................................................ 6 1. General Description ...................................................................................................................................................... 7 1.1. Applications ......................................................................................................................................................... 7 1.2. Features ............................................................................................................................................................... 7 2. Module Program Deliverables ...................................................................................................................................... 8 3. Module Features ........................................................................................................................................................... 9 4. Mechanical Definition ................................................................................................................................................. 10 4.1. Module Dimensions .......................................................................................................................................... 10 4.2. Module Interface Connector -
New Wireless Sensor Network Technology for Precision
NEW WIRELESS SENSOR NETWORK TECHNOLOGY FOR PRECISION AGRICULTURE Māris Alberts, Uģis Grīnbergs, Dzidra Kreišmane, Andris Kalējs, Andris Dzērve, Vilnis Jēkabsons, Normunds Veselis, Viktors Zotovs, Līga Brikmane, Baiba Tikuma Institute of Mathematics and Computer Science of the University of Latvia, Riga, Raiņa blvd. 29, LV1459, Fax: +371 67820153 [email protected] Abstract: Institute of Mathematics and Computer Science (IMCS) of the University of Latvia is implementing the project “Development of Long Range Wireless sensor network for precision farming applications in Latvia” (The Project). The Project has two main directions of research. The first is development of new long range Wireless Sensor Network (WSN) nodes providing radio link in a long distances (more than 300m), the second is development of energy efficient operating system (FarmOS) for large scale WSNs with main focus on robust easy to use agricultural applications. Development of current WSN nodes is based on Texas Instrument’s hardware and AgroSeNET technology drafted by Cominfo Inc. FarmOS is being developed in cooperation with Institute of Electronics and Computer Science. In framework of the Project IMCS is implementing field trial of large scale Long Range WSN technology for automated radiation frost protection of cranberry fields. FarmOS supports mash topology of WSN. For small networks star and multihop topologies could be used. The main goal of the Project is to build WSN prototype with newly designed 50 long range nodes running FarmOS to provide automated cranberry field protection with intelligent radiation frost prediction and decision making features. Depending on data gathered in the real time the intelligence of the system will provide immediate decision whether fog generator, water spryer system or just wind blowers would be chosen. -
Distributed Medium Access Control (Mac) for Wireless Networks
DISTRIBUTED MEDIUM ACCESS CONTROL (MAC) FOR WIRELESS NETWORKS Making High-Speed Wireless A Reality ... MAC SPECIFICATION: RELEASE 1.5 DECEMBER 1, 2009 NOTICE The WiMedia Alliance, Inc. (WiMedia) disclaims any and all warranties, whether expressed or implied, including (without limitation) any implied warranties of merchantability or fitness for a particular purpose. WiMedia reserves the right to make changes to the document without further notice. Copyright © 2009 WiMedia Alliance, Inc. All Rights Reserved. December 1, 2009 MAC Specification: Release 1.5 ii WiMedia Limited Copyright License Agreement By receiving, installing, copying, reviewing or otherwise using the WiMedia Distributed Medium Access Control for Wireless Networks Specification (the "Specification"), you (the “Specification Recipient”) agree to the terms and conditions of this WiMedia Limited Copyright License Agreement (the “Agreement”) by and between the WiMedia Alliance, Inc. (“WiMedia”) and Specification Recipient. NO WIMEDIA PROMOTER, CONTRIBUTOR OR ADOPTER MEMBER SHALL BE BOUND TO THE TERMS OR CONDITIONS OF THIS AGREEMENT WHILE IT IS A PROMOTER, CONTRIBUTOR OR ADOPTER MEMBER. THIS AGREEMENT DOES BIND ALL WIMEDIA SUPPORTER MEMBERS AND NON-MEMBERS. 1. The Specification. “Specification” shall mean this WiMedia Logical Link Control Protocol Specification document. WiMedia reserves the right to change the Specification at any time without notice to Specification Recipient. 2. Limited Copyright Grant. Provided Specification Recipient complies with all terms and conditions of this Agreement, WiMedia grants Specification Recipient a non-exclusive, revocable, temporary, royalty-free, personal copyright license to copy, display and distribute the Specification. 3. Other Restrictions. Specification Recipient shall not disclose the Specification without prominently displaying the terms of this Agreement with the Specification and binding each recipient to the terms of this Agreement.