Using the 2016 Transit of Mercury to Find the Distance to the Sun
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Resource Letter OSE-1: Observing Solar Eclipses Jay M
Resource Letter OSE-1: Observing Solar Eclipses Jay M. PasachoffAndrew Fraknoi Citation: American Journal of Physics 85, 485 (2017); doi: 10.1119/1.4985062 View online: http://dx.doi.org/10.1119/1.4985062 View Table of Contents: http://aapt.scitation.org/toc/ajp/85/7 Published by the American Association of Physics Teachers RESOURCE LETTER Resource Letters are guides for college and university physicists, astronomers, and other scientists to literature, websites, and other teaching aids. Each Resource Letter focuses on a particular topic and is intended to help teachers improve course content in a specific field of physics or to introduce nonspecialists to this field. The Resource Letters Editorial Board meets annually to choose topics for which Resource Letters will be commissioned during the ensuing year. Items in the Resource Letter below are labeled with the letter E to indicate elementary level or material of general interest to persons seeking to become informed in the field, the letter I to indicate intermediate level or somewhat specialized material, or the letter A to indicate advanced or specialized material. No Resource Letter is meant to be exhaustive and complete; in time there may be more than one Resource Letter on a given subject. A complete list by field of all Resource Letters published to date is at the website <http://ajp.dickinson.edu/ Readers/resLetters.html>. Suggestions for future Resource Letters, including those of high pedagogical value, are welcome and should be sent to Professor Mario Belloni, Editor, AJP Resource Letters, Davidson College, Department of Physics, Box 6910, Davidson, NC 28035; e-mail: [email protected]. -
Lomonosov, the Discovery of Venus's Atmosphere, and Eighteenth Century Transits of Venus
Journal of Astronomical History and Heritage, 15(1), 3-14 (2012). LOMONOSOV, THE DISCOVERY OF VENUS'S ATMOSPHERE, AND EIGHTEENTH CENTURY TRANSITS OF VENUS Jay M. Pasachoff Hopkins Observatory, Williams College, Williamstown, Mass. 01267, USA. E-mail: [email protected] and William Sheehan 2105 SE 6th Avenue, Willmar, Minnesota 56201, USA. E-mail: [email protected] Abstract: The discovery of Venus's atmosphere has been widely attributed to the Russian academician M.V. Lomonosov from his observations of the 1761 transit of Venus from St. Petersburg. Other observers at the time also made observations that have been ascribed to the effects of the atmosphere of Venus. Though Venus does have an atmosphere one hundred times denser than the Earth’s and refracts sunlight so as to produce an ‘aureole’ around the planet’s disk when it is ingressing and egressing the solar limb, many eighteenth century observers also upheld the doctrine of cosmic pluralism: believing that the planets were inhabited, they had a preconceived bias for believing that the other planets must have atmospheres. A careful re-examination of several of the most important accounts of eighteenth century observers and comparisons with the observations of the nineteenth century and 2004 transits shows that Lomonosov inferred the existence of Venus’s atmosphere from observations related to the ‘black drop’, which has nothing to do with the atmosphere of Venus. Several observers of the eighteenth-century transits, includ- ing Chappe d’Auteroche, Bergman, and Wargentin in 1761 and Wales, Dymond, and Rittenhouse in 1769, may have made bona fide observations of the aureole produced by the atmosphere of Venus. -
Transit of Venus Presentation
http://sunearthday.nasa.gov/2012/transit/webcast.php Venus visible Venus with the unaided eye: "morning star" or the Earth "evening star. • Similar to Earth: – diameter: 12,103 km – 0.95 Earth’s – mass 0.89 of Earth's – few craters -- young surface – densities, chemical compositions are similar • rotation unusually slow (Venus day = 243 Earth days -- longer than Venus' year) • rotation retrograde • periods of Venus' rotation and of its orbit are synchronized -- always same face toward Earth when the two planets are at their closest approach • greenhouse effect -- surface temperature hot enough to melt lead M ikhail Lomonosov, june 5, 1761 discovered, during a transit, that V enus has an atmosphere The atmosphere is is composed mostly of carbon dioxide. There are several layers of clouds, many kilometers thick, composed of sulfuric acid. Mariner 10 Image of Venus V enera 13 Venus’ orbit is inclined (by 3.39 degrees) relative to the ecliptic If in the same plane we would have 5 transits in 8 years Venus: 13 years , Earth: 8 years Each time Earth completes 1.6 orbits, Venus catches up to it after 2.6 of its orbits Progress of the 2004 Transit of Venus pictured from NASA's Soho solar observatory. Credit: NASA Ascending (A) or Duration since last transit Date of transit Descending (D) node (years and months) 6 December 1631 A 4 December 1639 A 8 yrs 6 June 1761 D 121 yrs 6 months 3 June 1769 D 8 yrs 9 December 1874 A 105 yrs 6 months 6 December 1882 A 8 yrs 8 June 2004 D 121 yrs 6 months 5 June 2012 D 8 yrs 11 December 2117 A 105 yrs 6 months 8 December 2125 A 8 yrs In 6000 years 81 transits only Venus’ Role in History Copernican System vs Ptolemaic System http://astro.unl.edu/classaction/animations/renaissance/venusphases.html Venus’ Role in History Size of the Solar System - Revealed! • Kepler predicted the transit of December 1631 (though not observed!) and 120 year cycle. -
Expedition Measures Solar Motions Seen During Last Summer's Total Solar Eclipse 7 June 2018
Expedition measures solar motions seen during last summer's total solar eclipse 7 June 2018 "During the August 21, 2017, solar eclipse, our hidden behind the blue sky. "Only at a total solar dozens of telescopes and electronic cameras eclipse, when the blue sky goes away because collected data during the rare two minutes at which normal sunlight is hidden by the moon, can we see we could see and study the sun's outer the corona at all this well. And because the sun's atmosphere, the corona," reported solar- magnetic field changes over the 11-year sunspot astronomer Jay Pasachoff to the American cycle and erratically as well, each time we look at Astronomical Society, meeting in Denver during the corona—even when we get only a couple of June 4-7. Pasachoff, Field Memorial Professor of minutes to see it every couple of years somewhere Astronomy at Williams College, discussed results in the world—we have a new sun to study, just as a from his team's observations made in Salem, cardiologist-researcher who looked inside Oregon, and measurements that his team has someone's heart in, say, Africa two years ago for a made of extremely rapid motions in the corona. couple of minutes would still have lots to learn by looking at a new patient in the U.S. a couple of "We could see giant streamers coming out of low years later." solar latitudes as well as plumes out of the sun's north and south poles, all held in their beautiful "We are learning about the sun's influence on the shapes by the sun's magnetic field," he said. -
PHYS 231 Lecture Notes – Week 1
PHYS 231 Lecture Notes { Week 1 Reading from Maoz (2nd edition): • Chapter 1 (mainly background, not examinable) • Sec. 2.1 • Sec. 2.2.1 • Sec. 2.2.3 • Sec. 2.2.4 Much of this week's material is quite descriptive, but some mathematical and physical points may benefit from expansion here. I provide here expanded coverage of material covered in class but not fully discussed in the Maoz text. For material covered in the text, I'll mostly just give some generalities and a reference. References to slides on the web page are in the format \slidesx.y/nn," where x is week, y is lecture, and nn is slide number. 1.1 Kepler's Laws and Planetary Orbits Kepler's laws describe the motions of the planets: I Planets move in elliptical orbits with the Sun at one focus. II Planets obey the equal areas law, which is just the law of conservation of angular momentum expressed another way. III The square of a planet's orbital period is proportional to the cube of its semimajor axis. The figure below sketches the basic parts of an ellipse; the following table lists some basic planetary properties. (We'll return later to how we measure the masses of solar-system objects.) 1 The long axis of an ellipse is by definition twice the semi-major axis a. The short axis| the \width" of the ellipse, perpendicular to the long axis|is twice the semi-minor axis, b. The eccentricity is defined as s b2 e = 1 − : a2 Thus, an eccentricity of 0 means a perfect circle, and 1 is the maximum possible (since 0 < b ≤ a). -
NL#132 October
October 2006 Issue 132 AAS NEWSLETTER A Publication for the members of the American Astronomical Society PRESIDENT’S COLUMN J. Craig Wheeler, [email protected] August is a time astronomers devote to travel, meetings, and writing papers. This year, our routine is set 4-5 against the background of sad and frustrating wars and new terror alerts that have rendered our shampoo Calgary Meeting suspect. I hope that by the time this is published there is a return to what passes for normalcy and some Highlights glimmer of reason for optimism. In this summer season, the business of the Society, while rarely urgent, moves on. The new administration 6 under Executive Officer Kevin Marvel has smoothly taken over operations in the Washington office. The AAS Final transition to a new Editor-in-Chief of the Astrophysical Journal, Ethan Vishniac, has proceeded well, with Election some expectation that the full handover will begin earlier than previously planned. Slate The Society, under the aegis of the Executive Committee, has endorsed the efforts of Senators Mikulksi and Hutchison to secure $1B in emergency funding for NASA to make up for some of the costs of shuttle 6 return to flight and losses associated with hurricane Katrina. It remains to be seen whether this action 2007 AAS will survive the budget process. The Executive Committee has also endorsed a letter from the American Renewals Institute of Physics supporting educators in Ohio who are fending off an effort there to include intelligent design in the curriculum. 13 Interestingly, the primary in Connecticut was of relevance to the Society. -
Venus Transit 5−6 June 2012 (From 22:00 to 4:56 UT) Australia, Japan, Norway
Venus Transit 5−6 June 2012 (from 22:00 to 4:56 UT) Australia, Japan, Norway Objective The main objective of the venus-2012.org project is the observation of the Venus Transit that will take place on 5th/6th June 2012 (see Fig. 1) from three locations: Australia, Japan and Norway. In particular the project will: 1) Perform live broadcasting of the event (sky-live.tv). 2) Promote educational activities usingFIGURE images 1 obtained during the transit (astroaula.net). Global Visibility of the Transit of Venus of 2012 June 05/06 Region X* Greatest Transit Transit at Zenith Transit Sunset Sunset Begins Ends at at IV I IV I Transit at at Entire Ends No Transit III II III II Sunrise in Progress Begins Transit Sunrise in Progress Transit at Sunset Visible Transit Visible at Sunrise Transit (June 05) (June 06) Region Y* F. Espenak, NASAs GSFC eclipse.gsfc.nasa.gov/OH/transit12.html * Region X - Beginning and end of Transit are visible, but the Sun sets for a short period around maximum transit. * Region Y - Beginning and end of Transit are NOT visible, but the Sun rises for a short period around maximum transit. Figure 1. Earth map showing visibility of the Venus transit in 2012 (credit F. Espenak, NASA/GSFC). The Phenomenon A transit of an astronomical object occurs when it appears to move across the disc of another object which has a larger apparent size. There are different types of transits, like the Galilean moons on Jupiter’s disc, and exoplanets moving across their mother star. -
Your Guide to the Transit of Mercury of 9Th May 2016
!1 ! Your guide to the Transit of Mercury of 9th May 2016 a publication of the Public Outreach & Education Committee of the Astronomical Society of India Your guide to the Transit of Mercury 2016 !2 ! This work is licensed under a Creative Commons (Attribution - Non Commercial - ShareAlike) License. Please share/print/ photocopy/distribute this work widely, with attribution to the Public Outreach and Education Committee (POEC) of the Astronomical Society of India (ASI) under this same license. This license is granted for non-commercial use only. Contact details of the Public Outreach and Education Committee of the ASI : URL : http://astron-soc.in/outreach Email : [email protected] Facebook : asi poec Twitter : www.twitter.com/asipoec Download from : The pdf of this documents is available for free download from : http://astron-soc.in/outreach/activities/sky-event-related/transit- of-mercury-2016/ (also http://bit.ly/tom-india) Acknowledgement : We thank all those who made images available online either under the Creative Commons License or by a copyleft through image credits. Compiled by Niruj Ramanujam with contributions from Samir Dhurde, B.S. Shylaja and N. Rathnasree, for the POEC of the ASI April 2016 Your guide to the Transit of Mercury 2016 !3 1. Transit of Mercury ! Transit of Mercury, 8 Nov 2006, Transit of Venus, 6 Jun 2012, photographed by Eric Kounce, from Hungary Texas, USA DID YOU KNOW? The planets, with their moons, steadily revolve around the The next transit Sun, with Mercury taking 88 days and Neptune taking as of Mercury will much as 165 years to make one revolution! We barely occur on 9 May notice any of this, unless something spectacular happens to 2016 but it will not be visible remind us how fast this motion actually is. -
SOLAR ECLIPSE NEWSLETTER SOLAR ECLIPSE November 2003 NEWSLETTER
Volume 8, Issue 11 SOLAR ECLIPSE NEWSLETTER SOLAR ECLIPSE November 2003 NEWSLETTER The sole Newsletter dedicated to Solar Eclipses INDEX 2 SECalendar November Dear SENL reader, 6 Artis planetarium 6 CNN tonight 6 Antiquity of 'Dragon's Head and Tail' When we are finishing this newsletter, some of the die 7 New Sony videocamera with 3 Megapixel CCD hards are on its way to observe the total solar eclipse 8 Total irradiance graph 9 Eclipse retrocalculations of 23 November 2003. Indeed, some of the eclipse 10 Saros 139/144 and 129/134 chasers left with the icebreaker from South Africa to- 11 Question about eclipse seasons 11 Virus wards the Antarctic. Hopefully they will have a safe 11 Nasa Eclipse Site CD journey and we hope of course a safe return. 11 Picture Logo NASA WebPages 12 Fast question...... Many others will leave for Australia and will observe the 13 "Our Mr. Sun" 13 An eclipse/transit calculator for your mobile phone! eclipse from the air. We wish them of course all suc- 14 3d pix of eclipse cess with the observations of the eclipse. Hopefully we 15 25 october Mercury occultation by new moon 16 Giant sunspot approaching the Sun's centre will see some nice images of the eclipses, and their ac- 16 Live solar images , and northern lights counts in a few weeks time. 17 Satellites eclipsed 18 New Moon Oct 2003 The total lunar eclipse is another challenge for this 19 NASA Scientist Dives Into Perfect Space Storm 20 On the shortest time lap between tw o totalities in the same month. -
Transit of Venus M
National Aeronautics and Space Administration The Transit of Venus June 5/6, 2012 HD209458b (HST) The Transit of Venus June 5/6, 2012 Transit of Venus Mathof Venus Transit Top Row – Left image - Photo taken at the US Naval Math Puzzler 3 - The duration of the transit depends Observatory of the 1882 transit of Venus. Middle on the relative speeds between the fast-moving image - The cover of Harpers Weekly for 1882 Venus in its orbit and the slower-moving Earth in its showing children watching the transit of Venus. orbit. This speed difference is known to be 5.24 km/sec. If the June 5, 2012, transit lasts 24,000 Right image – Image from NASA's TRACE satellite seconds, during which time the planet moves an of the transit of Venus, June 8, 2004. angular distance of 0.17 degrees across the sun as Middle - Geometric sketches of the transit of Venus viewed from Earth, what distance between Earth and by James Ferguson on June 6, 1761 showing the Venus allows the distance traveled by Venus along its shift in the transit chords depending on the orbit to subtend the observed angle? observer's location on Earth. The parallax angle is related to the distance between Earth and Venus. Determining the Astronomical Unit Bottom – Left image - NOAA GOES-12 satellite x-ray image showing the Transit of Venus 2004. Middle Based on the calculations of Nicolas Copernicus and image – An observer of the 2004 transit of Venus Johannes Kepler, the distances of the known planets wearing NASA’s Sun-Earth Day solar glasses for from the sun could be given rather precisely in terms safe viewing. -
This Is an Electronic Reprint of the Original Article. This Reprint May Differ from the Original in Pagination and Typographic Detail
This is an electronic reprint of the original article. This reprint may differ from the original in pagination and typographic detail. Author(s): Sterken, Christiaan; Aspaas, Per Pippin; Dunér, David; Kontler, László; Neul, Reinhard; Pekonen, Osmo; Posch, Thomas Title: A voyage to Vardø - A scientific account of an unscientific expedition Year: 2013 Version: Please cite the original version: Sterken, C., Aspaas, P. P., Dunér, D., Kontler, L., Neul, R., Pekonen, O., & Posch, T. (2013). A voyage to Vardø - A scientific account of an unscientific expedition. The Journal of Astronomical Data, 19(1), 203-232. http://www.vub.ac.be/STER/JAD/JAD19/jad19.htm All material supplied via JYX is protected by copyright and other intellectual property rights, and duplication or sale of all or part of any of the repository collections is not permitted, except that material may be duplicated by you for your research use or educational purposes in electronic or print form. You must obtain permission for any other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not an authorised user. MEETING VENUS C. Sterken, P. P. Aspaas (Eds.) The Journal of Astronomical Data 19, 1, 2013 A Voyage to Vardø. A Scientific Account of an Unscientific Expedition Christiaan Sterken1, Per Pippin Aspaas,2 David Dun´er,3,4 L´aszl´oKontler,5 Reinhard Neul,6 Osmo Pekonen,7 and Thomas Posch8 1Vrije Universiteit Brussel, Brussels, Belgium 2University of Tromsø, Norway 3History of Science and Ideas, Lund University, Sweden 4Centre for Cognitive Semiotics, Lund University, Sweden 5Central European University, Budapest, Hungary 6Robert Bosch GmbH, Stuttgart, Germany 7University of Jyv¨askyl¨a, Finland 8Institut f¨ur Astronomie, University of Vienna, Austria Abstract. -
The Venus Transit: a Historical Retrospective
The Venus Transit: a Historical Retrospective Larry McHenry The Venus Transit: A Historical Retrospective 1) What is a ‘Venus Transit”? A: Kepler’s Prediction – 1627: B: 1st Transit Observation – Jeremiah Horrocks 1639 2) Why was it so Important? A: Edmund Halley’s call to action 1716 B: The Age of Reason (Enlightenment) and the start of the Industrial Revolution 3) The First World Wide effort – the Transit of 1761. A: Countries and Astronomers involved B: What happened on Transit Day C: The Results 4) The Second Try – the Transit of 1769. A: Countries and Astronomers involved B: What happened on Transit Day C: The Results 5) The 19th Century attempts – 1874 Transit A: Countries and Astronomers involved B: What happened on Transit Day C: The Results 6) The 19th Century’s Last Try – 1882 Transit - Photography will save the day. A: Countries and Astronomers involved B: What happened on Transit Day C: The Results 7) The Modern Era A: Now it’s just for fun: The AU has been calculated by other means). B: the 2004 and 2012 Transits: a Global Observation C: My personal experience – 2004 D: the 2004 and 2012 Transits: a Global Observation…Cont. E: My personal experience - 2012 F: New Science from the Transit 8) Conclusion – What Next – 2117. Credits The Venus Transit: A Historical Retrospective 1) What is a ‘Venus Transit”? Introduction: Last June, 2012, for only the 7th time in recorded history, a rare celestial event was witnessed by millions around the world. This was the transit of the planet Venus across the face of the Sun.