Potential Induced Seismicity Guide a Resource of Technical & Regulatory Considerations Associated with Fluid Injection

Total Page:16

File Type:pdf, Size:1020Kb

Potential Induced Seismicity Guide a Resource of Technical & Regulatory Considerations Associated with Fluid Injection 2021 UPDATE Potential Induced Seismicity Guide A Resource of Technical & Regulatory Considerations Associated with Fluid Injection Potential Induced Seismicity Guide: A Resource of Technical and Regulatory Considerations Associated with Fluid Injection Disclaimer This is an informational document and is not intended to offer recommended rules or regulations. The Induced Seismicity Workgroup (ISWG), an effort of the State Oil and Gas Regulatory Exchange (Exchange) recognizes that management and mitigation of the risks associated with induced seismicity are best considered at the state level with specific considerations at local, regional, or cross-state levels, due to significant variability in local geology and surface conditions (e.g., population, building conditions, infrastructure, critical facilities, seismic monitoring capabilities, etc.). Neither the State Oil and Gas Regulatory Exchange (Exchange), nor the ISWG, nor any person acting on their behalf makes any warranty, express or implied; or assumes any legal liability or responsibility for the accuracy, completeness, or any third party’s use or reliance on any information, apparatus, product, or process disclosed; or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not constitute or imply its endorsement, recommendation, or favor by the Exchange, the ISWG nor any person acting on their behalf. The views and opinions of authors expressed herein do not necessarily state or reflect those of the Exchange, or the ISWG. Recommended Citation Ground Water Protection Council and Interstate Oil and Gas Compact Commission. Potential Induced Seismicity Guide: A Resource of Technical and Regulatory Considerations Associated with Fluid Injection, March 2021, 250 pages. i Preface While seismicity induced by a variety of human activity has been observed and documented for decades, induced seismicity related to underground injection activities was only first recognized in the 1960s at the Rocky Mountain Arsenal near Denver. With the dramatic increase in seismicity in the southern mid-continent of the U.S. starting in 2009, followed by a significant decreasing trend since 2015, attention has been renewed on the potential hazards posed by earthquakes induced by fluid injection. The science required to understand the process and predict its impacts is ongoing. This Guide is the third edition of what was previously entitled “Potential Injection-Induced Seismicity Associated with Oil & Gas Development: A Primer on Technical and Regulatory Considerations Informing Risk Management and Mitigation.” The previous editions focused on induced seismicity associated with the underground disposal of oil and gas produced fluids in Class II wells. The purpose of this edition of the Guide is to update the science surrounding induced seismicity since 2017 and to expand on the topic of induced seismicity related to hydraulic fracturing. The Guide consists of four chapters and 12 appendices. A new topic, induced seismicity due to carbon capture and storage (CCUS), is also briefly described in Appendix H. This Guide is designed to provide state and provincial regulatory agencies with an overview of current technical and scientific information, along with considerations associated with evaluating fluid injection-induced seismicity, managing the associated hazard and risk, and developing response strategies to mitigate the occurrence and severity of the events. It is not intended to offer specific regulatory recommendations to agencies but is intended to serve as an information resource. Also, unlike prior studies by the National Research Council (NRC), U.S. Environmental Protection Agency (USEPA), Stanford University, and others, this document is not intended to provide a broad literature review. This Guide was developed the State Oil and Gas Regulatory Exchange (Exchange), an initiative of the Interstate Oil and Gas Compact Commission (IOGCC) and the Ground Water Protection Council (GWPC). The effort was led by the Induced Seismicity by Injection Work Group (ISWG), composed of representatives of state and provincial oil and gas regulatory agencies and state and provincial geological surveys, and subject matter experts from academia, industry, federal agencies, and environmental organizations. Management and mitigation of the risks associated with induced seismicity are best considered at the state level, with specific considerations at local or regional levels. A one-size-fits-all approach is infeasible, due to significant variability in local geology and surface conditions, including such factors as population, building conditions, infrastructure, critical facilities, and seismic monitoring capabilities. Appendix G includes summaries of approaches that various states have taken to address risk management and mitigation. Although important, the issues of insurance and liability are not addressed in this Guide because each state or province has unique laws that render general consideration of these topics impractical. ii Although earthquakes can be either natural (tectonic) or human-induced, this Guide uses the term “earthquake” to refer to an induced seismic event due to fluid injection. All induced seismic events of engineering and environmental relevance are earthquakes that are the result of displacement or slip on pre-existing geologic faults. Although such events are more accurately considered to be triggered, the terms “induced” and “triggered” are often used interchangeably to refer to seismicity related to human activity. “Microseismic” events due to hydraulic fracturing are generally the result of fracturing of intact rock but can be also fault-related slip events. Microseismic events are observed to be generally smaller than moment magnitude (M) 1.0. Throughout this Guide moment magnitude is used to denote the size of an earthquake unless otherwise noted. For a more complete description of moment magnitude and its relevance to the size of earthquakes, see Earthquake Magnitude in Appendix A. iii Table of Contents Preface .............................................................................................................................................. ii Executive Summary ............................................................................................................................ 1 Introduction .............................................................................................................................................. 1 Understanding Induced Seismicity ........................................................................................................... 2 Assessing Potential Injection-Induced Seismicity ..................................................................................... 3 Risk Management and Mitigation Strategies ............................................................................................ 4 Considerations for External Communication and Engagement ................................................................ 5 Key Message ............................................................................................................................................. 7 Chapter 1: Understanding Induced Seismicity .................................................................................... 8 Chapter Highlights..................................................................................................................................... 8 Introduction—Key Concepts and Earthquake Basics ................................................................................ 8 Magnitude and Depth of Induced Earthquakes ...................................................................................... 12 Hazards and Risks of Induced Seismicity ................................................................................................ 13 Ground Motion Models (GMMs) for Induced Seismicity ........................................................................ 14 Examples of Current Models ................................................................................................................... 14 USGS Hazard Maps .................................................................................................................................. 15 Estimated Number of Induced Seismicity Locations .............................................................................. 17 How Fluid Injection May Induce Earthquakes ........................................................................................ 18 Potential for Seismicity Related to Hydraulic Fracturing ........................................................................ 20 Future Research ...................................................................................................................................... 21 Chapter 2: Assessing Potentially Injection-Induced Seismicity ........................................................... 22 Chapter Highlights................................................................................................................................... 22 Introduction ............................................................................................................................................ 22 Contemporary Seismicity .......................................................................................................................
Recommended publications
  • Keck Combined Strong-Motion/Broadband Obs
    KECK COMBINED STRONG-MOTION/BROADBAND OBS WHOI Ocean Bottom Seismograph Laboratory W.M. Keck Foundation Award to Understand Earthquake Predictability at East Pacific Rise Transform Faults. • In 2006, the W.M. Keck Foundation awarded funding to Jeff McGuire and John Collins to determine the physical mechanisms responsible for the observed capability to predict, using foreshocks, large (Mw ~6) transform-fault earthquakes at the East Pacific Rise, and to gain greater insight into the fundamentals of earthquake mechanics in general. • Achieving this objective required building 10 OBS of a new and unique type that could record, without saturation, the large ground motions generated by moderate to large earthquakes at distances of less than ~10 km. W.M. Keck OBS: Combined Broadband Seismometer and Strong-Motion Accelerometer • The broadband OBS available from OBSIP carry a broadband seismometer whose performance is optimized to resolve the earth’s background noise, which can be as small as 10-11 g r.m.s. in a bandwidth of width 1/6 decade at periods of about 100 s. Thus, these sensors are ideal for resolving ground motions from large distant earthquakes, necessary for structural seismology studies. • Ground motions from local, moderate to large earthquakes can generate accelerations of up a g or more, which would saturate or clip these sensors. Currently, there are no sensors (or data-loggers) that have a dynamic range to resolve this ~220 dB range of ground motion. • To overcome this limitation, we used Keck Foundation funding to build 10 OBS equipped with both a conventional broadband seismometer and a strong- motion accelerometer with a clip level of 2.5 g.
    [Show full text]
  • Understanding and Mapping Variability of the Niobrara Formation
    UNDERSTANDING AND MAPPING VARIABILITY OF THE NIOBRARA FORMATION ACROSS WATTENBERG FIELD, DENVER BASIN by Nicholas Matthies A thesis submitted to the Faculty and the Board of Trustees of the Colorado School of Mines in partial fulfillment of the requirements for the degree of Master of Science (Geology). Golden, Colorado Date________________ Signed:____________________________________ Nicholas Matthies Signed:____________________________________ Dr. Stephen A. Sonnenberg Thesis Advisor Golden, Colorado Date:_______________ Signed:____________________________________ Dr. Paul Santi Professor and Head Department of Geology and Geological Engineering ii ABSTRACT Wattenberg Field has been a prolific producer of oil and gas since the 1970s, and a resurgence of activity in recent years in the Niobrara Formation has created the need for a detailed study of this area. This study focuses on mapping regional trends in stratigraphy, structure, and well log properties using digital well logs, 3D seismic data, and core X-ray diffraction data. Across Wattenberg, the Niobrara is divided into the Smoky Hill Member (made up of A Chalk, A Marl, B Chalk, B Marl, C Chalk, C Marl, and Basal Chalk/Marl) and the Fort Hays Limestone Member. Directly beneath the Niobrara, the Codell Sandstone is the uppermost part of the Carlile Formation. Stratigraphic trends in these units are primarily due to differential compaction and compensational sedimentation. The largest structural trend is a paleo-high that runs east-west to northeast-southwest across the middle of the field. It has a relief of about 100 ft, and is 20 mi wide. The A Chalk and A Marl show evidence of submarine erosion over this area. Faults mapped from 3D seismic data are consistent with previously published data on a proposed polygonal fault system in the Denver Basin.
    [Show full text]
  • Guideline for Extraction of Ground Motion Parameters for Scientific Hydraulic Fracturing Review Panel
    Guideline for Extraction of Ground Motion Parameters for Scientific Hydraulic Fracturing Review Panel Alireza Babaie Mahani Ph.D. P.Geo. Mahan Geophysical Consulting Inc. Victoria, BC Email: [email protected] Website: www.mahangeo.com Executive Summary The Scientific Review of Hydraulic Fracturing in British Columbia (2019) provides the key findings of a scientific panel on the topic of hydraulic fracturing in British Columbia and the associated environmental risks. As indicated in the report, the panel recommends preparation of guidelines for standard calculation of earthquake magnitude and ground motion parameters. Since Babaie Mahani and Kao (2019 and 2020) have addressed the methodology for calculation of local magnitude in two publications, this report deals with standard methodologies for extraction of ground motion parameters from recorded earthquake waveforms. The guidelines include data from both types of seismic sensors that are used for induced seismicity monitoring; seismometers that record ground motion velocities and accelerometers that are designed to record strong ground accelerations at short distances. Waveforms from the November 30, 2018 induced earthquake with moment magnitude (Mw) of 4.6 that occurred in northeast British Columbia within the Montney unconventional resource play are presented for better understanding of the processing steps. Data Formats The standard format that is used to archive earthquake data is called the SEED format (Standard for the Exchange of Earthquake Data; https://ds.iris.edu/ds/nodes/dmc/data/formats/seed/). When both the time series data and metadata are archived in one file, the name full-SEED is also used. miniSEED is the stripped down version of SEED that only includes waveform data (https://ds.iris.edu/ds/nodes/dmc/data/formats/miniseed/).
    [Show full text]
  • GROUNDWATER LEVELS in the DENVER BASIN BEDROCK AQUIFERS 2017
    GROUNDWATER LEVELS in the DENVER BASIN BEDROCK AQUIFERS 2017 by Andrew D. Flor John W. Hickenlooper Robert W. Randall Governor Executive Director, DNR Kevin G. Rein Matthew A. Sares State Engineer Manager, Hydrogeology Section GROUNDWATER LEVELS IN THE DENVER BASIN BEDROCK AQUIFERS 2017 This report updates basic data concerning the depth to and elevation of groundwater in the four main Denver Basin bedrock aquifers collected during the spring and summer of 2017. The report is organized first by aquifer, then by well name. Well completion information is provided, where available. Wells that may be completed in more than one aquifer are listed according to the uppermost aquifer. Approximately 95 water-level measurements in this year’s report were obtained by Division of Water Resources (Division) personnel. A total of six wells have been instrumented with data loggers to collect daily water-level data. These include the following: - four wells in the Castle Rock area that monitor all four Denver Basin aquifers; CO3_LTDW (DB-204), CO3_TKD (DB-205), CO6_KA (DB-206) and CO3_KLF (DB-203); and - two wells near Golden in the Pleasant View Metropolitan District are completed in the Arapahoe (DB-201) and Laramie-Fox Hills (DB-200) aquifers. Water-level data from 126 cooperator wells are also included in this report. Personnel from cooperating water districts and municipalities graciously provided these data upon request. The Division appreciates the cooperation of the many entities that provide water-level information. Recent Legislation has directed the Division of Water Resources, in consultation with the Colorado Water Conservation Board, to encourage qualified parties to submit water level data for inclusion in the statewide water level database.
    [Show full text]
  • PALEONTOLOGICAL TECHNICAL REPORT: 6Th AVENUE and WADSWORTH BOULEVARD INTERCHANGE PHASE II ENVIRONMENTAL ASSESSMENT, CITY of LAKEWOOD, JEFFERSON COUNTY, COLORADO
    PALEONTOLOGICAL TECHNICAL REPORT: 6th AVENUE AND WADSWORTH BOULEVARD INTERCHANGE PHASE II ENVIRONMENTAL ASSESSMENT, CITY OF LAKEWOOD, JEFFERSON COUNTY, COLORADO Prepared for: TEC Inc. 1746 Cole Boulevard, Suite 265 Golden, CO 80401 Prepared by: Paul C. Murphey, Ph.D. and David Daitch M.S. Rocky Mountain Paleontology 4614 Lonespur Court Oceanside, CA 92056 303-514-1095; 760-758-4019 www.rockymountainpaleontology.com Prepared under State of Colorado Paleontological Permit 2007-33 January, 2007 TABLE OF CONTENTS 1.0 SUMMARY............................................................................................................................. 3 2.0 INTRODUCTION ................................................................................................................... 4 2.1 DEFINITION AND SIGNIFICANCE OF PALEONTOLOGICAL RESOURCES........... 4 3.0 METHODS .............................................................................................................................. 6 4.0. LAWS, ORDINANCES, REGULATIONS AND STANDARDS......................................... 7 4.1. Federal................................................................................................................................. 7 4.2. State..................................................................................................................................... 8 4.3. County................................................................................................................................. 8 4.4. City.....................................................................................................................................
    [Show full text]
  • Calculating Earthquake Probabilities for the Sfbr
    CHAPTER 5: CALCULATING EARTHQUAKE PROBABILITIES FOR THE SFBR Introduction to Probability Calculations The first part of the calculation sequence (Figure 2.10) defines a regional model of the long-term production rate of earthquakes in the SFBR. However, our interest here is in earthquake probabilities over time scales shorter than the several-hundred-year mean recurrence intervals of the major faults. The actual time periods over which earthquake probabilities are calculated should correspond to the time scales inherent in the principal uses and decisions to which the probabilities will be applied. Important choices involved in engineering design, retrofitting homes or major structures, and modifying building codes generally have different time-lines. Accordingly, we calculate the probability of large earthquakes for several time periods, as was done in WG88 and WG90, but focus the discussion on the period 2002-2031. The time periods for which we calculate earthquake probability are the 1-, 5-, 10-, 20-, 30- and100-year-long intervals beginning in 2002. The second part of the calculation sequence (Figure 5.1) is where the time-dependent effects enter into the WG02 model. In this chapter, we review what time-dependent factors are believed to be important and introduce several models for quantifying their effects. The models involve two inter-related areas: recurrence and interaction. Recurrence is concerned with the long-term rhythm of earthquake production, as controlled by the geology and plate motion. Interaction is the syncopation of this rhythm caused by recent large earthquakes on faults in the SFBR as they affect the neighboring faults. The SFBR earthquake model allows us to portray the likelihood of occurrence of large earthquakes in several ways.
    [Show full text]
  • Earthquake Measurements
    EARTHQUAKE MEASUREMENTS The vibrations produced by earthquakes are detected, recorded, and measured by instruments call seismographs1. The zig-zag line made by a seismograph, called a "seismogram," reflects the changing intensity of the vibrations by responding to the motion of the ground surface beneath the instrument. From the data expressed in seismograms, scientists can determine the time, the epicenter, the focal depth, and the type of faulting of an earthquake and can estimate how much energy was released. Seismograph/Seismometer Earthquake recording instrument, seismograph has a base that sets firmly in the ground, and a heavy weight that hangs free2. When an earthquake causes the ground to shake, the base of the seismograph shakes too, but the hanging weight does not. Instead the spring or string that it is hanging from absorbs all the movement. The difference in position between the shaking part of the seismograph and the motionless part is Seismograph what is recorded. Measuring Size of Earthquakes The size of an earthquake depends on the size of the fault and the amount of slip on the fault, but that’s not something scientists can simply measure with a measuring tape since faults are many kilometers deep beneath the earth’s surface. They use the seismogram recordings made on the seismographs at the surface of the earth to determine how large the earthquake was. A short wiggly line that doesn’t wiggle very much means a small earthquake, and a long wiggly line that wiggles a lot means a large earthquake2. The length of the wiggle depends on the size of the fault, and the size of the wiggle depends on the amount of slip.
    [Show full text]
  • Energy and Magnitude: a Historical Perspective
    Pure Appl. Geophys. 176 (2019), 3815–3849 Ó 2018 Springer Nature Switzerland AG https://doi.org/10.1007/s00024-018-1994-7 Pure and Applied Geophysics Energy and Magnitude: A Historical Perspective 1 EMILE A. OKAL Abstract—We present a detailed historical review of early referred to as ‘‘Gutenberg [and Richter]’s energy– attempts to quantify seismic sources through a measure of the magnitude relation’’ features a slope of 1.5 which is energy radiated into seismic waves, in connection with the parallel development of the concept of magnitude. In particular, we explore not predicted a priori by simple physical arguments. the derivation of the widely quoted ‘‘Gutenberg–Richter energy– We will use Gutenberg and Richter’s (1956a) nota- magnitude relationship’’ tion, Q [their Eq. (16) p. 133], for the slope of log10 E versus magnitude [1.5 in (1)]. log10 E ¼ 1:5Ms þ 11:8 ð1Þ We are motivated by the fact that Eq. (1)istobe (E in ergs), and especially the origin of the value 1.5 for the slope. found nowhere in this exact form in any of the tra- By examining all of the relevant papers by Gutenberg and Richter, we note that estimates of this slope kept decreasing for more than ditional references in its support, which incidentally 20 years before Gutenberg’s sudden death, and that the value 1.5 were most probably copied from one referring pub- was obtained through the complex computation of an estimate of lication to the next. They consist of Gutenberg and the energy flux above the hypocenter, based on a number of assumptions and models lacking robustness in the context of Richter (1954)(Seismicity of the Earth), Gutenberg modern seismological theory.
    [Show full text]
  • Characteristics of Foreshocks and Short Term Deformation in the Source Area of Major Earthquakes
    Characteristics of Foreshocks and Short Term Deformation in the Source Area of Major Earthquakes Peter Molnar Massachusetts Institute of Technology 77 Massachusetts Avenue Cambridge, Massachusetts 02139 USGS CONTRACT NO. 14-08-0001-17759 Supported by the EARTHQUAKE HAZARDS REDUCTION PROGRAM OPEN-FILE NO.81-287 U.S. Geological Survey OPEN FILE REPORT This report was prepared under contract to the U.S. Geological Survey and has not been reviewed for conformity with USGS editorial standards and stratigraphic nomenclature. Opinions and conclusions expressed herein do not necessarily represent those of the USGS. Any use of trade names is for descriptive purposes only and does not imply endorsement by the USGS. Appendix A A Study of the Haicheng Foreshock Sequence By Lucile Jones, Wang Biquan and Xu Shaoxie (English Translation of a Paper Published in Di Zhen Xue Bao (Journal of Seismology), 1980.) Abstract We have examined the locations and radiation patterns of the foreshocks to the 4 February 1978 Haicheng earthquake. Using four stations, the foreshocks were located relative to a master event. They occurred very close together, no more than 6 kilo­ meters apart. Nevertheless, there appear to have been too clusters of foreshock activity. The majority of events seem to have occurred in a cluster to the east of the master event along a NNE-SSW trend. Moreover, all eight foreshocks that we could locate and with a magnitude greater than 3.0 occurred in this group. The're also "appears to be a second cluster of foresfiocks located to the northwest of the first. Thus it seems possible that the majority of foreshocks did not occur on the rupture plane of the mainshock, which trends WNW, but on another plane nearly perpendicualr to the mainshock.
    [Show full text]
  • A Review of the Seismic Hazard Zonation in National Building Codes in the Context of Eurocode 8
    A REVIEW OF THE SEISMIC HAZARD ZONATION IN NATIONAL BUILDING CODES IN THE CONTEXT OF EUROCODE 8 Support to the implementation, harmonization and further development of the Eurocodes G. Solomos, A. Pinto, S. Dimova EUR 23563 EN - 2008 A REVIEW OF THE SEISMIC HAZARD ZONATION IN NATIONAL BUILDING CODES IN THE CONTEXT OF EUROCODE 8 Support to the implementation, harmonization and further development of the Eurocodes G. Solomos, A. Pinto, S. Dimova EUR 23563 EN - 2008 The mission of the JRC is to provide customer-driven scientific and technical support for the conception, development, implementation and monitoring of EU policies. As a service of the European Commission, the JRC functions as a reference centre of science and technology for the Union. Close to the policy-making process, it serves the common interest of the Member States, while being independent of special interests, whether private or national. European Commission Joint Research Centre Contact information Address: JRC, ELSA Unit, TP 480, I-21020, Ispra(VA), Italy E-mail: [email protected] Tel.: +39-0332-789989 Fax: +39-0332-789049 http://www.jrc.ec.europa.eu Legal Notice Neither the European Commission nor any person acting on behalf of the Commission is responsible for the use which might be made of this publication. A great deal of additional information on the European Union is available on the Internet. It can be accessed through the Europa server http://europa.eu/ JRC 48352 EUR 23563 EN ISSN 1018-5593 Luxembourg: Office for Official Publications of the European Communities © European Communities, 2008 Reproduction is authorised provided the source is acknowledged Printed in Italy Executive Summary The Eurocodes are envisaged to form the basis for structural design in the European Union and they should enable engineering services to be used across borders for the design of construction works.
    [Show full text]
  • International Commission on Earthquake Forecasting for Civil Protection
    ANNALS OF GEOPHYSICS, 54, 4, 2011; doi: 10.4401/ag-5350 OPERATIONAL EARTHQUAKE FORECASTING State of Knowledge and Guidelines for Utilization Report by the International Commission on Earthquake Forecasting for Civil Protection Submitted to the Department of Civil Protection, Rome, Italy 30 May 2011 Istituto Nazionale di Geofisica e Vulcanologia ICEF FINAL REPORT - 30 MAY 2011 International Commission on Earthquake Forecasting for Civil Protection Thomas H. Jordan, Chair of the Commission Director of the Southern California Earthquake Center; Professor of Earth Sciences, University of Southern California, Los Angeles, USA Yun-Tai Chen Professor and Honorary Director, Institute of Geophysics, China Earthquake Administration, Beijing, China Paolo Gasparini, Secretary of the Commission President of the AMRA (Analisi e Monitoraggio del Rischio Ambientale) Scarl; Professor of Geophysics, University of Napoli "Federico II", Napoli, Italy Raul Madariaga Professor at Department of Earth, Oceans and Atmosphere, Ecole Normale Superieure, Paris, France Ian Main Professor of Seismology and Rock Physics, University of Edinburgh, United Kingdom Warner Marzocchi Chief Scientist, Istituto Nazionale di Geofisica e Vulcanologia, Rome, Italy Gerassimos Papadopoulos Research Director, Institute of Geodynamics, National Observatory of Athens, Athens, Greece Gennady Sobolev Professor and Head Seismological Department, Institute of Physics of the Earth, Russian Academy of Sciences, Moscow, Russia Koshun Yamaoka Professor and Director, Research Center for Seismology, Volcanology and Disaster Mitigation, Graduate School of Environmental Studies, Nagoya University, Nagoya, Japan Jochen Zschau Director, Department of Physics of the Earth, Helmholtz Center, GFZ, German Research Centers for Geosciences, Potsdam, Germany 316 ICEF FINAL REPORT - 30 MAY 2011 TABLE OF CONTENTS Abstract................................................................................................................................................................... 319 I. INTRODUCTION 320 A.
    [Show full text]
  • Predicting Ground Motion from Induced Earthquakes In
    Bulletin of the Seismological Society of America, Vol. 103, No. 3, pp. 1875–1897, June 2013, doi: 10.1785/0120120197 Ⓔ Predicting Ground Motion from Induced Earthquakes in Geothermal Areas by John Douglas, Benjamin Edwards, Vincenzo Convertito, Nitin Sharma, Anna Tramelli, Dirk Kraaijpoel, Banu Mena Cabrera, Nils Maercklin, and Claudia Troise Abstract Induced seismicity from anthropogenic sources can be a significant nui- sance to a local population and in extreme cases lead to damage to vulnerable struc- tures. One type of induced seismicity of particular recent concern, which, in some cases, can limit development of a potentially important clean energy source, is that associated with geothermal power production. A key requirement for the accurate assessment of seismic hazard (and risk) is a ground-motion prediction equation (GMPE) that predicts the level of earthquake shaking (in terms of, for example, peak ground acceleration) of an earthquake of a certain magnitude at a particular distance. Few such models currently exist in regard to geothermal-related seismicity, and con- sequently the evaluation of seismic hazard in the vicinity of geothermal power plants is associated with high uncertainty. Various ground-motion datasets of induced and natural seismicity (from Basel, Geysers, Hengill, Roswinkel, Soultz, and Voerendaal) were compiled and processed, and moment magnitudes for all events were recomputed homogeneously. These data are used to show that ground motions from induced and natural earthquakes cannot be statistically distinguished. Empirical GMPEs are derived from these data; and, although they have similar characteristics to recent GMPEs for natural and mining- related seismicity, the standard deviations are higher. To account for epistemic uncer- tainties, stochastic models subsequently are developed based on a single corner frequency and with parameters constrained by the available data.
    [Show full text]