Alkenes and Alkynes on and Reduc Ns. Ac of Alkynes
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Common Names for Selected Aromatic Groups
More Nomenclature: Common Names for Selected Aromatic Groups Phenyl group = or Ph = C6H5 = Aryl = Ar = aromatic group. It is a broad term, and includes any aromatic rings. Benzyl = Bn = It has a -CH2- (methylene) group attached to the benzene ring. This group can be used to name particular compounds, such as the one shown below. This compound has chlorine attached to a benzyl group, therefore it is called benzyl chloride. Benzoyl = Bz = . This is different from benzyl group (there is an extra “o” in the name). It has a carbonyl attached to the benzene ring instead of a methylene group. For example, is named benzoyl chloride. Therefore, it is sometimes helpful to recognize a common structure in order to name a compound. Example: Nomenclature: 3-phenylpentane Example: This is Amaize. It is used to enhance the yield of corn production. The systematic name for this compound is 2,4-dinitro-6-(1-methylpropyl)phenol. Polynuclear Aromatic Compounds Aromatic rings can fuse together to form polynuclear aromatic compounds. Example: It is two benzene rings fused together, and it is aromatic. The electrons are delocalized in both rings (think about all of its resonance form). Example: This compound is also aromatic, including the ring in the middle. All carbons are sp2 hybridized and the electron density is shared across all 5 rings. Example: DDT is an insecticide and helped to wipe out malaria in many parts of the world. Consequently, the person who discovered it (Muller) won the Nobel Prize in 1942. The systematic name for this compound is 1,1,1-trichloro-2,2-bis-(4-chlorophenyl)ethane. -
De Novo Biosynthesis of Terminal Alkyne-Labeled Natural Products
De novo biosynthesis of terminal alkyne-labeled natural products Xuejun Zhu1,2, Joyce Liu2,3, Wenjun Zhang1,2,4* 1Department of Chemical and Biomolecular Engineering, 2Energy Biosciences Institute, 3Department of Bioengineering, University of California, Berkeley, CA 94720, USA. 4Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA. *e-mail:[email protected] 1 Abstract: The terminal alkyne is a functionality widely used in organic synthesis, pharmaceutical science, material science, and bioorthogonal chemistry. This functionality is also found in acetylenic natural products, but the underlying biosynthetic pathways for its formation are not well understood. Here we report the characterization of the first carrier protein- dependent terminal alkyne biosynthetic machinery in microbes. We further demonstrate that this enzymatic machinery can be exploited for the in situ generation and incorporation of terminal alkynes into two natural product scaffolds in E. coli. These results highlight the prospect for tagging major classes of natural products, including polyketides and polyketide/non-ribosomal peptide hybrids, using biosynthetic pathway engineering. 2 Natural products are important small molecules widely used as drugs, pesticides, herbicides, and biological probes. Tagging natural products with a unique chemical handle enables the visualization, enrichment, quantification, and mode of action study of natural products through bioorthogonal chemistry1-4. One prevalent bioorthogonal reaction is -
Triazene (H2NNNH) Or Triimide (HNHNNH) Markofçrstel,[A, D] Yetsedaw A
DOI:10.1002/cphc.201600414 Articles On the Formation of N3H3 Isomers in Irradiated Ammonia Bearing Ices:Triazene (H2NNNH) or Triimide (HNHNNH) MarkoFçrstel,[a, d] Yetsedaw A. Tsegaw,[b] Pavlo Maksyutenko,[a, d] Alexander M. Mebel,[c] Wolfram Sander,[b] and Ralf I. Kaiser*[a, d] The remarkable versatility of triazenesinsynthesis, polymer theoretical studies with our novel detection scheme of photo- chemistry and pharmacology has led to numerousexperimen- ionization-driven reflectron time-of-flight mass spectroscopy tal and theoretical studies.Surprisingly,only very little is we can obtain information on the isomersoftriazene formed known aboutthe most fundamental triazene:the parentmole- in the films. Using isotopically labeled starting material, we can cule with the chemical formula N3H3.Here we observe molecu- additionally gain insightinthe formation pathways of the iso- lar,isolated N3H3 in the gas phase after it sublimes from ener- mers of N3H3 under investigation and identify the isomers getically processed ammonia and nitrogen films. Combining formedastriazene (H2NNNH) andpossibly triimide(HNHNNH). 1. Introduction During the last decades, triazenes—a class of organic mole- life time of at least 1mswas also inferred as an intermediate cules carrying the =N N=N moiety—have received substan- in the radiolysis of an aqueous solution of hydrazine based on À À tial attention both from the theoretical and organic chemistry asingle absorption feature at 230 nm.[6] The cyclic isomer of [1] communities. Derived from cis-and trans-triazene (HN=NNH2 ; triazene, cyclotriazane, was first reported crystallographically in Scheme1), the substituted counterparts have significant appli- zeolite A, where it was stabilized by asilver cation as [1a,c] [1d] + [7] + cations in synthetic chemistry, polymer science, and phar- Ag(N3H3) . -
Dehydrogenation by Heterogeneous Catalysts
Dehydrogenation by Heterogeneous Catalysts Daniel E. Resasco School of Chemical Engineering and Materials Science University of Oklahoma Encyclopedia of Catalysis January, 2000 1. INTRODUCTION Catalytic dehydrogenation of alkanes is an endothermic reaction, which occurs with an increase in the number of moles and can be represented by the expression Alkane ! Olefin + Hydrogen This reaction cannot be carried out thermally because it is highly unfavorable compared to the cracking of the hydrocarbon, since the C-C bond strength (about 246 kJ/mol) is much lower than that of the C-H bond (about 363 kJ/mol). However, in the presence of a suitable catalyst, dehydrogenation can be carried out with minimal C-C bond rupture. The strong C-H bond is a closed-shell σ orbital that can be activated by oxide or metal catalysts. Oxides can activate the C-H bond via hydrogen abstraction because they can form O-H bonds, which can have strengths comparable to that of the C- H bond. By contrast, metals cannot accomplish the hydrogen abstraction because the M- H bonds are much weaker than the C-H bond. However, the sum of the M-H and M-C bond strengths can exceed the C-H bond strength, making the process thermodynamically possible. In this case, the reaction is thought to proceed via a three centered transition state, which can be described as a metal atom inserting into the C-H bond. The C-H bond bridges across the metal atom until it breaks, followed by the formation of the corresponding M-H and M-C bonds.1 Therefore, dehydrogenation of alkanes can be carried out on oxides as well as on metal catalysts. -
Production of Pure Hydrogen by Ethanol Dehydrogenation Abstract
The Future Role of Hydrogen in Petrochemistry and Energy Supply DGMK Conference October 4-6, 2010, Berlin, Germany Production of Pure Hydrogen by Ethanol Dehydrogenation E. Santacesaria, G. Carotenuto, R. Tesser, M. Di Serio University of Naples “Federico II”, Department of Chemistry, Naples, Italy Abstract Hydrogen production from bio-ethanol is one of the most promising renewable processes to generate electricity using fuel cells. In this work, we have studied the production of pure hydrogen as by product of ethanol dehydrogenation reaction. This reaction is promoted by copper based catalysts and according to the catalyst used and the operative conditions gives place to acetaldehyde or ethyl acetate as main products. We studied in particular the performance of a commercial copper/copper chromite catalyst, supported on alumina and containing barium chromate as promoter that has given the best results. By operating at low pressure and temperature with short residence times, acetaldehyde is more selectively produced, while, by increasing the pressure (10-30 bars), the temperature (200-260°C) and the residence time (about 100 (grams hour/mol) of ethanol contact time) the selectivity is shifted to the production of ethyl acetate. However, in both cases pure hydrogen is obtained, as by product, that can easily be separated. Hydrogen obtained in this way is exempt of CO and can be directly fed to fuel cells without any inconvenience. In this work, runs performed in different operative conditions have been reported with the scope to individuate the best conditions. A carrier of H2 6% in N2 has been used. The studied catalyst has also shown a good thermal stability with respect to sintering phenomena, that generally occurs during the -1 -1 dehydrogenation on other copper catalysts. -
United States Patent (19) 11) 4,219,685 Savini 45 Aug
United States Patent (19) 11) 4,219,685 Savini 45 Aug. 26, 1980 (54) IMPROVING ODOR OF ISOPROPANOL Attorney, Agent, or Firm-C. Leon Kim; Rebecca Yablonsky 75 Inventor: Charles Savini, Warren, N.J. 57 ABSTRACT 73 Assignee: Exxon Research & Engineering Co., Methods for deodorizing lower alcohols such as ethanol Florham Park, N.J. and isopropyl alcohol and their oxy derivatives such as ethers and esters are disclosed, including contacting 21 Appl. No.: 31,761 these compounds with a deodorizing contact mass com 22 Filed: Apr. 20, 1979 prising, on a support, metals and/or metal oxides, pref erably of the metals of Group IB, VIB and VIII of the Periodic Table, where the metal oxides are at least par Related U.S. Application Data tially reduced to metal and the deodorizing contact 63 Continuation-in-part of Ser. No. 908,910, May 24, mass has a minimum particle dimension of greater than 1978, abandoned, which is a continuation-in-part of about 0.254 mm so as to be in a form suitable for use in Ser. No. 834,240, Sep. 19, 1977, abandoned. a fixed bed contacting process. In a preferred embodi ment, isopropyl alcohol is deodorized employing such 51 Int. Cl’.............................................. CO7C 29/24 deodorizing contact masses, preferably comprising 52 U.S. Cl. .............. ... 568/917; 568/922 Group VIII metals such as nickel, iron, cobalt and the 58) Field of Search ................................ 568/917,922 like, on a support, so that the contact mass has a surface 56) References Cited area less than about 1,500 m2 per gram. -
I. MATRIX ISOLATION of 1,1-DIAZENES II. DISTANCE, TEMPERATURE, and DYNAMIC SOLVENT EFFECTS on ELECTRON TRANSFER REACTIONS Thesis
I. MATRIX ISOLATION OF 1,1-DIAZENES II. DISTANCE, TEMPERATURE, AND DYNAMIC SOLVENT EFFECTS ON ELECTRON TRANSFER REACTIONS Thesis by James Edward Hanson In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy California Institute of Technology Pasadena, California 1990 (Submitted September 8, 1989) 11 © 1990 James Edward Hanson All rights Reserved ill Acknowledgements I would like to thank my advisor, Peter Dervan , for his enthusiasm and support during my studies at Caltech. I would also like to thank Professor John Hopfield for his availability when I needed assistance with the theoretical complexities of the electron transfer work. I am deeply indebted to Lutfur "Zeta" Khundkar and Joe Perry for their expert assistance and collaboration in making measurements and understanding the implications of the results. Al Sylwester was extremely helpful in my first year as I began to work on 1,1-diazenes, and Alvin Joran and Burt Leland made my transition to the electron transfer project relatively simple. I should also thank those in the Dervan group who helped me with synthetic problems, especially John Griffin and Warren Wade. I appreciated discussions with some of the electron transfer experts at Caltech: Professor Rudy Marcus, Dave Beratan, Jose Onuchic, Dave Malerba, and Tad Fox. There were many times when the men in the chemistry shops provided invaluable assistance--you guys are the best! There are many who made my stay at Caltech enjoyable--I'll remember skiing with John and Linda Griffin and Heinz Moser, basketball (and marathons!) with Dave Kaisaki, tennis with Erich Uffelmann, and late night conversations with Kevin Luebke. -
Process Technologies and Projects for Biolpg
energies Review Process Technologies and Projects for BioLPG Eric Johnson Atlantic Consulting, 8136 Gattikon, Switzerland; [email protected]; Tel.: +41-44-772-1079 Received: 8 December 2018; Accepted: 9 January 2019; Published: 15 January 2019 Abstract: Liquified petroleum gas (LPG)—currently consumed at some 300 million tonnes per year—consists of propane, butane, or a mixture of the two. Most of the world’s LPG is fossil, but recently, BioLPG has been commercialized as well. This paper reviews all possible synthesis routes to BioLPG: conventional chemical processes, biological processes, advanced chemical processes, and other. Processes are described, and projects are documented as of early 2018. The paper was compiled through an extensive literature review and a series of interviews with participants and stakeholders. Only one process is already commercial: hydrotreatment of bio-oils. Another, fermentation of sugars, has reached demonstration scale. The process with the largest potential for volume is gaseous conversion and synthesis of two feedstocks, cellulosics or organic wastes. In most cases, BioLPG is produced as a byproduct, i.e., a minor output of a multi-product process. BioLPG’s proportion of output varies according to detailed process design: for example, the advanced chemical processes can produce BioLPG at anywhere from 0–10% of output. All these processes and projects will be of interest to researchers, developers and LPG producers/marketers. Keywords: Liquified petroleum gas (LPG); BioLPG; biofuels; process technologies; alternative fuels 1. Introduction Liquified petroleum gas (LPG) is a major fuel for heating and transport, with a current global market of around 300 million tonnes per year. -
Ger'g .Tyson Jr
July 14, 1964 ' G. N. TYSON, JR 3,140,582 ROCKET PROPULSION METHOD USING BORON AND NITROGEN COMPOUNDS Filed April 14, 1959 Ger'g .Tyson Jr. INVENTOR. I", u .12) ATTORNEYS 3,l4,582 Patented July 14,, 1964 2 The nitrogen containing compound and the boron con 3,140,582 taining compound are reacted in such proportions that all ROCKET PROPULSION METHOD USING BORON of the nitrogen and all of the boron react to produce AND NOGEN COMPOUNDS boron nitride, the carbon is released as elemental carbon George N. Tyson, Jr., Claremont, Calif., assignor to Olin Mathieson Chemical Corporation, a corporation of and large volumes of hydrogen gas are produced. Virginia Nitrogen containing compounds which can be employed Filed Apr. 14, 1959, Ser. No. 806,396 as reactants include the saturated hydronitrogens such 20 Claims. (Cl. 60-354) as ammonia, hydrazine, triazane, tetrazane; the unsaturated hydronitrogens such as diimide, triazene, tetrazene, iso This invention relates to a method for producing large 10 tetrazene, ammonium azide, hydrazine azide, and hydra volumes of hot gases in a short period of time, which zoic acid; alkyl hydrazines such as methyl hydrazine, un large volumes of hot gases are useful for many purposes symmetrical dimethyl hydrazine, ethyl hydrazine, unsym including imparting thrust to jet propelled devices such metrical diethyl hydrazine; alkylamines including mixed al as rockets. kylamines such as methylamine, dimethylamine, trimeth Jet propelled devices are essentially of two types: those 15 ylamine, ethylamine, diethylamine, triethylarnine, methyl which depend upon an external source for a portion of ethyl amine, n-propylamine, isopropylamine, di-n-propyl the propellant, and those in which the propellant is en amine, tri-n-propylamine, methyl propyl amine, ethyl prop tirely contained within the device. -
Hydroxylamine-O -Sulfonic Acid — a Versatile Synthetic Reagent
Hydroxylamine-O -sulfonic acid — a versatile synthetic reagent Raymond G. Wallacef School of Chemistry Brunei University Uxbridge, Middlesex UBS 3PH Great Britain imidazoli nones and related derivatives are time to these various modes of reaction. discussed in the review. Many of these The uses of HOSA as a reagent are organiz preparations can be carried out in high ed below according to the different syn yield, thetic transformations that it can bring about. Hydroxylamine-Osulfonic acid, NHj-OSOjH (abbreviated to HOSA in Probably by far the most well known this article) has become in recent years and explored reactions of HOSA are commercially available. Although much animation reactions, illustrating elec fruitful chemistry has been carried out us trophilic attack by HOSA, with amination ing HOSA, to this author's knowledge, on nitrogen being the most important, there has been no systematic review in although a significant number of English* of its use as a synthetic reagent. It animations on both carbon and sulfur have is a chemically interesting compound been reported, Amination on phosphorus because of the ability of the nitrogen center also occurs. to act in the role of both nucleophile and AMINATION electrophile, dependent on circumstances, Synopsis (a) At a nitrogen atom and thus it has proved to be a reagent of Hydroxylamine-0-sulfonic acid (0 Preparation of mono- and di- great synthetic versatility. (HOSA) has only recently become widely substituted hydrazines and trisubstituied commercially available despite the fact that H,N-Nu hydrazinium salts it has proved to be a valuable synthetic reagent in preparative organic chemistry. -
Mass Transfer and Hydrogenation of Acetone
MASS TRANSFER AND HYDROGENATION OF ACETONE IN A VIBRATING SLURRY REACTOR Thesis submitted for the degree of Ph.D. of the University of London by Norberto Oscar Lemcoff Department-of Chemical Engineering and Chemical Technology, Imperial College of Science and Technology, London S.W.7. February, 1974 ABSTRACT When a column of liquid-is made to oscillate vertically, gas bubbles are entrained and carried to the bottom of the column, where they aggregate and form a large slug which, in turn, rises to the top. Large volumes of gas are entrained and the fluid becomes highly agitated. A study of the solid- liquid mass transfer and of an heterogeneous catalyzed reaction in this equipment and the kinetic analysis of the hydrogenation of acetone over Raney nickel have been carried out. A large increase in the mass transfer coefficient for solid-liquid systems in the vibrating liquid column over those reported in a stirred tank has been observed. Two correlations for the Sherwood number as a function of the Reynolds, Schmidt and Froude numbers and the relative amplitude of oscillation have been found, one corresponding to the case no bubble cycling occurs and the other to the case it does. In the kinetic study, a Langmuir-Hinshelwood type equa- tion to represent the rate of hydrogenation of acetone in n-octane, isooctane, isopropanol and water and a correlation for the hydrogen solubility in different solvents and their mixtures have been developed. Activation energies and the order of reaction with respect to hydrogen have been determined. Finally, the behaviour of the vibrating column of liquid as an heterogeneous slurry reactor has been analysed by using two Raney nickel catalysts of different average particle size in the hydrogenation of aqueous acetone. -
Organic Chemistry Nomenclature Guide
Chemistry 222 Organic Chemistry Nomenclature Guide Many molecules in organic chemistry can be named using alkyl groups. MEMORIZE THEM! Common Alkyl (R) Groups Number of Carbons Formula Name 1 -CH3 methyl 2 -CH2CH3 ethyl 3 -CH2CH2CH3 propyl 4 -CH2CH2CH2CH3 butyl 5 -CH2CH2CH2CH2CH3 pentyl 6 -CH2(CH2)4CH3 hexyl 7 -CH2(CH2)5CH3 heptyl 8 -CH2(CH2)6CH3 octyl 9 -CH2(CH2)7CH3 nonyl Alkyl groups are generically referred to as R-groups, where R could be a methyl group, ethyl group, octyl group, etc. Organic compounds are often lumped into families or classes of compounds. The classes we will study this term include the following: R H R O H R O R R X Alcohols Ethers Alkanes Cycloalkanes Alkyl Halides or haloalkanes O O C C C C R C R C R H Ketones Aldehydes Alkynes Alkenes Aromatics H O O O All of these families are detailed in the R N R C R C R C pages that follow. H O H O R NH2 Amides Amines Carboxylic Acids Esters Page IV-20-1 / Organic Chemistry Nomenclature Guide Alkanes Elemental Formula: CnH2n+2 H Nomenclature Guidelines: -yl on alkyl group, +ane to ending Notes: An alkane is an alkyl group plus a hydrogen, often referenced as R-H. H C H Alkanes contain only carbon and hydrogen atoms in long chains with no rings. Each 3 H carbon atom is sp hybridized. Alkanes make great fuels but are generally unreactive. methane, CH4 Example: CH4 - methane - is a methyl group plus a hydrogen (CH3-H) Example: C2H6 - ethane - is a ethyl group plus a hydrogen (CH3CH2-H) Cycloalkanes H Elemental Formula: CnH2n H Nomenclature Guidelines: cyclo+ -yl on alkyl group, +ane to ending C H Notes: Cycloalkanes are alkanes which form an internal ring within the H C C molecule.