Geometry and Trigonometry

Total Page:16

File Type:pdf, Size:1020Kb

Geometry and Trigonometry Geometry and Trigonometry The names sine, secant and tangent are derived from the geometric terms associated with certain lines in the diagram below. If the radius of the circle is taken to be one unit, it follows that CN = sinθ, or CN = sinθ 1 AB = tanθ, or AB = tanθ 1 OB = secθ, or OB = secθ 1 The geometric narratives for these lines are- • The sine of an arc is a straight line drawn from one end of that arc, perpendicular to a diameter passing through the other end of the same arc. • The tangent of an arc is a straight line drawn from one extremity, perpendicular to the diameter, and terminated by a straight line drawn through the center of the circle and the other extremity of that arc. • The secant of an arc is a straight line drawn from the center of the circle, and produced till it meets the tangent. Now CN is half of the chord CD, and early expressions for the sines of angles were really lengths of the chords in a circle. The Arabic word for chord was translated into the Latin sinus. The lengths AB and OB are portions of the tangent and the secant to the circle. The trigonometric functions bearing these names were developed later than the sine, and they merely assumed the corresponding geometric names. The cofunctions received their names from the fact that any trigonometric function of an acute angle is equal in value to the cofunction of the complementary angle. There are other(old) functions that can also be reckoned. The versed sine or versine of an angle (or arc) is that part of the diameter between the sine and the arc i.e., versθ = NA = 1 − cosθ. The coversed sine or coversine is the versine of the complement of an angle (or arc). Here coversθ = EF = 1− sinθ . The haversine is one-half of the versine. 1 havθ = (1− cosθ). 2.
Recommended publications
  • Trigonometric Functions
    Trigonometric Functions This worksheet covers the basic characteristics of the sine, cosine, tangent, cotangent, secant, and cosecant trigonometric functions. Sine Function: f(x) = sin (x) • Graph • Domain: all real numbers • Range: [-1 , 1] • Period = 2π • x intercepts: x = kπ , where k is an integer. • y intercepts: y = 0 • Maximum points: (π/2 + 2kπ, 1), where k is an integer. • Minimum points: (3π/2 + 2kπ, -1), where k is an integer. • Symmetry: since sin (–x) = –sin (x) then sin(x) is an odd function and its graph is symmetric with respect to the origin (0, 0). • Intervals of increase/decrease: over one period and from 0 to 2π, sin (x) is increasing on the intervals (0, π/2) and (3π/2 , 2π), and decreasing on the interval (π/2 , 3π/2). Tutoring and Learning Centre, George Brown College 2014 www.georgebrown.ca/tlc Trigonometric Functions Cosine Function: f(x) = cos (x) • Graph • Domain: all real numbers • Range: [–1 , 1] • Period = 2π • x intercepts: x = π/2 + k π , where k is an integer. • y intercepts: y = 1 • Maximum points: (2 k π , 1) , where k is an integer. • Minimum points: (π + 2 k π , –1) , where k is an integer. • Symmetry: since cos(–x) = cos(x) then cos (x) is an even function and its graph is symmetric with respect to the y axis. • Intervals of increase/decrease: over one period and from 0 to 2π, cos (x) is decreasing on (0 , π) increasing on (π , 2π). Tutoring and Learning Centre, George Brown College 2014 www.georgebrown.ca/tlc Trigonometric Functions Tangent Function : f(x) = tan (x) • Graph • Domain: all real numbers except π/2 + k π, k is an integer.
    [Show full text]
  • Lesson 6: Trigonometric Identities
    1. Introduction An identity is an equality relationship between two mathematical expressions. For example, in basic algebra students are expected to master various algbriac factoring identities such as a2 − b2 =(a − b)(a + b)or a3 + b3 =(a + b)(a2 − ab + b2): Identities such as these are used to simplifly algebriac expressions and to solve alge- a3 + b3 briac equations. For example, using the third identity above, the expression a + b simpliflies to a2 − ab + b2: The first identiy verifies that the equation (a2 − b2)=0is true precisely when a = b: The formulas or trigonometric identities introduced in this lesson constitute an integral part of the study and applications of trigonometry. Such identities can be used to simplifly complicated trigonometric expressions. This lesson contains several examples and exercises to demonstrate this type of procedure. Trigonometric identities can also used solve trigonometric equations. Equations of this type are introduced in this lesson and examined in more detail in Lesson 7. For student’s convenience, the identities presented in this lesson are sumarized in Appendix A 2. The Elementary Identities Let (x; y) be the point on the unit circle centered at (0; 0) that determines the angle t rad : Recall that the definitions of the trigonometric functions for this angle are sin t = y tan t = y sec t = 1 x y : cos t = x cot t = x csc t = 1 y x These definitions readily establish the first of the elementary or fundamental identities given in the table below. For obvious reasons these are often referred to as the reciprocal and quotient identities.
    [Show full text]
  • Trigonometry and Spherical Astronomy 1. Sines and Chords
    CHAPTER TWO TRIGONOMETRY AND SPHERICAL ASTRONOMY 1. Sines and Chords In Almagest I.11 Ptolemy displayed a table of chords, the construction of which is explained in the previous chapter. The chord of a central angle α in a circle is the segment subtended by that angle α. If the radius of the circle (the “norm” of the table) is taken as 60 units, the chord can be expressed by means of the modern sine function: crd α = 120 · sin (α/2). In Ptolemy’s table (Toomer 1984, pp. 57–60), the argument, α, is given at intervals of ½° from ½° to 180°. Columns II and III display the chord, in units, minutes, and seconds of a unit, and the increase, in the same units, in crd α corresponding to an increase of one minute in α, computed by taking 1/30 of the difference between successive entries in column II (Aaboe 1964, pp. 101–125). For an insightful account on Ptolemy’s chord table, see Van Brummelen 2009, where many issues underlying the tables for trigonometry and spherical astronomy are addressed. By contrast, al-Khwārizmī’s zij originally had a table of sines for integer degrees with a norm of 150 (Neugebauer 1962a, p. 104) that has uniquely survived in manuscripts associated with the Toledan Tables (Toomer 1968, p. 27; F. S. Pedersen 2002, pp. 946–952). The corresponding table in al-Battānī’s zij displays the sine of the argu- ment at intervals of ½° with a norm of 60 (Nallino 1903–1907, 2:55– 56). This table is reproduced, essentially unchanged, in the Toledan Tables (Toomer 1968, p.
    [Show full text]
  • Notes on Curves for Railways
    NOTES ON CURVES FOR RAILWAYS BY V B SOOD PROFESSOR BRIDGES INDIAN RAILWAYS INSTITUTE OF CIVIL ENGINEERING PUNE- 411001 Notes on —Curves“ Dated 040809 1 COMMONLY USED TERMS IN THE BOOK BG Broad Gauge track, 1676 mm gauge MG Meter Gauge track, 1000 mm gauge NG Narrow Gauge track, 762 mm or 610 mm gauge G Dynamic Gauge or center to center of the running rails, 1750 mm for BG and 1080 mm for MG g Acceleration due to gravity, 9.81 m/sec2 KMPH Speed in Kilometers Per Hour m/sec Speed in metres per second m/sec2 Acceleration in metre per second square m Length or distance in metres cm Length or distance in centimetres mm Length or distance in millimetres D Degree of curve R Radius of curve Ca Actual Cant or superelevation provided Cd Cant Deficiency Cex Cant Excess Camax Maximum actual Cant or superelevation permissible Cdmax Maximum Cant Deficiency permissible Cexmax Maximum Cant Excess permissible Veq Equilibrium Speed Vg Booked speed of goods trains Vmax Maximum speed permissible on the curve BG SOD Indian Railways Schedule of Dimensions 1676 mm Gauge, Revised 2004 IR Indian Railways IRPWM Indian Railways Permanent Way Manual second reprint 2004 IRTMM Indian railways Track Machines Manual , March 2000 LWR Manual Manual of Instructions on Long Welded Rails, 1996 Notes on —Curves“ Dated 040809 2 PWI Permanent Way Inspector, Refers to Senior Section Engineer, Section Engineer or Junior Engineer looking after the Permanent Way or Track on Indian railways. The term may also include the Permanent Way Supervisor/ Gang Mate etc who might look after the maintenance work in the track.
    [Show full text]
  • Calculus Terminology
    AP Calculus BC Calculus Terminology Absolute Convergence Asymptote Continued Sum Absolute Maximum Average Rate of Change Continuous Function Absolute Minimum Average Value of a Function Continuously Differentiable Function Absolutely Convergent Axis of Rotation Converge Acceleration Boundary Value Problem Converge Absolutely Alternating Series Bounded Function Converge Conditionally Alternating Series Remainder Bounded Sequence Convergence Tests Alternating Series Test Bounds of Integration Convergent Sequence Analytic Methods Calculus Convergent Series Annulus Cartesian Form Critical Number Antiderivative of a Function Cavalieri’s Principle Critical Point Approximation by Differentials Center of Mass Formula Critical Value Arc Length of a Curve Centroid Curly d Area below a Curve Chain Rule Curve Area between Curves Comparison Test Curve Sketching Area of an Ellipse Concave Cusp Area of a Parabolic Segment Concave Down Cylindrical Shell Method Area under a Curve Concave Up Decreasing Function Area Using Parametric Equations Conditional Convergence Definite Integral Area Using Polar Coordinates Constant Term Definite Integral Rules Degenerate Divergent Series Function Operations Del Operator e Fundamental Theorem of Calculus Deleted Neighborhood Ellipsoid GLB Derivative End Behavior Global Maximum Derivative of a Power Series Essential Discontinuity Global Minimum Derivative Rules Explicit Differentiation Golden Spiral Difference Quotient Explicit Function Graphic Methods Differentiable Exponential Decay Greatest Lower Bound Differential
    [Show full text]
  • Coverrailway Curves Book.Cdr
    RAILWAY CURVES March 2010 (Corrected & Reprinted : November 2018) INDIAN RAILWAYS INSTITUTE OF CIVIL ENGINEERING PUNE - 411 001 i ii Foreword to the corrected and updated version The book on Railway Curves was originally published in March 2010 by Shri V B Sood, the then professor, IRICEN and reprinted in September 2013. The book has been again now corrected and updated as per latest correction slips on various provisions of IRPWM and IRTMM by Shri V B Sood, Chief General Manager (Civil) IRSDC, Delhi, Shri R K Bajpai, Sr Professor, Track-2, and Shri Anil Choudhary, Sr Professor, Track, IRICEN. I hope that the book will be found useful by the field engineers involved in laying and maintenance of curves. Pune Ajay Goyal November 2018 Director IRICEN, Pune iii PREFACE In an attempt to reach out to all the railway engineers including supervisors, IRICEN has been endeavouring to bring out technical books and monograms. This book “Railway Curves” is an attempt in that direction. The earlier two books on this subject, viz. “Speed on Curves” and “Improving Running on Curves” were very well received and several editions of the same have been published. The “Railway Curves” compiles updated material of the above two publications and additional new topics on Setting out of Curves, Computer Program for Realignment of Curves, Curves with Obligatory Points and Turnouts on Curves, with several solved examples to make the book much more useful to the field and design engineer. It is hoped that all the P.way men will find this book a useful source of design, laying out, maintenance, upgradation of the railway curves and tackling various problems of general and specific nature.
    [Show full text]
  • Derivation of Sum and Difference Identities for Sine and Cosine
    Derivation of sum and difference identities for sine and cosine John Kerl January 2, 2012 The authors of your trigonometry textbook give a geometric derivation of the sum and difference identities for sine and cosine. I find this argument unwieldy | I don't expect you to remember it; in fact, I don't remember it. There's a standard algebraic derivation which is far simpler. The only catch is that you need to use complex arithmetic, which we don't cover in Math 111. Nonetheless, I will present the derivation so that you will have seen how simple the truth can be, and so that you may come to understand it after you've had a few more math courses. And in fact, all you need are the following facts: • Complex numbers are of the form a+bi, where a and b are real numbers and i is defined to be a square root of −1. That is, i2 = −1. (Of course, (−i)2 = −1 as well, so −i is the other square root of −1.) • The number a is called the real part of a + bi; the number b is called the imaginary part of a + bi. All the real numbers you're used to working with are already complex numbers | they simply have zero imaginary part. • To add or subtract complex numbers, add the corresponding real and imaginary parts. For example, 2 + 3i plus 4 + 5i is 6 + 8i. • To multiply two complex numbers a + bi and c + di, just FOIL out the product (a + bi)(c + di) and use the fact that i2 = −1.
    [Show full text]
  • Complex Numbers and Functions
    Complex Numbers and Functions Richard Crew January 20, 2018 This is a brief review of the basic facts of complex numbers, intended for students in my section of MAP 4305/5304. I will discuss basic facts of com- plex arithmetic, limits and derivatives of complex functions, power series and functions like the complex exponential, sine and cosine which can be defined by convergent power series. This is a preliminary version and will be added to later. 1 Complex Numbers 1.1 Arithmetic. A complex number is an expression a + bi where i2 = −1. Here the real number a is the real part of the complex number and bi is the imaginary part. If z is a complex number we write <(z) and =(z) for the real and imaginary parts respectively. Two complex numbers are equal if and only if their real and imaginary parts are equal. In particular a + bi = 0 only when a = b = 0. The set of complex numbers is denoted by C. Complex numbers are added, subtracted and multiplied according to the usual rules of algebra: (a + bi) + (c + di) = (a + c) + (b + di) (1.1) (a + bi) − (c + di) = (a − c) + (b − di) (1.2) (a + bi)(c + di) = (ac − bd) + (ad + bc)i (1.3) (note how i2 = −1 has been used in the last equation). Division performed by rationalizing the denominator: a + bi (a + bi)(c − di) (ac − bd) + (bc − ad)i = = (1.4) c + di (c + di)(c − di) c2 + d2 Note that denominator only vanishes if c + di = 0, so that a complex number can be divided by any nonzero complex number.
    [Show full text]
  • Differential and Integral Calculus
    DIFFERENTIAL AND INTEGRAL CALCULUS WITH APPLICATIONS BY E. W. NICHOLS Superintendent Virginia Military Institute, and Author of Nichols's Analytic Geometry REVISED D. C. HEATH & CO., PUBLISHERS BOSTON NEW YORK CHICAGO w' ^Kt„ Copyright, 1900 and 1918, By D. C. Heath & Co. 1 a8 v m 2B 1918 ©CI.A492720 & PREFACE. This text-book is based upon the methods of " limits " and ''rates/' and is limited in its scope to the requirements in the undergraduate courses of our best universities, colleges, and technical schools. In its preparation the author has embodied the results of twenty years' experience in the class-room, ten of which have been devoted to applied mathematics and ten to pure mathematics. It has been his aim to prepare a teachable work for begimiers, removing as far as the nature of the subject would admit all obscurities and mysteries, and endeavoring by the introduction of a great variety of practical exercises to stimulate the student's interest and appetite. Among the more marked peculiarities of the work the follow- ing may be enumerated : — i. A large amount of explanation. 2. Clear and simple demonstiations of principles. 3. Geometric, mechanical, and engineering applications. 4. Historical notes at the heads of chapters giving a brief account of the discovery and development of the subject of which it treats. 5. Footnotes calling attention to topics of special historic interest. iii iv Preface 6. A chapter on Differential Equations for students in mathematical physics and for the benefit of those desiring an elementary knowledge of this interesting extension of the calculus.
    [Show full text]
  • Inverse Trig Functions Summary
    Inverse trigonometric functions 1 1 z = sec ϑ The inverse sine function. The sine function restricted to [ π, π ] is one-to-one, and its inverse on this 3 − 2 2 ϑ = π ϑ = arcsec z interval is called the arcsine (arcsin) function. The domain of arcsin is [ 1, 1] and the range of arcsin is 2 1 1 1 −1 [ π, π ]. Below is a graph of y = sin ϑ, with the the part over [ π, π ] emphasized, and the graph − 2 2 − 2 2 of ϑ y. π 1 = arcsin ϑ = 2 π y = sin ϑ ϑ = arcsin y 1 π π 2 π − 1 ϑ 1 1 z − 1 π 1 π ϑ 1 1 y − 2 2 − 1 − 1 1 3 π ϑ = 2 π ϑ = 2 π − 2 By definition, By definition, 1 1 1 3 ϑ = arcsin y means that sin ϑ = y and π 6 ϑ 6 π. ϑ = arcsec z means that sec ϑ = t and 0 6 ϑ< 2 π or π 6 ϑ< 2 π. − 2 2 Differentiating the equation on the right implicitly with respect to y, gives Again, differentiating the equation on the right implicitly with respect to z, and using the restriction in ϑ, dϑ dϑ 1 1 1 one computes the derivative cos ϑ = 1, or = , provided π<ϑ< π. dy dy cos ϑ − 2 2 d 1 (arcsec z)= 2 , for z > 1. 1 1 2 2 dz z√z 1 | | Since cos ϑ> 0 on ( 2 π, 2 π ), it follows that cos ϑ = p1 sin ϑ = p1 y .
    [Show full text]
  • Copyrighted Material
    INDEX Abel, Niels Henrik, 234 algebraic manipulation, of integrand, finding by numerical methods, 367 abscissa, Web-H1 412 and improper integrals, 473 absolute convergence, 556, 557 alternating current, 324 as a line integral, 981 ratio test for, 558, 559 alternating harmonic series, 554 parametric curves, 369, 610 absolute error, 46 alternating series, 553–556 polar curve, 632 Euler’s Method, 501 alternating series test, 553, 560, 585 from vector viewpoint, 760, 761 absolute extrema amplitude arc length parametrization, 761, 762 Extreme-Value Theorem, 205 alternating current, 324 finding, 763, 764 finding on closed and bounded sets, simple harmonic motion, 124, properties, 765, 766 876–879 Web-P5 arccosine, 57 finding on finite closed intervals, 205, sin x and cos x, A21, Web-D7 Archimedean spiral, 626, 629 206 analytic geometry, 213, Web-F3 Archimedes, 253, 255 finding on infinite intervals, 206, 207 Anderson, Paul, 376 palimpsest, 255 functions with one relative extrema, angle(s), A1–A2, Web-A1–Web-A2 arcsecant 57 208, 209 finding from trigonometric functions, arcsine, 57 on open intervals, 207, 208 Web-A10 arctangent, 57 absolute extremum, 204, 872 of inclination, A7, Web-A10 area absolute maximum, 204, 872 between planes, 719, 720 antiderivative method, 256, 257 absolute minimum, 204, 872 polar, 618 calculated as double integral, 906, 907 absolute minimum values, 872 rectangular coordinate system, computing exact value of, 279 absolute value, Web-G1 A3–A4, Web-A3–Web-A4 definition, 277 and square roots, Web-G1, Web-B2 standard position,
    [Show full text]
  • Development of Trigonometry Medieval Times Serge G
    Development of trigonometry Medieval times Serge G. Kruk/Laszl´ o´ Liptak´ Oakland University Development of trigonometry Medieval times – p.1/27 Indian Trigonometry • Work based on Hipparchus, not Ptolemy • Tables of “sines” (half chords of twice the angle) • Still depends on radius 3◦ • Smallest angle in table is 3 4 . Why? R sine( α ) α Development of trigonometry Medieval times – p.2/27 Indian Trigonometry 3◦ • Increment in table is h = 3 4 • The “first” sine is 3◦ 3◦ s = sine 3 = 3438 sin 3 = 225 1 4 · 4 1◦ • Other sines s2 = sine(72 ), . Sine differences D = s s • 1 2 − 1 • Second-order approximation techniques sine(xi + θ) = θ θ2 sine(x ) + (D +D ) (D D ) i 2h i i+1 − 2h2 i − i+1 Development of trigonometry Medieval times – p.3/27 Etymology of “Sine” How words get invented! • Sanskrit jya-ardha (Half-chord) • Abbreviated as jya or jiva • Translated phonetically into arabic jiba • Written (without vowels) as jb • Mis-interpreted later as jaib (bosom or breast) • Translated into latin as sinus (think sinuous) • Into English as sine Development of trigonometry Medieval times – p.4/27 Arabic Trigonometry • Based on Ptolemy • Used both crd and sine, eventually only sine • The “sine of the complement” (clearly cosine) • No negative numbers; only for arcs up to 90◦ • For larger arcs, the “versine”: (According to Katz) versine α = R + R sine(α 90◦) − Development of trigonometry Medieval times – p.5/27 Other trig “functions” Al-B¯ırun¯ ¯ı: Exhaustive Treatise on Shadows • The shadow of a gnomon (cotangent) • The hypothenuse of the shadow
    [Show full text]