Recent Mapping and Radiocarbon Dating of Three Giant Landslides in Northern Fiordland, New Zealand, GNS Science Report 2012/45
Total Page:16
File Type:pdf, Size:1020Kb
BIBLIOGRAPHIC REFERENCE Hancox, G. T.; Langridge, R. M.; Perrin, N. D.; Vandergoes, M.; Archibald, G. 2013. Recent mapping and radiocarbon dating of three giant landslides in northern Fiordland, New Zealand, GNS Science Report 2012/45. 52 p. G. T. Hancox, GNS Science, PO Box 30368, Lower Hutt 5040, New Zealand R. M. Langridge, GNS Science, PO Box 30368, Lower Hutt 5040, New Zealand N. D. Perrin, GNS Science, PO Box 30368, Lower Hutt 5040, New Zealand M. Vandergoes, GNS Science, PO Box 30368, Lower Hutt 5040, New Zealand G. Archibald, GNS Science, PO Box 30368, Lower Hutt 5040, New Zealand © Institute of Geological and Nuclear Sciences Limited, 2013 ISSN 1177-2425 ISBN 978-1-972192-33-7 CONTENTS ABSTRACT ......................................................................................................................... IV KEYWORDS ......................................................................................................................... V 1.0 INTRODUCTION ........................................................................................................ 1 1.1 BACKGROUND .................................................................................................. 1 1.2 GEOLOGICAL AND GEOMORPHIC SETTING OF FIORDLAND .................................... 3 1.3 LANDSLIDING IN FIORDLAND .............................................................................. 3 1.4 RECENT LANDSLIDE STUDIES IN FIORDLAND ....................................................... 8 2.0 LANDSLIDE MAPPING AND DATING 2012 .............................................................. 9 2.1 FIELD WORK PROGRAMME ................................................................................ 9 2.2 GEOMORPHOLOGY AND GEOLOGY OF LANDSLIDES ............................................. 9 2.2.1 Lake Adelaide Landslide ................................................................................... 9 2.2.2 John O’Groats Landslide ................................................................................. 15 2.2.3 Lake Gunn Landslide ...................................................................................... 20 3.0 SAMPLING FOR LANDSLIDE DATING ................................................................... 25 3.1 LAKE ADELAIDE LANDSLIDE SAMPLING ..............................................................26 3.2 JOHN O’GROATS LANDSLIDE SAMPLING ............................................................27 3.3 LAKE GUNN LANDSLIDE SAMPLING ...................................................................28 4.0 RADIOCARBON DATING RESULTS ....................................................................... 31 4.1 SAMPLE COLLECTION AND RADIOCARBON DATING .............................................33 4.1.1 Lake Adelaide Landslide ................................................................................. 34 4.1.2 John O’Groats Landslide ................................................................................. 35 4.1.3 Lake Gunn Landslide ...................................................................................... 36 5.0 DISCUSSION............................................................................................................ 39 5.1 AGE OF THE LANDSLIDES .................................................................................39 5.2 COSEISMIC TRIGGERING OF LANDSLIDES ..........................................................39 5.3 CORRELATION BETWEEN LANDSLIDES AND ALPINE FAULT EARTHQUAKES ...........41 5.4 FUTURE LANDSLIDE DATING .............................................................................42 6.0 CONCLUSIONS ....................................................................................................... 43 7.0 ACKNOWLEDGEMENTS ......................................................................................... 45 8.0 REFERENCES ......................................................................................................... 45 GNS Science Report 2012/45 i FIGURES Figure 1 Geological map of Fiordland and south Westland showing the locations of very large and giant postglacial landslides in the region. ..................................................................................... 2 Figure 2 Regional setting of the Alpine Fault (AF), Puysegur Subduction Zone (PSZ), and the Fiordland region (F). ..................................................................................................................... 2 Figure 3 Aerial view of Green Lake Landslide looking southeast across ~45 km2 of hummocky slide debris (sd) towards the 15 km-long head scarp (hs), which was formed when part of the Hunter Mountains collapsed into proto Lake Monowai (lm) about 12,000-13000 years ago. .............................................................................................................................................. 4 Figure 4 Aerial view of the ~400 Mm3 prehistoric rock slide/avalanche in weakly foliated diorite and tonalite which impounds Lake McIvor between North West Arm (nwa) and South West Arm (swa) of the Middle Fiord (MF) of Lake Te Anau. ......................................................... 4 Figure 5 Loch Maree, a landslide-dammed lake at the head of Dusky Sound, was formed when debris from a large (~3 Mm3) rock fall (RF) dammed the Seaforth River (LD) and drowned a large area of beech forest (Figure 6). ........................................................................ 6 Figure 6 Drowned beech forest in Loch Maree. .......................................................................................... 6 Figure 7 Graph plot of age versus tree diameter data for silver beech forest in Fiordland, based on tree core data from Loch Maree and Lake Mintaro in Fiordland (Hancox and Perrin 2011). ........................................................................................................................................... 7 Figure 8 Geomorphic map of Lake Adelaide Landslide (~750 Mm3) showing its extent and main geomorphic features, along with the planned and actual helicopter landing and samplings sites on 28 and 30 March 2012. ................................................................................ 11 Figure 9 Cross section through Lake Adelaide Landslide showing the slide debris spread across the head of the upper Moraine Creek Valley, which is estimated to be about 300-400 m thick. ........................................................................................................................................... 12 Figure 10 Lake Adelaide (942 m) at the head of Moraine Creek (mc) has been created by a large landslide dam (d). ....................................................................................................................... 12 Figure 11 Closer view of the landslide debris at Lake Adelaide. ................................................................ 13 Figure 12 View of Lake Adelaide Landslide from the east showing the large slide debris (sd) dam at the head of Moraine Creek (MC). ............................................................................................... 13 Figure 13 View of Lake Adelaide Landslide looking south and showing the main mass of slide debris, with sample sites 5 and 6 visible on the debris ridge in the foreground (S5, S6). ........... 14 Figure 14 Geomorphic map of John O’Groats Landslide (~1000 Mm3) showing its extent, main features, and the planned and actual samplings sites. ............................................................... 15 Figure 15 Cross section through John O’Groats Landslide showing the extent and estimated thickness of the slide debris, which fills the entire valley from the headscarp to the coast. ........ 16 Figure 16 Aerial view of John O’Groats Landslide showing the ~3 km long source area on the ridge north of Mt Pembroke (2015 m) between peak 1689 m and Te Hau (1703 m), and main part of the 11 km2 of slide debris, which has created three small landslide-dammed lakes (SL, NL, LL). ............................................................................................................................... 17 Figure 17 Aerial view of hummocky landslide debris (sd) deposited in the lower John O’Groats Valley where it is displaced by the Alpine Fault. ......................................................................... 17 Figure 18 Sampling Site 1 is located ~300 m north of the southern landslide-dammed lake in a small clearing underlain by alluvial deposits at the mouth of a stream dammed by slide debris.......................................................................................................................................... 18 ii GNS Science Report 2012/45 Figure 19 Large (~1 m diameter, or ~300 years old) beech tree growing on the remains of a dead tree and slide debris boulders ~100 m northeast of the Site 1 clearing (E1193711m, N5055425m). .............................................................................................................................. 18 Figure 20 Geomorphic map of Lake Gunn Landslide showing its extent and main features, along with planned and actual sampling sites on 31 March and 1 April 2012. ..................................... 20 Figure 21 Cross section through Lake Gunn Landslide showing the extent and estimated thickness of the slide debris, which fills the entire valley from the headscarp to the coast. ........................ 21 Figure 22 Aerial view of Lake Gunn Landslide looking south down the Eglinton Valley. ...........................