Astronomical Science As Is Apparent from the Many H Many the from Apparent Is As H Large Avery Has NGC 7793 Distance

Total Page:16

File Type:pdf, Size:1020Kb

Astronomical Science As Is Apparent from the Many H Many the from Apparent Is As H Large Avery Has NGC 7793 Distance Astronomy in Austria The Messenger NACO Pupil-stabilised Coronography Images from VLTI Wandering in the Redshift Desert No. 137 – September 2009 – September 137 No. The Organisation Astronomy in Austria Sabine Schindler1 a very wide range: from solar physics at of extending international collaborations, Graz1; astroseismology, the late stages of of enhancing public outreach activities stellar evolution, planetary systems, and of increasing the publication rate (see 1 Institute of Astro- and Particle Physics, the interstellar medium, the Milky Way, Figures 2, 3 and 4). Eventually, the ESO University of Innsbruck, Austria structure of galaxies, galaxy clusters, accession document was signed in 2008 the history of astronomy and participation (see the ESO press release of 30 June in the CoRoT and Herschel missions 2008) and ratified in February 2009. Austria officially became the fourteenth at Vienna2; to planetary nebulae, novae, ESO member in June 2009. A brief galaxy structure, galaxy clusters With Austria’s new place in the inter- outline of the recent developments and and astro particle physics at Innsbruck3. national scientific community confirmed scientific highlights of astronomical by its accession to ESO, further devel- research in Austria is presented. Having opment is secured. In Innsbruck a new started from a relatively low level a few Recent developments full professorship was recently filled in years ago, astronomical research is astroparticle physics, in Vienna two new now expanding very rapidly thanks to For many decades it was the goal of full professors for astrophysics are in the accession to ESO. Austrian astronomers to join ESO. For- the process of being appointed and in tunately, accession to ESA was achieved Innsbruck two more astronomy(-related) in 1987, but accession to ESO proved to full professorships are planned, to be Research in astronomy in Austria is con- be more difficult. There were several an nounced in 2010. So from the low state ducted at three universities: the University attempts and a lot of effort spent by the in 2001, with just one full professorship of Vienna at the Institute of Astronomy; scientists to convince the relevant author- in astronomy, with three more filled before the University of Innsbruck at the Institute ities that ESO membership is a must for the ESO accession and the five new ones of Astro- and Particle Physics; and an active astronomical community. Sev- in prospect, there will be nine full profes- the University of Graz at the Institute for eral studies evaluating the quality of the sors within a few years, i.e. an increase Physics. Some additional astronomy or institutes and the scientists were con- by a factor of nine over ten years. This related research is conducted at various ducted. Astronomers have made increas- development allows an optimistic view of other places such as the Institute for ing efforts over recent years to increase the future of Austrian astronomy. Space Research of the Austrian Academy national and international visibility, work- of Sciences in Vienna. In total there are ing towards eventually securing a positive Furthermore, the number of science currently 27 staff members and many result. These efforts included the acquisi- topics being pursued has developed in young people working at the three univer- tion of an increasing number of grants recent years. Previously the Austrian sity institutes. The research topics cover (from national and international sources), strength was mainly in stellar astrophys- Figure 1. The Institute of Astronomy at the University of Vienna. 2 The Messenger 137 – September 2009 50 The Austrian Society for Astronomy and Astrophysics 40 In order to adequately represent the Aus- trian astronomical community in pursu - 30 ing the accession to ESO, the Austrian Society for Astronomy and Astrophysics (ÖGAA) was founded in 2002. This was 20 an important step towards ESO member- ship, but, increasingly, it also serves many other purposes. This society holds 10 an annual meeting, at which all Austrian astronomers meet to present new results Staff 0 and discuss new developments. The PostDoc society performs joint public outreach 2004 2005 2006 2007 2008 PhD activities, keeps in contact with amateur Figure 2. Growth in the total number of personnel at the three university astro- astronomers and supports young people. nomical institutes in Graz, Innsbruck and Vienna over the last five years. While the permanent staff numbers have stayed almost constant, there is a clear increase in the number of postdocs and PhD students. In 2009 an even greater increase in these numbers is expected. Scientific highlights Austrian astronomy can look back on a ics, but there are now several active As in the rest of Europe, the Bachelor/ long history of astrophysics, including the extragalactic groups, along with more Master system was also introduced in Nobel laureate Victor Franz Hess, who connections to other fields such as math- Austria. While the Universities of Graz discovered cosmic rays in 1911. Nowa- ematics and computer science, a natu - and Innsbruck offer a Bachelor of Physics days many modern science topics are ral extension because of the large numer- and a Master of Physics, which include addressed, of which a few recent high- ical simulations performed by some many astrophysics courses, the Univer- lights are selected and presented here. groups. This year has also seen the sity of Vienna offers a Bachelor of Astron- establishment of astroparticle physics in omy and a Master of Astronomy. All Austria (including membership of the three universities also offer a PhD pro- High Energy Stereoscopic System [HESS] gramme, partly in connection with doc- collaboration). torate schools. Figure 3. Number of refereed publications resulting from the three Figure 4. Acquired grants (in €) for the three Austrian university university astronomy institutes in Austria over the last five years. astronomy institutes over the last four years. 140 138 3500000 123 120 3000000 114 10 0 104 2500000 94 80 2000000 60 1500000 40 1000000 20 500000 0 0 2004 2005 2006 2007 2008 2005 2006 2007 2008 The Messenger 137 – September 2009 3 The Organisation Schindler S., Astronomy in Austria Towards a new Maunder Minimum? The current solar activity minimum is longer lasting than previous ones (up to around 1900). Will there be a new pro- longed phase of strongly reduced solar activity like that during the Maunder Mini- mum, which lasted from 1645–1715 and coincided with the peak of the “little Ice Age” in Europe? The activity of the Sun is monitored and “space weather”, which is strongly influenced by solar activity, is studied. Solar activity influences the ioni- sation of the upper atmosphere and the propagation of radio signals and GPS signals can be severely disturbed (see the depiction in Figure 5). Due to the ex-- panding atmosphere, satellite orbits can become unstable and the radiation can endanger human activities in space. At the solar monitoring observatory at Kanzelhöhe, data are taken and used in combination with other observations to predict the upcoming solar activity maxi- mum. The first predictions for the new maximum (2011) were revised and the next maximum is expected to occur two or three years later, and its amplitude is predicted to be lower than the previous In this clumpy gas new stars can form, so Figure 5. The solar wind interacting with the Earth’s one. Applying methods of nonlinear that the star formation rate is increased magnetosphere. It compresses the magnetosphere on the side facing the Sun. This can cause magnetic dynamics, it has been shown that solar considerably by the stripping process, storms and, during strong solar events, such as activity behaves regularly on a longer and in extreme cases the increase in star flares or coronal mass ejections, even power lines on term basis, but is affected by the onset of formation can even be up by a factor of Earth can fail. chaos on smaller scales (Brajša et al., ten (Kronberger et al., 2008). Interestingly 2009). For these calculations solar activ- the stars not only form in the disc, but ity proxies have been used (such as cos- also in the wake behind the galaxy. Many Figure 6. Simulation of a galaxy moving through the mogenic isotopes). of these stars are not bound to the gal- intracluster gas. The interstellar medium is stripped off by ram pressure and forms clumpy structures axy, so that we have found a process that behind the galaxy. In these structures stars, which produces a population of new stars in are no longer bound to the galaxy, can form. Star formation between galaxies While it was thought previously that gal- *DVGHQVLWL\ axy evolution is mainly determined by GLVWULEXWLRQ internal processes, it is now clear that the environment plays an important role. Ram-pressure stripping of galaxies in W 0\U clusters (removal of the interstellar medi- um by the pressure of the intracluster W 0\U medium) in particular has turned out to be much more efficient than previously SF W 0\U thought (Rödiger & Hensler, 2005; N Schindler et al., 2005; Domainko et al., 2006). Therefore numerical simulations of spiral galaxies moving through the intra- W 0\U 6XUURXQGLQJ cluster medium have been performed. It JDVGHQVLWL\ was found that gas is stripped, not simply ´ tJFP dispersed, into the intracluster medium, and it becomes clumpy, due to external Y NPV W 0\U UHODWLYH pressure and radiative heating (Figure 6). 4 The Messenger 137 – September 2009 structure accumulate with age. Important examples are convective overshooting 6'66- and rotational mixing during the central /HR$ /HR,, hydrogen-burning phase that determine /HR, 80D the mass of the helium core, but which are not well understood. The analysis of 6H[WDQV 80L radial and non-radial stellar oscillations 'UDFR can be used to constrain the mass of the helium core.
Recommended publications
  • Naming the Extrasolar Planets
    Naming the extrasolar planets W. Lyra Max Planck Institute for Astronomy, K¨onigstuhl 17, 69177, Heidelberg, Germany [email protected] Abstract and OGLE-TR-182 b, which does not help educators convey the message that these planets are quite similar to Jupiter. Extrasolar planets are not named and are referred to only In stark contrast, the sentence“planet Apollo is a gas giant by their assigned scientific designation. The reason given like Jupiter” is heavily - yet invisibly - coated with Coper- by the IAU to not name the planets is that it is consid- nicanism. ered impractical as planets are expected to be common. I One reason given by the IAU for not considering naming advance some reasons as to why this logic is flawed, and sug- the extrasolar planets is that it is a task deemed impractical. gest names for the 403 extrasolar planet candidates known One source is quoted as having said “if planets are found to as of Oct 2009. The names follow a scheme of association occur very frequently in the Universe, a system of individual with the constellation that the host star pertains to, and names for planets might well rapidly be found equally im- therefore are mostly drawn from Roman-Greek mythology. practicable as it is for stars, as planet discoveries progress.” Other mythologies may also be used given that a suitable 1. This leads to a second argument. It is indeed impractical association is established. to name all stars. But some stars are named nonetheless. In fact, all other classes of astronomical bodies are named.
    [Show full text]
  • As the Dome of Twilight Sinks Below The
    As the dome of twilight sinks below the horizon, a mechanical corps de ballet starts a slow-motion pirouette with each dancer keeping the unblinking eye of a telescope locked on a single spot in the heavens. Shutters open and ancient photons, ending a journey that may have started before the earth was born, collide with sensors that store an electron to mark that photon's arrival. With the dance in motion the directors sit back to watch the show; another imaging session has begun... Image by Marcus Stevens A Full and Proper Kit An introduction to the gear of astro-photography The young recruit is silly – 'e thinks o' suicide; 'E's lost his gutter-devil; 'e 'asn't got 'is pride; But day by day they kicks him, which 'elps 'im on a bit, Till 'e finds 'isself one mornin' with a full an' proper kit. Rudyard Kipling Like the young recruit in Kipling's poem 'The 'Eathen', a deep-sky imaging beginner starts with little in the way of equipment or skill. With 'older' imagers urging him onward, providing him with the benefit of the mistakes that they had made during their journey and allowing him access to the equipment they've built or collected, the newcomer gains the 'equipment' he needs, be it gear or skills, to excel at the art. At that time he has acquired a 'full and proper kit' and ceases to be a recruit. This paper is a discussion of hardware, software, methods and actions that a newcomer might find useful. It is not meant to be an in-depth discussion of all forms of astro-photography; that would take many books and more knowledge than I have available.
    [Show full text]
  • Astronomers Discover a Distant Galaxy with a Pulse 16 November 2015
    We've got the beat: Astronomers discover a distant galaxy with a pulse 16 November 2015 phase. Until now, no one had considered the effects of these stars on the light coming from more distant galaxies. In distant galaxies the light of each pulsating star is mixed with the light of many more stars that do not vary in brightness. "We realized that these stars are so bright and their pulsations so strong that they are difficult to hide," said Charlie Conroy, an assistant professor at Harvard, who led the research. "We decided to see if the pulsations of these stars could be detected even if we could not separate their light from the Hubble Space Telescope photograph of the galaxy M87, sea of unchanging stars that are their neighbors." which is 50 million light years from Earth. Credit: NASA/ESA Astronomers at Yale and Harvard have found a galaxy with a heartbeat—and they've taken its pulse. It is the first time scientists have measured the effect that pulsating, older red stars have on the light of their surrounding galaxy. The findings are published in the Nov. 16 online edition of the journal Nature. "We tend to think of galaxies as steady beacons in the sky, but they are actually 'shimmering' due to all the giant, pulsating stars in them," said Pieter van Dokkum, the Sol Goldman Professor and chair of astronomy at Yale, and co-author of the study. Later in life, stars like our Sun undergo significant changes. They become very bright and swell up to an enormous size, swallowing any planets within a An image of the pulsating star T Leporis, compared to the radius roughly equivalent to Earth's distance from size of the orbit of the Earth around the Sun.
    [Show full text]
  • Mètodes De Detecció I Anàlisi D'exoplanetes
    MÈTODES DE DETECCIÓ I ANÀLISI D’EXOPLANETES Rubén Soussé Villa 2n de Batxillerat Tutora: Dolors Romero IES XXV Olimpíada 13/1/2011 Mètodes de detecció i anàlisi d’exoplanetes . Índex - Introducció ............................................................................................. 5 [ Marc Teòric ] 1. L’Univers ............................................................................................... 6 1.1 Les estrelles .................................................................................. 6 1.1.1 Vida de les estrelles .............................................................. 7 1.1.2 Classes espectrals .................................................................9 1.1.3 Magnitud ........................................................................... 9 1.2 Sistemes planetaris: El Sistema Solar .............................................. 10 1.2.1 Formació ......................................................................... 11 1.2.2 Planetes .......................................................................... 13 2. Planetes extrasolars ............................................................................ 19 2.1 Denominació .............................................................................. 19 2.2 Història dels exoplanetes .............................................................. 20 2.3 Mètodes per detectar-los i saber-ne les característiques ..................... 26 2.3.1 Oscil·lació Doppler ........................................................... 27 2.3.2 Trànsits
    [Show full text]
  • GEMINI PLANET IMAGER SPECTROSCOPY of the HR 8799 PLANETS C and D
    The Astrophysical Journal Letters, 794:L15 (5pp), 2014 October 10 doi:10.1088/2041-8205/794/1/L15 C 2014. The American Astronomical Society. All rights reserved. Printed in the U.S.A. GEMINI PLANET IMAGER SPECTROSCOPY OF THE HR 8799 PLANETS c AND d Patrick Ingraham1, Mark S. Marley2, Didier Saumon3, Christian Marois4, Bruce Macintosh1, Travis Barman5, Brian Bauman6, Adam Burrows7, Jeffrey K. Chilcote8, Robert J. De Rosa9,10, Daren Dillon11,Rene´ Doyon12, Jennifer Dunn4, Darren Erikson4, Michael P. Fitzgerald8, Donald Gavel11, Stephen J. Goodsell13, James R. Graham14, Markus Hartung13, Pascale Hibon13, Paul G. Kalas14, Quinn Konopacky15, James A. Larkin8, Jer´ omeˆ Maire15, Franck Marchis16, James McBride14, Max Millar-Blanchaer15, Katie M. Morzinski17,24, Andrew Norton11, Rebecca Oppenheimer18, Dave W. Palmer6, Jenny Patience9, Marshall D. Perrin19, Lisa A. Poyneer6, Laurent Pueyo19, Fredrik Rantakyro¨ 13, Naru Sadakuni13, Leslie Saddlemyer4, Dmitry Savransky20,Remi´ Soummer19, Anand Sivaramakrishnan19, Inseok Song21, Sandrine Thomas2,22, J. Kent Wallace23, Sloane J. Wiktorowicz11, and Schuyler G. Wolff19 1 Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, Stanford, CA 94305, USA 2 NASA Ames Research Center, Moffett Field, CA 94035, USA 3 Los Alamos National Laboratory, Los Alamos, NM 87545, USA 4 NRC Herzberg Astronomy and Astrophysics, 5071 West Saanich Road, Victoria, BC V9E 2E7, Canada 5 Lunar and Planetary Laboratory, University of Arizona, Tucson, Arizona 85721-0092, USA 6 Lawrence Livermore National Lab,
    [Show full text]
  • Canvas and Cosmos: Visual Art Techniques Applied to Astronomy Data
    March 14, 2017 0:27 WSPC/INSTRUCTION FILE EnglishJCanvasCos- mos International Journal of Modern Physics D c World Scientific Publishing Company Canvas and Cosmos: Visual Art Techniques Applied to Astronomy Data. JAYANNE ENGLISH∗ Department of Physics and Astronomy, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada. Jayanne [email protected] Received Day Month Year Revised Day Month Year Bold colour images from telescopes act as extraordinary ambassadors for research astronomers because they pique the public's curiosity. But are they snapshots docu- menting physical reality? Or are we looking at artistic spacescapes created by digitally manipulating astronomy images? This paper provides a tour of how original black and white data, from all regimes of the electromagnetic spectrum, are converted into the colour images gracing popular magazines, numerous websites, and even clothing. The history and method of the technical construction of these images is outlined. However, the paper focuses on introducing the scientific reader to visual literacy (e.g. human per- ception) and techniques from art (e.g. composition, colour theory) since these techniques can produce not only striking but politically powerful public outreach images. When cre- ated by research astronomers, the cultures of science and visual art can be balanced and the image can illuminate scientific results sufficiently strongly that the images are also used in research publications. Included are reflections on how they could feedback into astronomy research endeavours and future forms of visualization as well as on the rele- vance of outreach images to visual art. (See the colour online version, in which figures can be enlarged, at http://xxxxxxx.) Keywords: astronomy; astrophysics; public outreach; image-making; visualization; colour theory; art arXiv:1703.04183v1 [astro-ph.IM] 12 Mar 2017 PACS numbers: 1.
    [Show full text]
  • Planet Searching from Ground and Space
    Planet Searching from Ground and Space Olivier Guyon Japanese Astrobiology Center, National Institutes for Natural Sciences (NINS) Subaru Telescope, National Astronomical Observatory of Japan (NINS) University of Arizona Breakthrough Watch committee chair June 8, 2017 Perspectives on O/IR Astronomy in the Mid-2020s Outline 1. Current status of exoplanet research 2. Finding the nearest habitable planets 3. Characterizing exoplanets 4. Breakthrough Watch and Starshot initiatives 5. Subaru Telescope instrumentation, Japan/US collaboration toward TMT 6. Recommendations 1. Current Status of Exoplanet Research 1. Current Status of Exoplanet Research 3,500 confirmed planets (as of June 2017) Most identified by Jupiter two techniques: Radial Velocity with Earth ground-based telescopes Transit (most with NASA Kepler mission) Strong observational bias towards short period and high mass (lower right corner) 1. Current Status of Exoplanet Research Key statistical findings Hot Jupiters, P < 10 day, M > 0.1 Jupiter Planetary systems are common occurrence rate ~1% 23 systems with > 5 planets Most frequent around F, G stars (no analog in our solar system) credits: NASA/CXC/M. Weiss 7-planet Trappist-1 system, credit: NASA-JPL Earth-size rocky planets are ~10% of Sun-like stars and ~50% abundant of M-type stars have potentially habitable planets credits: NASA Ames/SETI Institute/JPL-Caltech Dressing & Charbonneau 2013 1. Current Status of Exoplanet Research Spectacular discoveries around M stars Trappist-1 system 7 planets ~3 in hab zone likely rocky 40 ly away Proxima Cen b planet Possibly habitable Closest star to our solar system Faint red M-type star 1. Current Status of Exoplanet Research Spectroscopic characterization limited to Giant young planets or close-in planets For most planets, only Mass, radius and orbit are constrained HR 8799 d planet (direct imaging) Currie, Burrows et al.
    [Show full text]
  • Arxiv:1204.4363V1 [Astro-Ph.IM] 19 Apr 2012
    Noname manuscript No. (will be inserted by the editor) Imaging the heart of astrophysical objects with optical long-baseline interferometry J.-P. Berger1;2 · F. Malbet1 · F. Baron3;4 · A. Chiavassa5;19 · G. Duvert1;6 · M. Elitzur7 · B. Freytag8 · F. Gueth9 · S. Honig¨ 10;11 · J. Hron12 · H. Jang-Condell13 · J.-B. Le Bouquin2;1 · J.-L. Monin1 · J.D. Monnier3 · G. Perrin14 · B. Plez15 · T. Ratzka16 · S. Renard1 · S. Stefl2 · E. Thiebaut´ 8 · K. Tristram10 · T. Verhoelst17 · S. Wolf18 · J. Young4 Received: date / Accepted: date Abstract The number of publications of aperture-synthesis images based on optical long- baseline interferometry measurements has recently increased due to easier access to visi- ble and infrared interferometers. The interferometry technique has now reached a technical maturity level that opens new avenues for numerous astrophysical topics requiring milli- arcsecond model-independent imaging. In writing this paper our motivation was twofold: 1) review and publicize emblematic excerpts of the impressive corpus accumulated in the field of optical interferometry image reconstruction; 2) discuss future prospects for this technique by selecting four representative astrophysical science cases in order to review the potential benefits of using optical long baseline interferometers. For this second goal we have simulated interferometric data from those selected astro- physical environments and used state-of-the-art codes to provide the reconstructed images that are reachable with current or soon-to-be facilities. The image reconstruction process was “blind” in the sense that reconstructors had no knowledge of the input brightness distri- butions. We discuss the impact of optical interferometry in those four astrophysical fields.
    [Show full text]
  • Astronomy 2009 Index
    Astronomy Magazine 2009 Index Subject Index 1RXS J160929.1-210524 (star), 1:24 4C 60.07 (galaxy pair), 2:24 6dFGS (Six Degree Field Galaxy Survey), 8:18 21-centimeter (neutral hydrogen) tomography, 12:10 93 Minerva (asteroid), 12:18 2008 TC3 (asteroid), 1:24 2009 FH (asteroid), 7:19 A Abell 21 (Medusa Nebula), 3:70 Abell 1656 (Coma galaxy cluster), 3:8–9, 6:16 Allen Telescope Array (ATA) radio telescope, 12:10 ALMA (Atacama Large Millimeter/sub-millimeter Array), 4:21, 9:19 Alpha (α) Canis Majoris (Sirius) (star), 2:68, 10:77 Alpha (α) Orionis (star). See Betelgeuse (Alpha [α] Orionis) (star) Alpha Centauri (star), 2:78 amateur astronomy, 10:18, 11:48–53, 12:19, 56 Andromeda Galaxy (M31) merging with Milky Way, 3:51 midpoint between Milky Way Galaxy and, 1:62–63 ultraviolet images of, 12:22 Antarctic Neumayer Station III, 6:19 Anthe (moon of Saturn), 1:21 Aperture Spherical Telescope (FAST), 4:24 APEX (Atacama Pathfinder Experiment) radio telescope, 3:19 Apollo missions, 8:19 AR11005 (sunspot group), 11:79 Arches Cluster, 10:22 Ares launch system, 1:37, 3:19, 9:19 Ariane 5 rocket, 4:21 Arianespace SA, 4:21 Armstrong, Neil A., 2:20 Arp 147 (galaxy pair), 2:20 Arp 194 (galaxy group), 8:21 art, cosmology-inspired, 5:10 ASPERA (Astroparticle European Research Area), 1:26 asteroids. See also names of specific asteroids binary, 1:32–33 close approach to Earth, 6:22, 7:19 collision with Jupiter, 11:20 collisions with Earth, 1:24 composition of, 10:55 discovery of, 5:21 effect of environment on surface of, 8:22 measuring distant, 6:23 moons orbiting,
    [Show full text]
  • In This Issue: Rod’S Previous Book, the Urban Astronomer’S Guide Has Also Been Very Popular
    The Rosette Gazette Volume 25,, IssueIssue 01 Newsletter of the Rose CityCity AstronomersAstronomers January, 2012 The Past, Present, and Future of the Schmidt Cassegrain Telescope by Rod Mollise “Uncle” Rod Mollise is familiar to amateur astronomers as the author of numerous books and magazine articles on every aspect of astronomy, amateur and professional. He is most well‐known, however, for his books on Schmidt Cassegrain Telescopes, SCTs, especially his latest one, Choosing and Using a New CAT (Springer), which has become the standard reference for these popular instruments. In This Issue: Rod’s previous book, The Urban Astronomer’s Guide has also been very popular. That’s no 1….General Meeting surprise, since it is designed to help the majority of amateurs who must observe from light polluted urban and suburban sites see deep sky wonders. 2….Special Interest Groups In addition to his books, Rod’s writing can be found in magazines including Sky and Telescope, Sky and Telescope’s SKYWATCH, Astronomy Technology Today, Amateur ……Observing Reports Astronomy Magazine, and others. Look for Unk Rod on numerous online forums, too, 3….Club Officers especially his popular blog, Uncle Rod’s Astro Blog. He is also one of the editors of the acclaimed online double star magazine, The University of South Alabama’s The Journal of …...Magazines Double Star Observations. …...RCA Library Rod Mollise is an engineer by profession, working on the U.S. Navy’s LPD Landing Ship 4….The Observers Corner program in Pascagoula, Mississippi, where he serves as the Combined Test Team’s Navigation Systems Engineer. Despite long 8.....Dawn Takes A Closer hours devoted to the new ships, he also finds time to teach Look astronomy to undergraduates at the University of South Alabama in 10...RCA Board Minutes Mobile.
    [Show full text]
  • The Formation Mechanism of Gas Giants on Wide Orbits
    The Astrophysical Journal, 707:79–88, 2009 December 10 doi:10.1088/0004-637X/707/1/79 C 2009. The American Astronomical Society. All rights reserved. Printed in the U.S.A. THE FORMATION MECHANISM OF GAS GIANTS ON WIDE ORBITS Sarah E. Dodson-Robinson1,4, Dimitri Veras2, Eric B. Ford2, and C. A. Beichman3 1 Astronomy Department, University of Texas, 1 University Station C1400, Austin, TX 78712, USA; [email protected] 2 Astronomy Department, University of Florida, 211 Bryant Space Sciences Center, Gainesville, FL 32111, USA 3 NASA Exoplanet Science Institute, California Institute of Technology, 770 S. Wilson Ave, Pasadena, CA 91125, USA Received 2009 July 29; accepted 2009 October 19; published 2009 November 18 ABSTRACT The recent discoveries of massive planets on ultra-wide orbits of HR 8799 and Fomalhaut present a new challenge for planet formation theorists. Our goal is to figure out which of three giant planet formation mechanisms— core accretion (with or without migration), scattering from the inner disk, or gravitational instability—could be responsible for Fomalhaut b, HR 8799 b, c and d, and similar planets discovered in the future. This paper presents the results of numerical experiments comparing the long-period planet formation efficiency of each possible mechanism in model A star, G star, and M star disks. First, a simple core accretion simulation shows that planet cores forming beyond 35 AU cannot reach critical mass, even under the most favorable conditions one can construct. Second, a set of N-body simulations demonstrates that planet–planet scattering does not create stable, wide-orbit systems such as HR 8799.
    [Show full text]
  • Download This Article in PDF Format
    A&A 637, A9 (2020) Astronomy https://doi.org/10.1051/0004-6361/201937239 & c O. Flasseur et al. 2020 Astrophysics PACO ASDI: an algorithm for exoplanet detection and characterization in direct imaging with integral field spectrographs Olivier Flasseur1, Loïc Denis1, Éric Thiébaut2, and Maud Langlois2 1 Université de Lyon, UJM-Saint-Etienne, CNRS, Institut d’Optique Graduate School, Laboratoire Hubert Curien UMR 5516, 42023 Saint-Etienne, France e-mail: [email protected] 2 Université de Lyon, Université Lyon1, ENS de Lyon, CNRS, Centre de Recherche Astrophysique de Lyon UMR 5574, 69230 Saint-Genis-Laval, France e-mail: [email protected] Received 3 December 2019 / Accepted 6 March 2020 ABSTRACT Context. Exoplanet detection and characterization by direct imaging both rely on sophisticated instruments (adaptive optics and coro- nagraph) and adequate data processing methods. Angular and spectral differential imaging (ASDI) combines observations at different times and a range of wavelengths in order to separate the residual signal from the host star and the signal of interest corresponding to off-axis sources. Aims. Very high contrast detection is only possible with an accurate modeling of those two components, in particular of the back- ground due to stellar leakages of the host star masked out by the coronagraph. Beyond the detection of point-like sources in the field of view, it is also essential to characterize the detection in terms of statistical significance and astrometry and to estimate the source spectrum. Methods. We extend our recent method PACO, based on local learning of patch covariances, in order to capture the spectral and tem- poral fluctuations of background structures.
    [Show full text]