Testing the Nature of Dark Compact Objects: a Status Report

Total Page:16

File Type:pdf, Size:1020Kb

Testing the Nature of Dark Compact Objects: a Status Report Living Reviews in Relativity (2019) 22:4 https://doi.org/10.1007/s41114-019-0020-4 REVIEW ARTICLE Testing the nature of dark compact objects: a status report Vitor Cardoso1,2 · Paolo Pani3 Received: 8 April 2019 / Accepted: 22 June 2019 © The Author(s) 2019 Abstract Very compact objects probe extreme gravitational fields and may be the key to under- stand outstanding puzzles in fundamental physics. These include the nature of dark matter, the fate of spacetime singularities, or the loss of unitarity in Hawking evapora- tion. The standard astrophysical description of collapsing objects tells us that massive, dark and compact objects are black holes. Any observation suggesting otherwise would be an indication of beyond-the-standard-model physics. Null results strengthen and quantify the Kerr black hole paradigm. The advent of gravitational-wave astronomy and precise measurements with very long baseline interferometry allow one to finally probe into such foundational issues. We overview the physics of exotic dark compact objects and their observational status, including the observational evidence for black holes with current and future experiments. Keywords Black holes · Event horizon · Gravitational waves · Quantum gravity · Singularities Contents 1 Introduction ............................................... 1.1 Black holes: kings of the cosmos? ................................ 1.2 Problems on the horizon ..................................... 1.3 Quantifying the evidence for black holes ............................. 1.4 The dark matter connection .................................... 1.5 Taxonomy of compact objects: a lesson from particle physics .................. B Vitor Cardoso [email protected] Paolo Pani [email protected] 1 CENTRA, Departamento de Física, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais 1, 1049 Lisbon, Portugal 2 CERN, 1 Esplanade des Particules, 1211 Geneva 23, Switzerland 3 Dipartimento di Fisica, “Sapienza” Università di Roma & Sezione INFN Roma1, Piazzale Aldo Moro 5, 00185 Rome, Italy 0123456789().: V,-vol 123 4 Page 2 of 104 V. Cardoso, P. Pani 1.6 The small -limit ......................................... 2 Structure of stationary compact objects ................................ 2.1 Anatomy of compact objects ................................... 2.1.1 Event horizons, trapped surfaces, apparent horizons ................... 2.1.2 Quantifying the shades of dark objects: the closeness parameter ............ 2.1.3 Quantifying the softness of dark objects: the curvature parameter ............ 2.1.4 Geodesic motion and associated scales .......................... 2.1.5 Photon spheres ....................................... 2.2 Escape trajectories and shadows ................................. 2.3 The role of the spin ........................................ 2.3.1 Ergoregion ......................................... 2.3.2 Multipolar structure .................................... 3 ECO taxonomy: from DM to quantum gravity ............................. 3.1 A compass to navigate the ECO atlas: Buchdahl’s theorem ................... 3.2 Self-gravitating fundamental fields ................................ 3.3 Perfect fluids ........................................... 3.4 Anisotropic stars ......................................... 3.5 Quasiblack holes ......................................... 3.6 Wormholes ............................................ 3.7 Dark stars ............................................. 3.8 Gravastars ............................................. 3.9 Fuzzballs and collapsed polymers ................................ 3.10 “Naked singularities” and superspinars .............................. 3.11 2–2 Holes and other geons .................................... 3.12 Firewalls, compact quantum objects and dirty BHs ....................... 4 Dynamics of compact objects ...................................... 4.1 Quasinormal modes ........................................ 4.2 Gravitational-wave echoes .................................... 4.2.1 Quasinormal modes, photon spheres, and echoes ..................... 4.2.2 A black-hole representation and the transfer function .................. 4.2.3 A Dyson-series representation ............................... 4.2.4 Echo modeling ....................................... 4.2.5 Echoes: a historical perspective .............................. 4.3 The role of the spin ........................................ 4.3.1 QNMs of spinning Kerr-like ECOs ............................ 4.3.2 Echoes from spinning ECOs ............................... 4.4 The stability problem ....................................... 4.4.1 The ergoregion instability ................................. 4.4.2 Nonlinear instabilities I: long-lived modes and their backreaction ............ 4.4.3 Nonlinear instabilities II: causality, hoop conjecture, and BH formation ......... 4.5 Binary systems .......................................... 4.5.1 Multipolar structure .................................... 4.5.2 Tidal heating ........................................ 4.5.3 Tidal deformability and Love numbers .......................... 4.5.4 Accretion and drag in inspirals around and inside DM objects .............. 4.5.5 GW emission from ECOs orbiting or within neutron stars ................ 4.6 Formation and evolution ..................................... 5 Observational evidence for horizons .................................. 5.1 Tidal disruption events and EM counterparts ........................... 5.2 Equilibrium between ECOs and their environment: Sgr A* ................... 5.3 Bounds with shadows: Sgr A* and M87 ............................. 5.4 Tests with accretion disks ..................................... 5.5 Signatures in the mass-spin distribution of dark compact objects ................ 5.6 Multipole moments and tests of the no-hair theorem ....................... 5.6.1 Constraints with comparable-mass binaries ........................ 5.6.2 Projected constraints with EMRIs ............................. 5.7 Tidal heating ........................................... 123 Testing the nature of dark compact objects: a status report Page 3 of 104 4 5.8 Tidal deformability ........................................ 5.9 Resonance excitation ....................................... 5.10 QNM tests ............................................. 5.11 Inspiral-merger-ringdown consistency .............................. 5.12 Tests with GW echoes ....................................... 5.13 Stochastic background ...................................... 5.14 Motion within ECOs ....................................... 6 Discussion and observational bounds .................................. References .................................................. The crushing of matter to infinite density by infinite tidal gravitation forces is a phenomenon with which one cannot live comfortably. From a purely philo- sophical standpoint it is difficult to believe that physical singularities are a fundamental and unavoidable feature of our universe [...] one is inclined to dis- card or modify that theory rather than accept the suggestion that the singularity actually occurs in nature. Kip Thorne, Relativistic Stellar Structure and Dynamics (1966) No testimony is sufficient to establish a miracle, unless the testimony be of such a kind, that its falsehood would be more miraculous than the fact which it endeav- ors to establish. David Hume, An Enquiry concerning Human Understanding (1748) 1 Introduction The discovery of the electron and the known neutrality of matter led in 1904 to J. J. Thomson’s “plum-pudding” atomic model. Data from new scattering experiments was soon found to be in tension with this model, which was eventually superseeded by Rutherford’s, featuring an atomic nucleus. The point-like character of elementary particles opened up new questions. How to explain the apparent stability of the atom? How to handle the singular behavior of the electric field close to the source? What is the structure of elementary particles? Some of these questions were elucidated with quantum mechanics and quantum field theory. Invariably, the path to the answer led to the discovery of hitherto unknown phenomena and to a deeper understanding of the fundamental laws of Nature. The history of elementary particles is a timeline of the understanding of the electromagnetic (EM) interaction, and is pegged to its characteristic 1/r 2 behavior (which necessarily implies that other structure has to exist on small scales within any sound theory). Arguably, the elementary particle of the gravitational interaction are black holes (BHs). Within General Relativity (GR), BHs are indivisible and the simplest macroscopic objects that one can conceive. The uniqueness results—establishing that the two-parameter Kerr family of BHs describes any vacuum, stationary and asymp- totically flat, regular solution to GR—have turned BHs into somewhat of a miracle elementary particle.1 1 Quoting Subrahmanyan Chandrasekhar: “In my entire scientific life, extending over forty-five years, the most shattering experience has been the realization that an exact solution of Einstein’s equations of general 123 4 Page 4 of 104 V. Cardoso, P. Pani Even though the first nontrivial regular, asymptotically flat, vacuum solution to the field equations describing BHs were written already in 1916 (Schwarzschild 1916; Droste 1917), several decades would elapse until such solutions became accepted and understood. The dissension between Eddington and Chandrasekhar
Recommended publications
  • Quantum Black Holes
    Quantum Black Holes Xavier Calmet Physics & Astronomy University of Sussex Standard Model of particle physics It is described by a quantum field theory. Like athletes, coupling constants run (with energy)…. fast or slow When does gravity become important? The Planck mass is the energy scale A grand unification? at which quantum Is there actually only gravitational effects one fundamental interaction? become important. Doing quantum gravity is challenging • We do not know how to do calculations in quantum gravity. • Unifying gravity and quantum mechanics is difficult. • One can however show a few features such a theory should have, most notably: there is a minimal length in nature (e.g. XC, M. Graesser and S. Hsu) which corresponds to the size of the quantum fluctuations of spacetime itself. • New tools/theories are needed: string theory, loop quantum gravity, noncommutative geometry, nonperturbative quantum gravity… maybe something completely different. Quantization of gravity is an issue in the high energy regime which is tough to probe experimentally Dimensional analysis: 19 MP ~10 GeV but we shall see that it does not need to be the case. Since we do not have data: thought experiments can give us some clues. Why gravity do we need to quantize gravity? One example: linearized gravity coupled to matter (described by a quantum field theory) is problematic: See talk of Claus Kiefer We actually do not even know at what energy scale quantum gravity becomes strong! Let me give you two examples TeV gravity extra-dimensions where MP is the effective Planck scale in 4-dim ADD brane world RS warped extra-dimension Running of Newton’s constant XC, Hsu & Reeb (2008) • Consider GR with a massive scalar field • Let me consider the renormalization of the Planck mass: Like any other coupling constant: Newton’s constant runs! Theoretical physics can lead to anything… even business ideas! A large hidden sector! • Gravity can be strong at 1 TeV if Newton’s constant runs fast somewhere between eV range and 1 TeV.
    [Show full text]
  • HOMOGENEOUS EINSTEIN METRICS on SU(N) MANIFOLDS, HOOP CONJECTURE for BLACK RINGS, and ERGOREGIONS in MAGNETISED BLACK HOLE SPACE
    HOMOGENEOUS EINSTEIN METRICS ON SU(n) MANIFOLDS, HOOP CONJECTURE FOR BLACK RINGS, AND ERGOREGIONS IN MAGNETISED BLACK HOLE SPACETIMES A Dissertation by ABID HASAN MUJTABA Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Approved by: Chair of Committee, Christopher Pope Committee Members, Bhaskar Dutta Stephen Fulling Ergin Sezgin Head of Department, George R. Welch May 2013 Major Subject: Physics Copyright 2013 Abid Hasan Mujtaba ABSTRACT This Dissertation covers three aspects of General Relativity: inequivalent Einstein metrics on Lie Group Manifolds, proving the Hoop Conjecture for Black Rings, and investigating ergoregions in magnetised black hole spacetimes. A number of analytical and numerical techniques are employed to that end. It is known that every compact simple Lie Group admits a bi-invariant homogeneous Ein- stein metric. We use two ans¨atzeto probe the existence of additional inequivalent Einstein metrics on the Lie Group SU(n). We provide an explicit construction of 2k + 1 and 2k inequivalent Einstein metrics on SU(2k) and SU(2k + 1) respectively. We prove the Hoop Conjecture for neutral and charged, singly and doubly rotating black rings. This allows one to determine whether a rotating mass distribution has an event horizon, that it is in fact a black ring. We investigate ergoregions in magnetised black hole spacetimes. We show that, in general, rotating charged black holes (Kerr-Newman) immersed in an external magnetic field have ergoregions that extend to infinity near the central axis unless we restrict the charge to q = amB and keep B below a maximal value.
    [Show full text]
  • Spacetime Geometry from Graviton Condensation: a New Perspective on Black Holes
    Spacetime Geometry from Graviton Condensation: A new Perspective on Black Holes Sophia Zielinski née Müller München 2015 Spacetime Geometry from Graviton Condensation: A new Perspective on Black Holes Sophia Zielinski née Müller Dissertation an der Fakultät für Physik der Ludwig–Maximilians–Universität München vorgelegt von Sophia Zielinski geb. Müller aus Stuttgart München, den 18. Dezember 2015 Erstgutachter: Prof. Dr. Stefan Hofmann Zweitgutachter: Prof. Dr. Georgi Dvali Tag der mündlichen Prüfung: 13. April 2016 Contents Zusammenfassung ix Abstract xi Introduction 1 Naturalness problems . .1 The hierarchy problem . .1 The strong CP problem . .2 The cosmological constant problem . .3 Problems of gravity ... .3 ... in the UV . .4 ... in the IR and in general . .5 Outline . .7 I The classical description of spacetime geometry 9 1 The problem of singularities 11 1.1 Singularities in GR vs. other gauge theories . 11 1.2 Defining spacetime singularities . 12 1.3 On the singularity theorems . 13 1.3.1 Energy conditions and the Raychaudhuri equation . 13 1.3.2 Causality conditions . 15 1.3.3 Initial and boundary conditions . 16 1.3.4 Outlining the proof of the Hawking-Penrose theorem . 16 1.3.5 Discussion on the Hawking-Penrose theorem . 17 1.4 Limitations of singularity forecasts . 17 2 Towards a quantum theoretical probing of classical black holes 19 2.1 Defining quantum mechanical singularities . 19 2.1.1 Checking for quantum mechanical singularities in an example spacetime . 21 2.2 Extending the singularity analysis to quantum field theory . 22 2.2.1 Schrödinger representation of quantum field theory . 23 2.2.2 Quantum field probes of black hole singularities .
    [Show full text]
  • Geometrical Inequalities Bounding Angular Momentum and Charges in General Relativity
    Living Rev Relativ (2018) 21:5 https://doi.org/10.1007/s41114-018-0014-7 REVIEW ARTICLE Geometrical inequalities bounding angular momentum and charges in General Relativity Sergio Dain1 · María Eugenia Gabach-Clement1 Received: 10 October 2017 / Accepted: 1 June 2018 © The Author(s) 2018 Abstract Geometrical inequalities show how certain parameters of a physical system set restrictions on other parameters. For instance, a black hole of given mass can not rotate too fast, or an ordinary object of given size can not have too much electric charge. In this article, we are interested in bounds on the angular momentum and electromagnetic charges, in terms of total mass and size. We are mainly concerned with inequalities for black holes and ordinary objects. The former are the most studied systems in this context in General Relativity, and where most results have been found. Ordinary objects, on the other hand, present numerous challenges and many basic questions concerning geometrical estimates for them are still unanswered. We present the many results in these areas. We make emphasis in identifying the mathematical conditions that lead to such estimates, both for black holes and ordinary objects. Keywords Geometrical inequalities · Black holes · Ordinary objects The important moments in life are the ones we share with others. Sergio Dain This article is dedicated to the memory of Sergio Dain and Marcus Ansorg. Sergio Dain: Deceased. B María Eugenia Gabach-Clement [email protected] 1 Facultad de Matemática, Astronomía y Física, Universidad Nacional de Córdoba, Instituto de Física Enrique Gaviola, Consejo Nacional de Investigaciones Científicas y Técnicas, Córdoba, Argentina 123 5 Page 2 of 74 S.
    [Show full text]
  • Mass – Luminosity Relation for Massive Stars
    MASS – LUMINOSITY RELATION FOR MASSIVE STARS Within the Eddington model β ≡ Pg/P = const, and a star is an n = 3 polytrope. Large mass stars have small β, and hence are dominated by radiation pressure, and the opacity in them is dominated by electron scattering. Let us consider the outer part of such a star assuming it is in a radiative equilibrium. We have the equation of hydrostatic equilibrium: dP GM = − r ρ, (s2.1) dr r2 and the equation of radiative equilibrium dP κρL r = − r . (s2.2) dr 4πcr2 Dividing these equations side by side we obtain dP κL r = r , (s2.3) dP 4πcGMr Near the stellar surface we have Mr ≈ M and Lr ≈ L, and adopting κ ≈ κe = const, we may integrate equation (s2.3) to obtain κeLr Pr − Pr,0 = (P − P0) , (s2.4) 4πcGMr 4 where Pr,0 = P0 = aTeff /6 is the radiation pressure at the surface, i.e. at τ = 0, where the gas pressure Pg = 0. At a modest depth below stellar surface pressure is much larger than P0, we may neglect the integration constants in (s2.4) to obtain P κ L L 1+ X M⊙ L 1 − β = r = e = = , (s2.5) P 4πcGM LEdd 65300 L⊙ M where LEdd is the Eddington luminosity. Equation (s2.5) gives a relation between stellar mass, luminosity and β. The Eddington model gives a relation between stellar mass and β : 1 2 M 18.1 (1 − β) / = 2 2 , (s2.6) M⊙ µ β where µ is a mean molecular weight in units of mass of a hydrogen atom, µ−1 =2X +0.75Y +0.5Z, and X,Y,Z, are the hydrogen, helium, and heavy element abundance by mass fraction.
    [Show full text]
  • Testing Quantum Gravity with LIGO and VIRGO
    Testing Quantum Gravity with LIGO and VIRGO Marek A. Abramowicz1;2;3, Tomasz Bulik4, George F. R. Ellis5 & Maciek Wielgus1 1Nicolaus Copernicus Astronomical Center, ul. Bartycka 18, 00-716, Warszawa, Poland 2Physics Department, Gothenburg University, 412-96 Goteborg, Sweden 3Institute of Physics, Silesian Univ. in Opava, Bezrucovo nam. 13, 746-01 Opava, Czech Republic 4Astronomical Observatory Warsaw University, 00-478 Warszawa, Poland 5Mathematics Department, University of Cape Town, Rondebosch, Cape Town 7701, South Africa We argue that if particularly powerful electromagnetic afterglows of the gravitational waves bursts detected by LIGO-VIRGO will be observed in the future, this could be used as a strong observational support for some suggested quantum alternatives for black holes (e.g., firewalls and gravastars). A universal absence of such powerful afterglows should be taken as a sug- gestive argument against such hypothetical quantum-gravity objects. If there is no matter around, an inspiral-type coalescence (merger) of two uncharged black holes with masses M1, M2 into a single black hole with the mass M3 results in emission of grav- itational waves, but no electromagnetic radiation. The maximal amount of the gravitational wave 2 energy E=c = (M1 + M2) − M3 that may be radiated from a merger was estimated by Hawking [1] from the condition that the total area of all black hole horizons cannot decrease. Because the 2 2 2 horizon area is proportional to the square of the black hole mass, one has M3 > M2 + M1 . In the 1 1 case of equal initial masses M1 = M2 = M, this yields [ ], E 1 1 h p i = [(M + M ) − M ] < 2M − 2M 2 ≈ 0:59: (1) Mc2 M 1 2 3 M From advanced numerical simulations (see, e.g., [2–4]) one gets, in the case of comparable initial masses, a much more stringent energy estimate, ! EGRAV 52 M 2 ≈ 0:03; meaning that EGRAV ≈ 1:8 × 10 [erg]: (2) Mc M The estimate assumes validity of Einstein’s general relativity.
    [Show full text]
  • Astronomy 112: the Physics of Stars Class 10 Notes: Applications and Extensions of Polytropes in the Last Class We Saw That Poly
    Astronomy 112: The Physics of Stars Class 10 Notes: Applications and Extensions of Polytropes In the last class we saw that polytropes are a simple approximation to a full solution to the stellar structure equations, which, despite their simplicity, yield important physical insight. This is particularly true for certain types of stars, such as white dwarfs and very low mass stars. In today’s class we will explore further extensions and applications of simple polytropic models, which we can in turn use to generate our first realistic models of typical main sequence stars. I. The Binding Energy of Polytropes We will begin by showing that any realistic model must have n < 5. Of course we already determined that solutions to the Lane-Emden equation reach Θ = 0 at finite ξ only for n < 5, which already hints that n ≥ 5 is a problem. Nonetheless, we have not shown that, as a matter of physical principle, models of this sort are unacceptable for stars. To demonstrate this, we will prove a generally useful result about the energy content of polytropic stars. As a preliminary to this, we will write down the polytropic relation (n+1)/n P = KP ρ in a slightly different form. Consider a polytropic star, and imagine moving down within it to the point where the pressure is larger by a small amount dP . The corre- sponding change in density dρ obeys n + 1 dP = K ρ1/ndρ. P n Similarly, since P = K ρ1/n, ρ P it follows that P ! K 1 dP ! d = P ρ(1−n)/ndρ = ρ n n + 1 ρ We can regard this relation as telling us how much the ratio of pressure to density changes when we move through a star by an amount such that the pressure alone changes by dP .
    [Show full text]
  • Ultraluminous X-Ray Pulsars
    Ultraluminous X-ray pulsars: the high-B interpretation Juri Poutanen (University of Turku, Finland; IKI, Moscow) Sergey Tsygankov, Alexander Mushtukov, Valery Suleimanov, Alexander Lutovinov, Anna Chashkina, Pavel Abolmasov Plan: • ULX before 2014 • A short history of ULXPs • Supercritical accretion onto a magnetized neutron star • Large or low B? Propeller? • Beamed? • Winds? Models for ULX (before 2014) • Super-Eddington accretion onto a stellar-mass black hole (e.g. King 2001, Begelman et al. 2006, Poutanen et al. 2007) • Sub-Eddington accretion onto intermediate mass black holes (Colbert & Mushotzky 2001) • Young rotation-powered pulsar (Medvedev & Poutanen 2013) Super-Eddington accretion • Slim disk models Accretion rate is large, but most of the released energy is advected towards the BH. ˙ ˙ M (r) =M 0 • Super-disks with winds Accretion rate is large, but most of the mass is blown away by radiation. Only the Eddington rate goes to the BH. ˙ ˙ r M (r) =M 0 Rsph ˙ ˙ M (rin ) =M Edd M˙ R R 0 - spherization radius sph ≈ in ˙ M Edd Shakura & Sunyaev 1973 Super-Eddington accretion • Slim disk models Accretion rate is large, but most of the released energy is advected towards the BH. ˙ ˙ M (r) =M 0 • Super-disks with winds Accretion rate is large, but most of the mass is blown away by radiation. Only the Eddington rate goes to the BH. ! ! r M (r) =M 0 Rsph ! ! M(rin ) =M Edd M! R ≈ R 0 -spherization radius sph S ! M Edd Ohsuga et al. 2005 Super-Eddington accretion Super-disks with winds and advection Accretion rate is large, a lot of mass is blown away by radiation (using fraction εW of available radiative flux), but still a significant fraction goes to the BH.
    [Show full text]
  • Particle Motion Exterior to a Spherical Star
    Lecture XIX: Particle motion exterior to a spherical star Christopher M. Hirata Caltech M/C 350-17, Pasadena CA 91125, USA∗ (Dated: January 18, 2012) I. OVERVIEW Our next objective is to consider the motion of test particles exterior to a spherical star (or around a black hole), i.e. in the Schwarzschild spacetime. We are interested in both massive particles (e.g. Mercury orbiting the Sun, or a neutron star orbiting a supermassive black hole), and in massless particles (light rays carrying information from an astrophysical object). The reading for this lecture is: MTW Ch. 25. • II. THE PROBLEM We begin with the metric: M dr2 ds2 = 1 2 dt2 + + r2(dθ2 + sin2 θ dφ2). (1) − − r 1 2M/r − Without loss of generality, it is permissible to assume the particle orbits in the equatorial plane, θ = π/2. In this case, we only need the 2+1 dimensional equatorial slice E of the metric: ⊂M M dr2 ds2 = 1 2 dt2 + + r2 dφ2. (2) − − r 1 2M/r − The particle’s momentum p has 3 nontrivial components, and fortunately has three conserved quantities: the time- translation and rotation (longitude invariance or J3 Killing field) imply that pt and pφ are conserved. Furthermore, the magnitude of the 4-momentum is conserved, p p = µ2. The existence of 3 conserved quantities implies that the motion of the test particle is integrable. · − III. MOTION OF MASSIVE PARTICLES Let us first consider the motion of a massive particle. We may then define the specific energy E˜ and specific angular momentum L˜ to be the conserved quantities per unit mass associated with the two symmetries: p p E˜ = u = t and L˜ = u = φ .
    [Show full text]
  • Static Spherically Symmetric Black Holes in Weak F(T)-Gravity
    universe Article Static Spherically Symmetric Black Holes in Weak f (T)-Gravity Christian Pfeifer 1,*,† and Sebastian Schuster 2,† 1 Center of Applied Space Technology and Microgravity—ZARM, University of Bremen, Am Fallturm 2, 28359 Bremen, Germany 2 Ústav Teoretické Fyziky, Matematicko-Fyzikální Fakulta, Univerzita Karlova, V Holešoviˇckách2, 180 00 Praha 8, Czech Republic; [email protected] * Correspondence: [email protected] † These authors contributed equally to this work. Abstract: With the advent of gravitational wave astronomy and first pictures of the “shadow” of the central black hole of our milky way, theoretical analyses of black holes (and compact objects mimicking them sufficiently closely) have become more important than ever. The near future promises more and more detailed information about the observable black holes and black hole candidates. This information could lead to important advances on constraints on or evidence for modifications of general relativity. More precisely, we are studying the influence of weak teleparallel perturbations on general relativistic vacuum spacetime geometries in spherical symmetry. We find the most general family of spherically symmetric, static vacuum solutions of the theory, which are candidates for describing teleparallel black holes which emerge as perturbations to the Schwarzschild black hole. We compare our findings to results on black hole or static, spherically symmetric solutions in teleparallel gravity discussed in the literature, by comparing the predictions for classical observables such as the photon sphere, the perihelion shift, the light deflection, and the Shapiro delay. On the basis of these observables, we demonstrate that among the solutions we found, there exist spacetime geometries that lead to much weaker bounds on teleparallel gravity than those found earlier.
    [Show full text]
  • The Violation of Cosmic Censorship
    VOLUME 66, NUMBER 8 PHYSICAL REVIEW LETTERS 25 FEBRUARY 1991 Formation of Naked Singularities: The Violation of Cosmic Censorship Stuart L. Shapiro and Saul A. Teukolsky Center for Radiophysics and Space Research and Departments of Astronomy and Physics, Cornell University, Ithaca, New York 14853 (Received 7 September 1990) We use a new numerical code to evolve collisionless gas spheroids in full general relativity. In all cases the spheroids collapse to singularities. When the spheroids are su%ciently compact, the singularities are hidden inside black holes. However, when the spheroids are su%ciently large, there are no apparent hor- izons. These results lend support to the hoop conjecture and appear to demonstrate that naked singulari- ties can form in asymptotically flat spacetimes. PACS numbers: 04.20.Jb, 95.30.Sf, 97.60.Lf It is well known that general relativity admits solu- nite. For collisionless matter, prolate evolution is forced tions with singularities, and that such solutions can be to terminate at the singular spindle state. For oblate produced by the gravitational collapse of nonsingular, evolution, the matter simply passes through the pancake asymptotically flat initial data. The cosmic censorship state, but then becomes prolate and also evolves to a hypothesis' states that such singularities will always be spindle singularity. clothed by event horizons and hence can never be visible Does this Newtonian example have any relevance to from the outside (no naked singularities). If cosmic cen- general relativity? We already know that inftnite cylin- sorship holds, then there is no problem with predicting ders do collapse to singularities in general relativity, and, the future evolution outside the event horizon.
    [Show full text]
  • Exceeding the Eddington Limit
    The Fate of the Most Massive Stars ASP Conference Series, Vol. 332, 2005 Roberta M. Humphreys and Krzysztof Z. Stanek Exceeding the Eddington Limit Nir J. Shaviv Racah Institute of Physics, Hebrew University of Jerusalem, Jerusalem 91904, Israel Abstract. We review the current theory describing the existence of steady state super-Eddington atmospheres. The key to the understanding of these at- mospheres is the existence of a porous layer responsible for a reduced e®ective opacity. We show how porosity arises from radiative-hydrodynamic instabili- ties and why the ensuing inhomogeneities reduce the e®ective opacity. We then discuss the appearance of these atmospheres. In particular, one of their funda- mental characteristic is the continuum driven acceleration of a thick wind from regions where the inhomogeneities become transparent. We end by discussing the role that these atmospheres play in the evolution of massive stars. 1. Introduction The notion that astrophysical objects can remain in a super-Eddington steady state for considerable amounts of time, contradicts the common wisdom usually invoked in which the classical Eddington limit, Edd, cannot be exceeded in a steady state because no hydrostatic solution canLthen exist. In other words, if objects do pass Edd, they are expected to be highly dynamic. A huge mass loss should ensueLsince large parts of their atmospheres are then gravitationally unbound and should therefore be expelled. ´ Carinae, and classical novae for that matter, stand in contrast to the above notion. ´ Car was super-Eddington (hereafter SED) during its 20 year long eruption (Davidson and Humphreys 1997). Yet, its observed mass loss and velocity are inconsistent with any standard solution (Shaviv 2000).
    [Show full text]