Acetylenic Carbon-Containing Stable Five-Membered Metallacycles
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
An Empirical Formula Expressing the Mutual Dependence of C-C Bond Distances* Arpad Furka Department of Organic Chemistry Eotvos Lorcind University, Muzeum Krt
CROATICA CHEMICA ACTA CCACAA 56 (2) 191-197 (1983) YU ISSN 0011-1643 CCA-1368 UDC 547 :541.6 Originai Scientific Paper An Empirical Formula Expressing the Mutual Dependence of C-C Bond Distances* Arpad Furka Department of Organic Chemistry Eotvos Lorcind University, Muzeum krt. 4/B Budapest, 1088, Hungary Received August 30, 1982 An empirical formula is suggested to describe the mutuaJ dependence of the length of the bonds formed by a central atom in systems built up from equivalent carbon atoms, e.g. diamond, graphite, the cumulene and polyyne chains and intermediate struc tures between them. A geometrical representation of the relation ship is a regular tetrahedron. A point of this tetrahedron charac terizes the arrangement of the atoms around the central one. From the position of the point the bond distances - and possibly the bond angles - can be deduced. Experimental bond length determinations have made clear in the last few decades that the C-C bond distances vary over a relatively long range, from about 1.2 A to about 1.6 A. There were several attempts to correlate these bond distances on empirical way to different factors like double-bond 1 2 4 character, • n:-bond order,3 state of hybridization, •5 the number of adjacent bonds,6 or the overlap integrals.7 Recently ·a new empirical formula has been suggested to describe the mutual dependence of the C-C bond distances.8 The subject of this paper is the interpretation of this empirical equation. Carbon has three allotropic modifications: diamond, graphite and the not completely characterized chain form9•10 (carbynes). -
The Synthesis of Novel Cyclohexyne Precursors for an Intramolecular
The Synthesis of Novel Cyclohexyne Precursors for an Intramolecular Pauson-Khand Type Reaction Honors Thesis by Samuel Isaac Etkind In partial fulfillment of the requirements for graduation with the Dean’s Scholars Honors Degree in Chemistry ______________________________ __________________ Stephen F. Martin Date Supervising Professor Table of Contents Acknowledgements ......................................................................................................................... 3 Abstract ........................................................................................................................................... 4 1. Introduction ................................................................................................................................. 5 1.1 The Synthesis and Application of Strained Cycloalkynes .................................................... 5 1.2 The Pauson-Khand Reaction ................................................................................................. 8 1.3 Potential Utility of Cyclohexyne in a Pauson-Khand Reaction .......................................... 11 1.4 Previous Work Towards This Goal ..................................................................................... 13 2. Results ....................................................................................................................................... 17 2.1 Second Generation Approach to Cyclohexyne Precursors ................................................. 17 2.2 Third Generation Approach -
Conversion of Methoxy and Hydroxyl Functionalities of Phenolic Monomers Over Zeolites Rajeeva Thilakaratne Iowa State University
Chemical and Biological Engineering Publications Chemical and Biological Engineering 2016 Conversion of methoxy and hydroxyl functionalities of phenolic monomers over zeolites Rajeeva Thilakaratne Iowa State University Jean-Philippe Tessonnier Iowa State University, [email protected] Robert C. Brown Iowa State University, [email protected] Follow this and additional works at: https://lib.dr.iastate.edu/cbe_pubs Part of the Biomechanical Engineering Commons, and the Catalysis and Reaction Engineering Commons The ompc lete bibliographic information for this item can be found at https://lib.dr.iastate.edu/ cbe_pubs/328. For information on how to cite this item, please visit http://lib.dr.iastate.edu/ howtocite.html. This Article is brought to you for free and open access by the Chemical and Biological Engineering at Iowa State University Digital Repository. It has been accepted for inclusion in Chemical and Biological Engineering Publications by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Conversion of methoxy and hydroxyl functionalities of phenolic monomers over zeolites Abstract This study investigates the mechanisms of gas phase anisole and phenol conversion over zeolite catalyst. These monomers contain methoxy and hydroxyl groups, the predominant functionalities of the phenolic products of lignin pyrolysis. The proposed reaction mechanisms for anisole and phenol are distinct, with significant differences in product distributions. The nia sole mechanism involves methenium ions in the conversion of phenol and alkylating aromatics inside zeolite pores. Phenol converts primarily to benzene and naphthalene via a ring opening reaction promoted by hydroxyl radicals. The hep nol mechanism sheds insights on how reactive bi-radicals generated from fragmented phenol aromatic rings (identified as dominant coke precursors) cyclize rapidly to produce polyaromatic hydrocarbons (PAHs). -
Fundamental Studies of Early Transition Metal-Ligand Multiple Bonds: Structure, Electronics, and Catalysis
Fundamental Studies of Early Transition Metal-Ligand Multiple Bonds: Structure, Electronics, and Catalysis Thesis by Ian Albert Tonks In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy CALIFORNIA INSTITUTE OF TECHNOLOGY Pasadena, California 2012 Defended December 6th 2011 ii 2012 Ian A Tonks All Rights Reserved iii ACKNOWLEDGEMENTS I am extremely fortunate to have been surrounded by enthusiastic, dedicated, and caring mentors, colleagues, and friends throughout my academic career. A Ph.D. thesis is by no means a singular achievement; I wish to extend my wholehearted thanks to everyone who has made this journey possible. First and foremost, I must thank my Ph.D. advisor, Prof. John Bercaw. I think more so than anything else, I respect John for his character, sense of fairness, and integrity. I also benefitted greatly from John’s laissez-faire approach to guiding our research group; I’ve always learned best when left alone to screw things up, although John also has an uncanny ability for sensing when I need direction or for something to work properly on the high-vac line. John also introduced me to hiking and climbing in the Eastern Sierras and Owens Valley, which remain amongst my favorite places on Earth. Thanks for always being willing to go to the Pizza Factory in Lone Pine before and after all the group hikes! While I never worked on any of the BP projects that were spearheaded by our co-PI Dr. Jay Labinger, I must also thank Jay for coming to all of my group meetings, teaching me an incredible amount while I was TAing Ch154, and for always being willing to talk chemistry and answer tough questions. -
The Chemistry of Alkynes
14_BRCLoudon_pgs4-2.qxd 11/26/08 9:04 AM Page 644 14 14 The Chemistry of Alkynes An alkyne is a hydrocarbon containing a carbon–carbon triple bond; the simplest member of this family is acetylene, H C'C H. The chemistry of the carbon–carbon triple bond is similar in many respects toL that ofL the carbon–carbon double bond; indeed, alkynes and alkenes undergo many of the same addition reactions. Alkynes also have some unique chem- istry, most of it associated with the bond between hydrogen and the triply bonded carbon, the 'C H bond. L 14.1 NOMENCLATURE OF ALKYNES In common nomenclature, simple alkynes are named as derivatives of the parent compound acetylene: H3CCC' H L L methylacetylene H3CCC' CH3 dimethylacetyleneL L CH3CH2 CC' CH3 ethylmethylacetyleneL L Certain compounds are named as derivatives of the propargyl group, HC'C CH2 , in the common system. The propargyl group is the triple-bond analog of the allyl group.L L HC' C CH2 Cl H2CA CH CH2 Cl L L LL propargyl chloride allyl chloride 644 14_BRCLoudon_pgs4-2.qxd 11/26/08 9:04 AM Page 645 14.1 NOMENCLATURE OF ALKYNES 645 We might expect the substitutive nomenclature of alkynes to be much like that of alkenes, and it is. The suffix ane in the name of the corresponding alkane is replaced by the suffix yne, and the triple bond is given the lowest possible number. H3CCC' H CH3CH2CH2CH2 CC' CH3 H3C CH2 C ' CH L L L L L L L propyne 2-heptyne 1-butyne H3C CH C ' C CH3 HC' C CH2 CH2 C' C CH3 L L L L 1,5-heptadiyneLL L "CH3 4-methyl-2-pentyne Substituent groups that contain a triple bond (called alkynyl groups) are named by replac- ing the final e in the name of the corresponding alkyne with the suffix yl. -
Stabilization of Anti-Aromatic and Strained Five-Membered Rings with A
ARTICLES PUBLISHED ONLINE: 23 JUNE 2013 | DOI: 10.1038/NCHEM.1690 Stabilization of anti-aromatic and strained five-membered rings with a transition metal Congqing Zhu1, Shunhua Li1,MingLuo1, Xiaoxi Zhou1, Yufen Niu1, Minglian Lin2, Jun Zhu1,2*, Zexing Cao1,2,XinLu1,2, Tingbin Wen1, Zhaoxiong Xie1,Paulv.R.Schleyer3 and Haiping Xia1* Anti-aromatic compounds, as well as small cyclic alkynes or carbynes, are particularly challenging synthetic goals. The combination of their destabilizing features hinders attempts to prepare molecules such as pentalyne, an 8p-electron anti- aromatic bicycle with extremely high ring strain. Here we describe the facile synthesis of osmapentalyne derivatives that are thermally viable, despite containing the smallest angles observed so far at a carbyne carbon. The compounds are characterized using X-ray crystallography, and their computed energies and magnetic properties reveal aromatic character. Hence, the incorporation of the osmium centre not only reduces the ring strain of the parent pentalyne, but also converts its Hu¨ckel anti-aromaticity into Craig-type Mo¨bius aromaticity in the metallapentalynes. The concept of aromaticity is thus extended to five-membered rings containing a metal–carbon triple bond. Moreover, these metal–aromatic compounds exhibit unusual optical effects such as near-infrared photoluminescence with particularly large Stokes shifts, long lifetimes and aggregation enhancement. romaticity is a fascinating topic that has long interested Results and discussion both experimentalists and theoreticians because of its ever- Synthesis, characterization and reactivity of osmapentalynes. Aincreasing diversity1–5. The Hu¨ckel aromaticity rule6 applies Treatment of complex 1 (ref. 32) with methyl propiolate to cyclic circuits of 4n þ 2 mobile electrons, but Mo¨bius topologies (HC;CCOOCH3) at room temperature produced osmapentalyne favour 4n delocalized electron counts7–10. -
Basic Concepts of Chemical Bonding
Basic Concepts of Chemical Bonding Cover 8.1 to 8.7 EXCEPT 1. Omit Energetics of Ionic Bond Formation Omit Born-Haber Cycle 2. Omit Dipole Moments ELEMENTS & COMPOUNDS • Why do elements react to form compounds ? • What are the forces that hold atoms together in molecules ? and ions in ionic compounds ? Electron configuration predict reactivity Element Electron configurations Mg (12e) 1S 2 2S 2 2P 6 3S 2 Reactive Mg 2+ (10e) [Ne] Stable Cl(17e) 1S 2 2S 2 2P 6 3S 2 3P 5 Reactive Cl - (18e) [Ar] Stable CHEMICAL BONDSBONDS attractive force holding atoms together Single Bond : involves an electron pair e.g. H 2 Double Bond : involves two electron pairs e.g. O 2 Triple Bond : involves three electron pairs e.g. N 2 TYPES OF CHEMICAL BONDSBONDS Ionic Polar Covalent Two Extremes Covalent The Two Extremes IONIC BOND results from the transfer of electrons from a metal to a nonmetal. COVALENT BOND results from the sharing of electrons between the atoms. Usually found between nonmetals. The POLAR COVALENT bond is In-between • the IONIC BOND [ transfer of electrons ] and • the COVALENT BOND [ shared electrons] The pair of electrons in a polar covalent bond are not shared equally . DISCRIPTION OF ELECTRONS 1. How Many Electrons ? 2. Electron Configuration 3. Orbital Diagram 4. Quantum Numbers 5. LEWISLEWIS SYMBOLSSYMBOLS LEWISLEWIS SYMBOLSSYMBOLS 1. Electrons are represented as DOTS 2. Only VALENCE electrons are used Atomic Hydrogen is H • Atomic Lithium is Li • Atomic Sodium is Na • All of Group 1 has only one dot The Octet Rule Atoms gain, lose, or share electrons until they are surrounded by 8 valence electrons (s2 p6 ) All noble gases [EXCEPT HE] have s2 p6 configuration. -
Early- Versus Late-Transition-Metal-Oxo Bonds: the Electronlc Structure of VO' and Ruo'
J. Phys. Chem. 1988, 92, 2109-2115 2109 Early- versus Late-Transition-Metal-Oxo Bonds: The Electronlc Structure of VO' and RuO' Emily A. Cartert and William A. Goddard III* Arthur Amos Noyes Laboratory of Chemical Physics,$ California Institute of Technology, Pasadena, California 91125 (Received: July 9, 1987; In Final Form: November 3, 1987) From all-electron ab initio generalized valence bond calculations (GVBCI-SCF) on VO+ and RuO', we find that an accurate description of the bonding is obtained only when important resonance configurations are included self-consistently in the wave function. The ground state of VO+('Z-) has a triple bond similar to that of CO, with D,""(V-O) = 128.3 kcal/mol [DFptl(V-O) = 1.31 * 5 kcal/mol], while the ground state of RuO+(~A)has a double bond similar to that of Oz, with D,CS'cd(Ru-O) = 67.1 kcal/mol. Vertical excitation energies for a number of low-lying electronic states of VO+ and RuO' are also reported. These results indicate fundamental differences in the nature of the metal-oxo bond in early and late metal oxo complexes that explain the observed trends in reactivity (e.g., early metal oxides are thermodynamically stable whereas late metal oxo complexes are highly reactive oxidants). Finally, we have used these results to predict the ground states of MO' for other first-row transition-metal oxides. I. Introduction TABLE I: First-Row Transition-Metal-Oxo Bond Strengths While the electronic structure of neutral transition-metal oxides (kcal/mol)' has been examined by several authors,' the only cationic tran- metal Do(M+-O) Do(M-0) metal Do(M+-O) Do(M-0) sition-metal oxide (TMO) which has been studied with correlated 3 Mn 3 wave functions is2 CrO+. -
Photochemical Generation of Carbenes and Ketenes from Phenanthrene-Based Precursors Part I: Dimethylalkylidene Part II: Diphenylketene
Colby College Digital Commons @ Colby Honors Theses Student Research 2017 Photochemical Generation of Carbenes and Ketenes from Phenanthrene-based Precursors Part I: Dimethylalkylidene Part II: Diphenylketene Tarini S. Hardikar Student Tarini Hardikar Colby College Follow this and additional works at: https://digitalcommons.colby.edu/honorstheses Part of the Organic Chemistry Commons Colby College theses are protected by copyright. They may be viewed or downloaded from this site for the purposes of research and scholarship. Reproduction or distribution for commercial purposes is prohibited without written permission of the author. Recommended Citation Hardikar, Tarini S. and Hardikar, Tarini, "Photochemical Generation of Carbenes and Ketenes from Phenanthrene-based Precursors Part I: Dimethylalkylidene Part II: Diphenylketene" (2017). Honors Theses. Paper 948. https://digitalcommons.colby.edu/honorstheses/948 This Honors Thesis (Open Access) is brought to you for free and open access by the Student Research at Digital Commons @ Colby. It has been accepted for inclusion in Honors Theses by an authorized administrator of Digital Commons @ Colby. Photochemical Generation of Carbenes and Ketenes from Phenanthrene-based Precursors Part I: Dimethylalkylidene Part II: Diphenylketene TARINI HARDIKAR A Thesis Presented to the Department of Chemistry, Colby College, Waterville, ME In Partial Fulfillment of the Requirements for Graduation With Honors in Chemistry SUBMITTED MAY 2017 Photochemical Generation of Carbenes and Ketenes from Phenanthrene-based Precursors Part I: Dimethylalkylidene Part II: Diphenylketene TARINI HARDIKAR Approved: (Mentor: Dasan M. Thamattoor, Professor of Chemistry) (Reader: Rebecca R. Conry, Associate Professor of Chemistry) “NOW WE KNOW” - Dasan M. Thamattoor Vitae Tarini Shekhar Hardikar was born in Vadodara, Gujarat, India in 1996. She graduated from the S.N. -
Supporting Information
Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2008 Supporting information Thermal cyclotrimerization of tetraphenyl[5]cumulene (tetraphenylhexapentaene) to tricyclodecadiene derivative † Nazrul Islam, Takashi Ooi , Tetsuo Iwasawa, Masaki Nishiuchi and Yasuhiko * Kawamura Institute of Technology and Science, The University of Tokushima, 2-1 Minamijosanjima-cho, Tokushima 770-8506, Japan †Institute of Health Biosciences, The University of Tokushima, 1-78 Shomachi, Tokushima 770-8505, Japan *Corresponding author. E-mail: [email protected] Experimental section 1. General Methods: Chemicals were obtained from Tokyo Kasei (Tokyo Chemical Industry), Wako (Wako Pure Chemical Industries), Aldrich, and Merck and used as received if not specified 1 13 otherwise. H NMR and C NMR spectra were recorded in CDCl3 on a JEOL EX-400 spectrometer with TMS as an internal standard. HPLC analysis was performed on a JASCO high-performance liquid chromatography system equipped with a 4.6 x 250 mm silica gel column (JASCO Finepak® SIL) and a HITACHI diode array detector (HITACHI L-2450; detector wavelength = 254 nm; mobile phase, CH3CN : H2O = 8:2 v/v). UV-VIS spectra were measured with a Hitachi UV-2000 spectrophotometer. Mass spectra were determined by a Shimadzu GC-MS QP-1000 with a direct inlet attachment using an ionizing voltage of 20 and 70 eV. Elemental analyses were performed by using Yanoco MT-5 instrument at the microanalytical laboratory of this university. X-ray crystallographic analysis was performed with a Rigaku RAXIS-RAPID instrument 1 Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2008 (Rigaku Corporation). -
Cycloalkanes, Cycloalkenes, and Cycloalkynes
CYCLOALKANES, CYCLOALKENES, AND CYCLOALKYNES any important hydrocarbons, known as cycloalkanes, contain rings of carbon atoms linked together by single bonds. The simple cycloalkanes of formula (CH,), make up a particularly important homologous series in which the chemical properties change in a much more dramatic way with increasing n than do those of the acyclic hydrocarbons CH,(CH,),,-,H. The cyclo- alkanes with small rings (n = 3-6) are of special interest in exhibiting chemical properties intermediate between those of alkanes and alkenes. In this chapter we will show how this behavior can be explained in terms of angle strain and steric hindrance, concepts that have been introduced previously and will be used with increasing frequency as we proceed further. We also discuss the conformations of cycloalkanes, especially cyclo- hexane, in detail because of their importance to the chemistry of many kinds of naturally occurring organic compounds. Some attention also will be paid to polycyclic compounds, substances with more than one ring, and to cyclo- alkenes and cycloalkynes. 12-1 NOMENCLATURE AND PHYSICAL PROPERTIES OF CYCLOALKANES The IUPAC system for naming cycloalkanes and cycloalkenes was presented in some detail in Sections 3-2 and 3-3, and you may wish to review that ma- terial before proceeding further. Additional procedures are required for naming 446 12 Cycloalkanes, Cycloalkenes, and Cycloalkynes Table 12-1 Physical Properties of Alkanes and Cycloalkanes Density, Compounds Bp, "C Mp, "C diO,g ml-' propane cyclopropane butane cyclobutane pentane cyclopentane hexane cyclohexane heptane cycloheptane octane cyclooctane nonane cyclononane "At -40". bUnder pressure. polycyclic compounds, which have rings with common carbons, and these will be discussed later in this chapter. -
Donor/Acceptor Metallocenes: a New Structure Principle in Catalyst Design
COMMUNICATIONS metal complex inside their tunnels, which makes these [19] C. Cascales, E. GutieÂrrez-Puebla, M. A. Monge, C. Ruiz-Valero, materials a good point of departure for designing new Angew. Chem. 1998, 110, 135 ± 138; Angew. Chem. Int. Ed. 1998, 37, 129 ± 131. catalysts; a stable framework after removal of the transition [20] H. Li, M. Eddaaoudi, D. A. Richardson, O. M. Yaghi, J. Am. Chem. metal complex; and large distances between the active metal Soc. 1998, 120, 8567. centers, which allows unhindered access of reactants to these [21] Hailian Li, O. M. Yaghi, J. Am. Chem. Soc. 1998, 120, 10569. centers through uniformly sized 8Rc channels. [22] T. E. Gier, X. Bu, P. Feng, G. D. Stucky, Nature 1998, 395, 154. [23] X. Bu, P. Feng, G. D. Stucky, J. Am. Chem. Soc. 1998, 120, 11204. [24] X. Bu, P. Feng, T. E. Gier, D. Zhao, G. D. Stucky, J. Am. Chem. Soc. 1998, 120, 13389. [25] H. Brumer, K. Wutz, New J. Chem. 1992, 16,57. Experimental Section [26] A. Corma, V. ForneÂs, S. B. Pergher, T. L. Maesennn, J. G. Buglass, Nature 1998, 396, 353. [27] SHELXTL, Siemens Energy & Automation Inc., Analytical Instru- X-ray structure analysis of ICMM-2Cu, ICMM-2Ag, and ICMM-2H: mentation, 1996. Orthorhombic, space group Pnna,MoKa, dimensions of crystals: 0.2 Â 0.1 Â 0.05, 0.02 Â 0.08 Â 0.2, and 0.04 Â 0.16 Â 0.2 mm, respectively; see Table 1 for the cell parameters. Data were collected in a Siemens SMART- CCD diffractometer using w scans over the range 3 < q < 268.