Dissertation Docteur De L'université Du Luxembourg

Total Page:16

File Type:pdf, Size:1020Kb

Dissertation Docteur De L'université Du Luxembourg PhD-FSTC-2018-36 The Faculty of Sciences, Technology and Communication DISSERTATION Defence held on 26/04/2018 in Luxembourg to obtain the degree of DOCTEUR DE L’UNIVERSITÉ DU LUXEMBOURG EN BIOLOGIE by Dheeraj Reddy BOBBILI Born on 28 July 1988 in Autonagar, (India) UNRAVELING THE COMPLEX GENETICS OF NEUROLOGICAL DISORDERS Dissertation defence committee Dr. Rejko Krüger, dissertation supervisor Professor, Université du Luxembourg Dr. Enrico Glaab, Chairman Senior Research Scientist, Université du Luxembourg Dr. Reinhard Schneider, Vice-Chairman Head of bioinformatics core facility, Université du Luxembourg Dr. Federico Zara Professor, Laboratory of Neurogenetics, Istituto Giannina Gaslini Dr. Jose Antonio López Escámez Hospital Universitario Virgen de las Nieves, Granada Unraveling the complex genetics of neurological disorders A dissertation by Dheeraj Reddy Bobbili Completed in the Bioinformatics Core Group, Luxembourg Centre for Systems Biomedicine To obtain the degree of DOCTEUR DE L’UNIVERSITÉ DU LUXEMBOURG EN BIOLOGIE Dissertation Defence Committee: Supervisor: Prof. Dr. Rejko krüger Committee members: Dr. Enrico Glaab Dr. Reinhard Schneider Dr. Jose Antonio López-Escámez Dr. Federico Zara 2018 To my parents. Declaration I hereby declare that this dissertation has been written only by the undersigned and without any assistance from third parties. Furthermore, I confirm that no sources have been used in the preparation of this thesis other than those indicated herein. Dheeraj Reddy Bobbili Belval, Luxembourg May 2, 2018 ACKNOWLEDGMENTS I am thankful to Prof. Dr. Rejko krüger for being my supervisor. It is an honor to have you as my supervisor. You have been very supportive during my entire PhD. Your guidance and constructive ideas have helped me a lot during my PhD. I would like to thank Dr. Patrick May for his time and patience during the entire process of my PhD, right from hiring me to the end of my PhD. You have been a great inspiration and were always available whenever I needed you. You always believed in me and your enthusiasm towards research has motivated me to push myself harder. This work would not have been possible without you. Dr. Reinhard Schneider, I am very grateful to you for allowing me to be part of bioinformatics core and providing me with best of the facilities to conduct research. You are an inspiration, I have learnt a lot from you and it was a great opportunity to be part of your team. Dr. Federico Zara, Dr. Jose Antonio López-Escámez and Dr. Enrico Glaab, thank you very much for taking time of your busy schedules to be part of my jury committee. I am deeply indebted to you for your efforts. I am extremely grateful to all my collaborators within and outside Luxembourg. Especially, Prof. Dr. Holger Lerche, Dr. Bernd A. Neubauer, Dr. Dennis Lal, Dr. Kamel Jabbari, Dr. Javier Simón-Sánchez and Anamika Giri for allowing me to access and work with the data. Thank you, Prof. Dr. Rudi Balling for being an inspiration not just for me, but to the entire LCSB. You have built a great place to work. I would like to thank all the colleagues from LCSB for your support during my entire period here. A special thanks to the awesome biocore team, you are amazing and great people. During my PhD, each one of you have helped me one way or the other and I really appreciate your support. You guys have made biocore a wonderful place to work and It has been an amazing journey to work with you guys. Many of you are more than colleagues and have become good friends. Your suggestions in professional and personal life are invaluable. A special thanks to Venkata, i Marek, Roland, Wei, Marie, Sarah, Kavita, Anshika, Anya, Joe, Susanne, Peter, Yohan, Noua, Adriano, Marx and Christophe. I would like to thank the High Performance Computing team of University of Luxembourg for their continuous support during the course of my PhD. To all my good friends in Luxembourg, Aravind, Sunil, Aishwarya, Shaman, Maharshi and Serena. I cannot thank you guys enough for always being there for me, you made my life in Luxembourg a lifelong memory to cherish for. There are also many people in Luxembourg who helped me at various times, I owe them a lot. I thank all my friends back in India, each one of you have made a difference in my life and I have no words to express my feelings towards you. You guys never forget me and I am very lucky to have you guys as my friends. To my extended family, especially Raghu anna thank you so much for always believing in me and at times the only person to support me to pursue my dreams. Geeta vadina, you were always welcoming and happy to see me. You guys were the closest relatives that I have here and I am really glad for that. Thanks to all my cousins and other family members who have been an enormous support and took care of amma whenever there is a need. Finally, to my loving sister Chinni and her two beautiful kids ammu and duggu. You are the best sister, always positive and supportive even in difficult times. I am lucky to have you asmy sister. Amma and Nanna, I have no words to thank you enough. It is only because of you, I am what I am today. Nanna, I miss you everyday of my life. You were a great inspiration and I always wish that you were with us today to see your kids achieving new heights in their lives. Amma, you are the strongest person that I ever met in my life and I feel blessed to be your son. Love you both. ii ABSTRACT Neurological disorders comprise a group of diseases that affect brain, spine and the nerves that connect them. Many people worldwide are affected by neurological disorders irrespective of their ethnicity, age or gender. Currently, >800 neurological disorders have been identified and the list is still growing. Parkinson’s disease (PD) and epilepsy are two of the most common neurological disorders that cause a significant burden globally. It has been well established that in bothPD and epilepsy, genetics play a significant role in the generation and progression of the disease, while both the diseases have a monogenic or polygenic origin. A review of literature shows that both PD and epilepsy are caused due to the symphony of common, rare and ultra-rare variants. However, there is a high degree of heterogeneity with regard to genetics, which is evident from the lack of confirmation from various studies and the minute overlap between linkage and genome wide association studies (GWAS). Hence, in order to understand the underlying mechanisms of disease generation and progress, there is a need for unification of results obtained from multiple studies and a multifaceted approach studying variants occurring with different allele frequencies. Advances in the field of next generation sequencing (NGS) provided us an opportunity to identify and characterize the genetic variants associated to a disease more efficiently. Two of such useful techniques are whole genome sequencing (WGS) and whole-exome sequencing (WES) where the DNA of an individual is sequenced to identify disease-causing variants. In this thesis, we aimed to uncover the role of rare/ultra-rare variants in PD and epilepsy, using WGS/WES data. To achieve the aforementioned goal, state-of-the-art bioinformatic tools and statistical methods were used on various datasets generated by different studies. The work on epilepsy was divided into three parts. First, the burden analysis of rare variants in typical rolandic epilepsy (RE) and atypical rolandic epilepsy (ARE) was conducted, where we observed an increased burden of rare loss of function (LoF) variants across several disease genesets iii in RE/ARE cases. Whereas, in the second part, burden analyses of rare variants in several genesets were conducted in genetic generalized epilepsy (GGE). A significant burden was observed for rare nonsynonymous variants in GABAA receptors in the discovery cohort. Furthermore, the observed burden was replicated in two independent datasets, of which one was a WES study while the other was a targeted panel sequencing of GABAA receptor genes. From the identified variants in GABAA receptors in the discovery cohort, selected variants were functionally validated. Third, in RE/ARE and GGE, analysis of rare copy number deletions showed a significant burden and several novel candidate genes were identified. In PD, firstly private variants in the Parkinson’s Progression Markers Initiative (PPMI) dataset were studied, where we observed a genome-wide burden of private LoF variants and prediction models were constructed based on the burden score. Second, the genome-wide burden of U1 splice variants was observed in the PPMI dataset and the observation was confirmed in the Parkinson Disease Genetic Sequencing Consortium (PDGSC) dataset. Finally, we discovered several rare, novel variants (coding, non-coding and CNVs) belonging to multiple families from two familial PD studies (>50 families) that were segregating with PD. Altogether, this work demonstrates the utility of NGS in discovering novel genes and genesets found to be implicated in PD and epilepsy and show their heterogeneous contribution to the disease aetiology. These discoveries could improve the diagnostics of both PD and epilepsy by expanding the knowledge of molecular mechanisms underlying the disease and potentially help in establishing modern therapeutic applications. iv SCIENTIFIC OUTPUT Majority of this thesis has been adapted from the work that has either been published, is currently under peer-review and/or ready for submission with the candidate as the first/co-first author. All the projects in the thesis have been performed along with several collaborators and part of consortia and hence only the manuscripts with a major contributions have been incorporated as part of this thesis.
Recommended publications
  • Whole-Genome Shotgun Assembly and Analysis of the Genome
    R ESEARCH A RTICLE of the human genome, it contains a comparable complement of protein-coding genes, as in- Whole-Genome Shotgun ferred from random genomic sampling (3). Subsequently, more-targeted analyses (5–9) Assembly and Analysis of the showed that the Fugu genome has remarkable homologies to the human sequence. The intron- Genome of Fugu rubripes exon structure of most genes is preserved be- tween Fugu and human, in some cases with Samuel Aparicio,2,1* Jarrod Chapman,3 Elia Stupka,1* conserved alternative splicing (10). The relative Nik Putnam,3 Jer-ming Chia,1 Paramvir Dehal,3 compactness of the Fugu genome is accounted Alan Christoffels,1 Sam Rash,3 Shawn Hoon,1 Arian Smit,4 for by the proportional reduction in the size of introns and intergenic regions, in part owing to Maarten D. Sollewijn Gelpke,3 Jared Roach,4 Tania Oh,1 3 1 3 1 the relative scarcity of repeated sequences like Isaac Y. Ho, Marie Wong, Chris Detter, Frans Verhoef, those that litter the human genome. Conserva- 3 1 3 3 Paul Predki, Alice Tay, Susan Lucas, Paul Richardson, tion of synteny was discovered between hu- Sarah F. Smith,5 Melody S. Clark,5 Yvonne J. K. Edwards,5 mans and Fugu (5, 6), suggesting the possibil- Norman Doggett,6 Andrey Zharkikh,7 Sean V. Tavtigian,7 ity of identifying chromosomal elements from Dmitry Pruss,7 Mary Barnstead,8 Cheryl Evans,8 Holly Baden,8 the common ancestor. Noncoding sequence Justin Powell,9 Gustavo Glusman,4 Lee Rowen,4 Leroy Hood,4 comparisons detected core conserved regulato- ry elements in mice (11).
    [Show full text]
  • 28Th Course in Medical Genetics
    European School of Genetic Medicine th 28 Course in Medical Genetics Bertinoro University Residential Centre Via Frangipane, 6 – Bertinoro Course Directors: H. Brunner (Nijmegen, The Netherlands), G.Romeo (Bologna, Italy), B.Wirth (Cologne, Germany) 1 28th Course in Medical Genetics CONTENTS PROGRAMME 3 ABSTRACTS OF LECTURES 7 ABSTRACTS OF STUDENTS POSTERS 37 STUDENTS WHO IS WHO 40 FACULTY WHO IS WHO 51 2 Arrival: Saturday May 16 Sunday, May 17 Morning Session: Introduction to Human Genome Analysis 8.30 – 9.00 Registration to the course 9.00 – 9.30 Introduction to the course G. Romeo 9.30 – 10.15 Medical Genetics Today D. Donnai 10.15 – 11.00 Genotypes & phenotypes H. Brunner 11.00 – 11.30 Coffee Break 11.30 – 12.15 Introduction in Next Generation Sequencing technologies and applications J. Veltman 12.15 – 13.00 How to deal with next generation sequencing output. C. Gilissen 13.10 – 14.00 Lunch Break Afternoon Session: 14.30 – 16.00 Concurrent Workshops 16.00-16.30 Coffee Break 16.30 – 18.00 Concurrent Workshops 3 Monday, May 18 Morning Session: Approaches to Clinical and Molecular Genetics 9.00 – 9.50 Linkage and association (in a conceptual and historic perspective) A. Read 9.50- 10.40 Arrays and CNVs E. Klopocki 10.40 – 11.10 Coffee Break 11.10 – 12.00 Molecular syndromology in the NGS-era: which phenotype, which family, which strategy? Applications to aging research B. Wollnik 12.00 – 12.50 Bottlenecks in understanding mitochondrial diseases P. Chinnery 13.10 – 14.00 Lunch Break Afternoon Session: 14.30 – 16.00 Concurrent Workshops – including Ethics by Andrew Read 16.00-16.30 Coffee Break 16.30 – 18.00 Concurrent Workshops 18.30 – 19.30 Poster Viewing Session 4 Tuesday, May 19 Morning Session: Gene regulation and complex genetic disorders 9.00 - 9.50 Preventing and treating mitochondrial diseases Patrick Chinnery 9.50 – 10.40 Epigenetics and disease K.
    [Show full text]
  • ACCEPTED PAPERS – ABSTRACTS (As of May 5, 2006) Comparative
    ACCEPTED PAPERS – ABSTRACTS (as of May 5, 2006) Comparative Genomics Hairpins in a haystack: recognizing microrna precursors in comparative genomics data Author(s): Jana Hertel, Peter F. Stadler Recently, genome wide surveys for non-coding RNAs have provided evidence for tens of thousands of previously undescribed evolutionary conserved RNAs with distinctive secondary structures. The annotation of these putative ncRNAs, however, remains a difficult problem. Here we describe an SVM-based approach that, in conjunction with a non-stringent filter for consensus secondary structures, is capable of efficiently recognizing microRNA precursors in multiple sequence alignments. The software was applied to recent genome-wide RNAz surveys of mammals, urochordates, and nematodes. Keywords: miRNA, support vector machine, non-coding RNA Comparative Genomics Comparative genomics reveals unusually long motifs in mammalian genomes Author(s): Neil Jones, Pavel Pevzner Motivation: The recent discovery of the first small modulatory RNA (smRNA) presents the challenge of finding other molecules of similar length and conservation level. Unlike short interfering RNA (siRNA) and micro-RNA (miRNA), effective computational and experimental screening methods are not currently known for this species of RNA molecule, and the discovery of the one known example was partly fortuitous because it happened to be complementary to a well-studied DNA binding motif (the Neuron Restrictive Silencer Element). Results: The existing comparative genomics approaches (e.g., phylogenetic footprinting) rely on alignments of orthologous regions across multiple genomes. This approach, while extremely valuable, is not suitable for finding motifs with highly diverged ``non-alignable'' flanking regions. Here we show that several unusually long and well conserved motifs can be discovered de novo through a comparative genomics approach that does not require an alignment of orthologous upstream regions.
    [Show full text]
  • Daniel Aalberts Scott Aa
    PLOS Computational Biology would like to thank all those who reviewed on behalf of the journal in 2015: Daniel Aalberts Jeff Alstott Benjamin Audit Scott Aaronson Christian Althaus Charles Auffray Henry Abarbanel Benjamin Althouse Jean-Christophe Augustin James Abbas Russ Altman Robert Austin Craig Abbey Eduardo Altmann Bruno Averbeck Hermann Aberle Philipp Altrock Ferhat Ay Robert Abramovitch Vikram Alva Nihat Ay Josep Abril Francisco Alvarez-Leefmans Francisco Azuaje Luigi Acerbi Rommie Amaro Marc Baaden Orlando Acevedo Ettore Ambrosini M. Madan Babu Christoph Adami Bagrat Amirikian Mohan Babu Frederick Adler Uri Amit Marco Bacci Boris Adryan Alexander Anderson Stephen Baccus Tinri Aegerter-Wilmsen Noemi Andor Omar Bagasra Vera Afreixo Isabelle Andre Marc Baguelin Ashutosh Agarwal R. David Andrew Timothy Bailey Ira Agrawal Steven Andrews Wyeth Bair Jacobo Aguirre Ioan Andricioaei Chris Bakal Alaa Ahmed Ioannis Androulakis Joseph Bak-Coleman Hasan Ahmed Iris Antes Adam Baker Natalie Ahn Maciek Antoniewicz Douglas Bakkum Thomas Akam Haroon Anwar Gabor Balazsi Ilya Akberdin Stefano Anzellotti Nilesh Banavali Eyal Akiva Miguel Aon Rahul Banerjee Sahar Akram Lucy Aplin Edward Banigan Tomas Alarcon Kevin Aquino Martin Banks Larissa Albantakis Leonardo Arbiza Mukul Bansal Reka Albert Murat Arcak Shweta Bansal Martí Aldea Gil Ariel Wolfgang Banzhaf Bree Aldridge Nimalan Arinaminpathy Lei Bao Helen Alexander Jeffrey Arle Gyorgy Barabas Alexander Alexeev Alain Arneodo Omri Barak Leonidas Alexopoulos Markus Arnoldini Matteo Barberis Emil Alexov
    [Show full text]
  • Computational Methods for Cis-Regulatory Module Discovery A
    Computational Methods for Cis-Regulatory Module Discovery A thesis presented to the faculty of the Russ College of Engineering and Technology of Ohio University In partial fulfillment of the requirements for the degree Master of Science Xiaoyu Liang November 2010 © 2010 Xiaoyu Liang. All Rights Reserved. 2 This thesis titled Computational Methods for Cis-Regulatory Module Discovery by XIAOYU LIANG has been approved for the School of Electrical Engineering and Computer Science and the Russ College of Engineering and Technology by Lonnie R.Welch Professor of Electrical Engineering and Computer Science Dennis Irwin Dean, Russ College of Engineering and Technology 3 ABSTRACT LIANG, XIAOYU, M.S., November 2010, Computer Science Computational Methods for Cis-regulatory Module Discovery Director of Thesis: Lonnie R.Welch In a gene regulation network, the action of a transcription factor binding a short region in non-coding sequence is reported and believed as the key that triggers, or represses genes’ expression. Further analysis revealed that, in higher organisms, multiple transcription factors work together and bind multiple sites that are located nearby in genomic sequences, rather than working alone and binding a single anchor. These multiple binding sites in the non-coding region are called cis -regulatory modules. Identifying these cis - regulatory modules is important for modeling gene regulation network. In this thesis, two methods have been proposed for addressing the problem, and a widely accepted evaluation was applied for assessing the performance. Additionally, two practical case studies were completed and reported as the application of the proposed methods. Approved: _____________________________________________________________ Lonnie R.Welch Professor of Electrical Engineering and Computer Science 4 ACKNOWLEDGEMENTS I would like to express my sincere gratitude to my advisor, Dr.
    [Show full text]
  • A Rare Variant in D-Amino Acid Oxidase Implicates NMDA Receptor Signaling and Cerebellar Gene Networks in Risk for Bipolar Disorder
    medRxiv preprint doi: https://doi.org/10.1101/2021.06.02.21258261; this version posted June 5, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license . Submitted Manuscript: Confidential Template updated: February 2021 Title: A rare variant in D-amino acid oxidase implicates NMDA receptor signaling and cerebellar gene networks in risk for bipolar disorder Authors: Naushaba Hasin (1), Lace M. Riggs (2,3), Tatyana Shekhtman (4), Justin Ashworth (5), Robert Lease (1,6), Rediet T. Oshone (1), Elizabeth M. Humphries (1,7), Judith A. Badner (8), Pippa A. Thompson (9), David C. Glahn (10), David W. Craig (11), Howard J. Edenberg (12), Elliot S. Gershon (13), Francis J. McMahon (14), John I. Nurnberger (15), Peter P. Zandi (16), John R. Kelsoe (4), Jared C. Roach (5), Todd D. Gould (3,17,18), and Seth A. Ament* (1,3) Affiliations: 1. Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA 2. Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD, USA 3. Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA 4. Department of Psychiatry, University of California San Diego, La Jolla, CA, USA 5. Institute for Systems Biology, Seattle, WA, USA 6. Program in Molecular Medicine, University of Maryland School of Medicine, Baltimore, MD, USA 7. Program in Molecular Epidemiology, University of Maryland School of Medicine, Baltimore, MD, USA 8.
    [Show full text]
  • Dear Delegates,History of Productive Scientific Discussions of New Challenging Ideas and Participants Contributing from a Wide Range of Interdisciplinary fields
    3rd IS CB S t u d ent Co u ncil S ymp os ium Welcome To The 3rd ISCB Student Council Symposium! Welcome to the Student Council Symposium 3 (SCS3) in Vienna. The ISCB Student Council's mis- sion is to develop the next generation of computa- tional biologists. We would like to thank and ac- knowledge our sponsors and the ISCB organisers for their crucial support. The SCS3 provides an ex- citing environment for active scientific discussions and the opportunity to learn vital soft skills for a successful scientific career. In addition, the SCS3 is the biggest international event targeted to students in the field of Computational Biology. We would like to thank our hosts and participants for making this event educative and fun at the same time. Student Council meetings have had a rich Dear Delegates,history of productive scientific discussions of new challenging ideas and participants contributing from a wide range of interdisciplinary fields. Such meet- We are very happy to welcomeings have you proved all touseful the in ISCBproviding Student students Council and postdocs Symposium innovative inputsin Vienna. and an Afterincreased the network suc- cessful symposiums at ECCBof potential 2005 collaborators. in Madrid and at ISMB 2006 in Fortaleza we are determined to con- tinue our efforts to provide an event for students and young researchers in the Computational Biology community. Like in previousWe ar yearse extremely our excitedintention to have is toyou crhereatee and an the opportunity vibrant city of Vforienna students welcomes to you meet to our their SCS3 event. peers from all over the world for exchange of ideas and networking.
    [Show full text]
  • GWG Dec 2012 Nominee Bios2
    Agenda Item #12 ICOC Meeting December 12, 2012 CIRM Scientific and Medical Research Funding Working Group Biographical information of candidates nominated to serve as Scientific Members of the Working Group Stephen Friend, MD, PhD Dr. Friend is the President of Sage Bionetworks. He received his BA in philosophy, his PhD in biochemistry, and his MD from Indiana University. He is an authority in the field of cancer biology and a leader in efforts to make large scale, data-intensive biology broadly accessible to the entire research community. Dr. Friend has been a senior advisor to the National Cancer Institute (NCI), several biotech companies, a Trustee of the American Association for Cancer Research (AACR), and is an American Association for the Advancement of Science (AAAS) and Ashoka Fellow as well as an editorial board member of Open Network Biology. Dr. Friend was previously Senior Vice President and Franchise Head for Oncology Research at Merck & Co., Inc. where he led Merck’s Basic Cancer Research efforts. Prior to joining Merck, Dr. Friend was recruited by Dr. Leland Hartwell to join the Fred Hutchinson Cancer Research Center’s Seattle Project, an advanced institute for drug discovery. While there Drs. Friend and Hartwell developed a method for examining large patterns of genes that led them to co-found Rosetta Inpharmatics in 2001. Dr. Friend has also held faculty positions at Harvard Medical School from 1987 to 1995 and at Massachusetts General Hospital from 1990 to 1995. Christie Gunter, PhD Dr. Gunter is the HudsonAlpha director of research affairs. She earned her BS degree in both genetics and biochemistry from the University of Georgia in 1992, and a PhD in genetics from Emory University in 1998.
    [Show full text]
  • An Expanded Evaluation of Protein Function Prediction Methods Shows an Improvement in Accuracy
    The University of Southern Mississippi The Aquila Digital Community Faculty Publications 9-7-2016 An Expanded Evaluation of Protein Function Prediction Methods Shows an Improvement In Accuracy Yuxiang Jiang Indiana University TFollowal Ronnen this and Or onadditional works at: https://aquila.usm.edu/fac_pubs Buck P arInstitutet of the forGenomics Research Commons On Agin Wyatt T. Clark RecommendedYale University Citation AsmaJiang, YR.., OrBankapuron, T. R., Clark, W. T., Bankapur, A. R., D'Andrea, D., Lepore, R., Funk, C. S., Kahanda, I., Verspoor, K. M., Ben-Hur, A., Koo, D. E., Penfold-Brown, D., Shasha, D., Youngs, N., Bonneau, R., Lin, A., Sahraeian, S. Miami University M., Martelli, P. L., Profiti, G., Casadio, R., Cao, R., Zhong, Z., Cheng, J., Altenhoff, A., Skunca, N., Dessimoz, DanielC., Dogan, D'Andr T., Hakala,ea K., Kaewphan, S., Mehryar, F., Salakoski, T., Ginter, F., Fang, H., Smithers, B., Oates, M., UnivGough,ersity J., ofTör Romeönen, P., Koskinen, P., Holm, L., Chen, C., Hsu, W., Bryson, K., Cozzetto, D., Minneci, F., Jones, D. T., Chapan, S., BKC, D., Khan, I. K., Kihara, D., Ofer, D., Rappoport, N., Stern, A., Cibrian-Uhalte, E., Denny, P., Foulger, R. E., Hieta, R., Legge, D., Lovering, R. C., Magrane, M., Melidoni, A. N., Mutowo-Meullenet, P., SeePichler next, K., page Shypitsyna, for additional A., Li, B.,authors Zakeri, P., ElShal, S., Tranchevent, L., Das, S., Dawson, N. L., Lee, D., Lees, J. G., Stilltoe, I., Bhat, P., Nepusz, T., Romero, A. E., Sasidharan, R., Yang, H., Paccanaro, A., Gillis, J., Sedeño- Cortés, A. E., Pavlidis, P., Feng, S., Cejuela, J.
    [Show full text]
  • Final Program
    © Istock FINAL PROGRAM SUMMARY Organizing & Scientifc Committees 3 Final program 4 Life Achievement Award 4 Program at a glance 5 Wednesday, December 4 6 Thursday, December 5 8 Friday, December 6 12 Saturday, December 7 16 Posters presentation 19 Theme 1: Clinical trials: Methodology 20 Theme 2: Clinical trials: Results 23 Theme 3: Clinical trials: Imaging 24 Theme 4: Clinical trials: Biomarkers including plasma 26 Theme 5: Clinical trials: Cognitive and functional endpoints 29 Theme 6: Cognitive assessment and clinical trials 31 Theme 7: Behavioral disorders and clinical trials 33 Theme 8: Health economics and clinical trials 33 Theme 9: Epidemiology and clinical trials 33 Theme 10: Clinical Trials: Animals Models 34 Theme 11: New therapies and clinical trials 34 Privileged partners 37 CTAD 2019 General information 38 San Diego ©Terry Healy - Graphic designer: Kom Graphik ©Terry CTAD Organizing Committee Jacques Touchon MD, PhD University Hospital of Montpellier CTAD Scientific Committee France Susan ABUSHAKRA (San Francisco); Paul AISEN (San Diego); Kaj BLENNOW (Molndal); Merce BOADA Paul Aisen MD (Barcelona); Maria CARRILLO (Chicago); Mony John DE Alzheimer’s LEON (New York); Steven DEKOSKY (Gainesville); Rachelle Therapeutic Research Institute (ATRI) DOODY (Basel); Bruno DUBOIS (Paris); Howard FELDMAN University of Southern California (USC), (San Diego); Nick FOX (London); Giovanni B. FRISONI San Diego, USA (Brescia, Geneva); Lutz FROELICH (Mannheim); Serge GAUTHIER (Montreal); Ezio GIACOBINI (Geneva); Michael GRUNDMANN (San Diego); Harald HAMPEL (Woodcliff Bruno Vellas MD, PhD Lake); Takeshi IWATSUBO (Tokyo); Ara KHACHATURIAN University (Washington DC); Zaven KHACHATURIAN (Washington Hospital of Toulouse DC); Virginia LEE (Philadelphia); Constantine G. France LYKETSOS (Baltimore); José Luis MOLINUEVO (Barcelona); Jean-Marc ORGOGOZO (Bordeaux); Ronald PETERSEN Mike Weiner MD (Rochester); Craig W.
    [Show full text]
  • Whole-Genome Shotgun Assembly and Analysis of the Genome Of
    R ESEARCH A RTICLE of the human genome, it contains a comparable complement of protein-coding genes, as in- Whole-Genome Shotgun ferred from random genomic sampling (3). Subsequently, more-targeted analyses (5–9) Assembly and Analysis of the showed that the Fugu genome has remarkable homologies to the human sequence. The intron- Genome of Fugu rubripes exon structure of most genes is preserved be- tween Fugu and human, in some cases with Samuel Aparicio,2,1* Jarrod Chapman,3 Elia Stupka,1* conserved alternative splicing (10). The relative Nik Putnam,3 Jer-ming Chia,1 Paramvir Dehal,3 compactness of the Fugu genome is accounted Alan Christoffels,1 Sam Rash,3 Shawn Hoon,1 Arian Smit,4 for by the proportional reduction in the size of introns and intergenic regions, in part owing to Maarten D. Sollewijn Gelpke,3 Jared Roach,4 Tania Oh,1 3 1 3 1 the relative scarcity of repeated sequences like Isaac Y. Ho, Marie Wong, Chris Detter, Frans Verhoef, those that litter the human genome. Conserva- 3 1 3 3 Paul Predki, Alice Tay, Susan Lucas, Paul Richardson, tion of synteny was discovered between hu- Sarah F. Smith,5 Melody S. Clark,5 Yvonne J. K. Edwards,5 mans and Fugu (5, 6), suggesting the possibil- Norman Doggett,6 Andrey Zharkikh,7 Sean V. Tavtigian,7 ity of identifying chromosomal elements from Dmitry Pruss,7 Mary Barnstead,8 Cheryl Evans,8 Holly Baden,8 the common ancestor. Noncoding sequence 9 4 4 4 comparisons detected core conserved regulato- Justin Powell, Gustavo Glusman, Lee Rowen, Leroy Hood, Downloaded from ry elements in mice (11).
    [Show full text]
  • Studying the Regulatory Landscape of Flowering Plants
    Studying the Regulatory Landscape of Flowering Plants Jan Van de Velde Promoter: Prof. Dr. Klaas Vandepoele Co-Promoter: Prof. Dr. Jan Fostier Ghent University Faculty of Sciences Department of Plant Biotechnology and Bioinformatics VIB Department of Plant Systems Biology Comparative and Integrative Genomics Research funded by a PhD grant of the Institute for the Promotion of Innovation through Science and Technology in Flanders (IWT Vlaanderen). Dissertation submitted in fulfilment of the requirements for the degree of Doctor in Sciences:Bioinformatics. Academic year: 2016-2017 Examination Commitee Prof. Dr. Geert De Jaeger (chair) Faculty of Sciences, Department of Plant Biotechnology and Bioinformatics, Ghent University Prof. Dr. Klaas Vandepoele (promoter) Faculty of Sciences, Department of Plant Biotechnology and Bioinformatics, Ghent University Prof. Dr. Jan Fostier (co-promoter) Faculty of Engineering and Architecture, Department of Information Technology (INTEC), Ghent University - iMinds Prof. Dr. Kerstin Kaufmann Institute for Biochemistry and Biology, Potsdam University Prof. Dr. Pieter de Bleser Inflammation Research Center, Flanders Institute of Biotechnology (VIB) and Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium Dr. Vanessa Vermeirssen Faculty of Sciences, Department of Plant Biotechnology and Bioinformatics, Ghent University Dr. Stefanie De Bodt Crop Science Division, Bayer CropScience SA-NV, Functional Biology Dr. Inge De Clercq Department of Animal, Plant and Soil Science, ARC Centre of Excellence in Plant Energy Biology, La Trobe University and Faculty of Sciences, Department of Plant Biotechnology and Bioinformatics, Ghent University iii Thank You! Throughout this PhD I have received a lot of support, therefore there are a number of people I would like to thank. First of all, I would like to thank Klaas Vandepoele, for his support and guidance.
    [Show full text]