A BID on Mitochondria with MTCH2

Total Page:16

File Type:pdf, Size:1020Kb

A BID on Mitochondria with MTCH2 Cell Research (2010) 20:863-865. npg © 2010 IBCB, SIBS, CAS All rights reserved 1001-0602/10 $ 32.00 RESEARCH HIGHLIGHT www.nature.com/cr A BID on mitochondria with MTCH2 Sara Cogliati1, Luca Scorrano1, 2 1Dulbecco-Telethon Institute, Venetian Institute of Molecular Medicine, Via Orus 2, 35129 Padova, Italy; 2Department of Cell Physiology and Metabolism, University of Geneva, 1 Rue M. Servet, 1206 Geneve, Switzerland Cell Research (2010) 20: 863-865. doi:10.1038/cr.2010.100; published online 13 July 2010 Apoptosis is a key process for tis- It is fundamental in embryonic develop- of the effector caspases requires the mi- sue homeostasis and renewal. Its dys- ment, organogenesis and in maintaining tochondrial amplification loop. To this regulation is implicated in most human tissue homeostasis in adult organisms. end pro-caspase 8 is recruited on mito- diseases, from cancer to neurodegenera- Impairment of apoptotic pathways chondria where it binds to cardiolipin tion. Apoptosis is triggered by stimuli leads to cancer, while their upregula- [3]. There, after self activation induced that damage the internal structures tion results in degenerative disease. In by proximity, it cleaves the proapoptotic of the cell, or by specialized “death” mammalian cells, there are two main BH3-only member, BID, and activate it. receptors on its surface. In certain cell pathways downstream of death signals The active form, christened truncated types, Bid, a “BH3-only” member of that are linked in certain cell types: the BID (tBID) on the surface of mitochon- the Bcl-2 family of death regulators “death receptor” pathway triggered by dria, triggers the release of cytochrome integrates these two pathways at the extrinsic stimuli (e.g. Fas, TNFα) and c by causing oligomerization of BAX mitochondrial level. Despite years of the mitochondrial pathway triggered and BAK that results in outer membrane intense research, the mechanisms by by intrinsic death stimuli (e.g. DNA permeabilization [2] and by inducing which Bid translocates to mitochondria damage). Both culminate in the activa- Opa1-dependent cristae remodelling remain unclear. A recent study by Gross tion of caspases, cysteine proteases that [4-6]. The importance of tBID in the and colleagues sheds new light on this cleave a number of substrates involved Fas death pathway is well established, process [1]. They identified MTCH2 as in maintenance of cytoskeletal and however the molecular mechanism a mitochondrial protein that interacts nuclear integrity, cell cycle progres- of tBID recruitment on mitochondria with Bid and whose ablation dramati- sion and DNA repair, resulting in the is still unknown and this has been an cally affects mitochondrial translocation orderly demise of the cell. Mitochondria area of intense investigation in the last of this BH3-only protein. Interestingly, participate in the competent activation years. Two main models have been put MTCH2 shares homology with mem- of caspases, by releasing cytochrome forward to explain the affinity of BID bers of the mitochondrial carrier family, c and additional apoptogenic factors for mitochondria: one postulates that but it is located on the outer membrane from the intermembrane space into the BID travels to mitochondria as a conse- of the organelle; and it was recently cytosol. Cytochrome c in complex with quence of its affinity for specific lipids, reported to be associated with increased Apaf-1 activates caspase 9 and other or of its specific lipidation; the other body mass index. Thus, this study not downstream “effector” caspases. The involves the existence of one or more only unveils how BID is targeted to key regulators of this apoptotic process specific receptors on the mitochondrial mitochondria during apoptosis, but also are proteins of the Bcl-2 family which surface that interact with tBID to as- opens interesting avenues to investigate orchestrate the signals leading to the sist its insertion in the mitochondrial the relationship between mitochondria, activation of effector caspases [2]. In membrane. apoptosis and control of metabolism. response to the activation of death The first model is supported by earli- Programmed cell death or apoptosis receptors, the apical pro-caspase 8 un- er studies that indicated how N-terminal is a conserved pathway in all metazoans. dergoes autoproteolytic activation. In myristoylation increases the affinity of type I cells, such as thymocytes, active tBID for the organelle [7]. In addition, caspase 8 directly cleaves the effector tBID binds to the phospholipid cardio- Correspondence: Luca Scorrano caspases 3 and 7, whereas in type II lipin (retrieved only in mitochondria), E-mail: [email protected] cells, such as hepatocytes, the activation which proved to be required for tBID npg 864 action [8]. Interestingly, cardiolipin on the outer mitochondrial membrane can Cell death receptor also function as a scaffold for caspase 8, which translocates to mitochondria where it produces locales of BID [3]. DISC In addition, the lipid composition of liposomes crucially modulated the ability of BID to permeabilize them, further substantiating a role for lipids in the action (and the targeting) of tBID Pro-caspase 8 [9]. In the second model, biochemical studies have substantiated a role for several mitochondrial proteins as recep- tors for tBID recruitment [10]. These BID MTCH2/MIMP include VDAC, as well as components Caspase 8 tBID of the mitochondrial protein import BAX/K BAX/K BAX/K BAX/K BAX/K BAX/K BAX/K machinery, like TOM20, 22, 70 and 40 BAX/K BAX/K BAX/K (reviewed in [11]), however, conclusive evidence for their role in this process is Cytochrome c often lacking. In a recent paper, Zaltsman et al. provide new important insights into the mechanism of recruitment of tBID on mitochondria. They define MTCH2/ MIMP as a receptor for tBID on mito- chondria and establish, using animal models, the importance of MTCH2/ Figure 1 The recruitment of tBID on mitochondria is mediated by the novel MIMP protein in Fas-induced hepato- target protein MTCH2/MIMP. The diagram depicts the sequence of events cellular apoptosis [1]. MTCH2/MIMP that occur in type II cells following an extrinsic death stimulus. Pro-caspase 8 is a protein of the mitochondrial carrier binds to cardiolipin (yellow) on mitochondria where it undergoes self-proteolytic family. In TNF-α treated cells, it resides activation to cleave BID. The active tBID is then recruited on mitochondria in a 185 kDa large complex that com- by MTCH2/MIMP. This in turn leads to oligomerization of BAX/BAK and cyto- chrome c release. prises also tBID and BAX [12]. This evidence raised the hypothesis that MTCH2/MIMP could be involved in the mitochondrial apoptotic program but esis, Zaltsman and coworkers assessed of Fas. Taken together, these results its role was not clear. Now, the paper of the role of MTCH2/MIMP in vivo. They clearly demonstrated that MTCH2/ Zaltsman et al. closes this gap. first generated conventional knockouts, MIMP protein is essential for the re- The first outstanding question that which were embryonically lethal when cruitment of tBID on mitochondria and Zaltsman et al. tackled in their work homozygous. They therefore created a it plays a fundamental role in the tBID- was the submitochondrial localization conditional gene knockout mouse by us- mediated cell death [1] (Figure 1). of MTCH2. Being a member of the car- ing the Cre/loxP system. When MTCH2 It has been demonstrated in vivo rier superfamily, the natural prediction is ablated, the cross-linkable complex that BID plays a key role in cell death would be that it was located in the inner tBID-MTCH2/MIMP is not detectable. induced by death-receptor ligands such membrane. However, using three differ- Moreover, cells lacking MTCH2 are less as Fas ligand. In particular it exerts an ent biochemical approaches the authors sensitive to apoptosis induced by tBID important role in Fas ligand-induced clearly demonstrate that MTCH2/MIMP and this defect is rescued by the reintro- apoptosis in hepatocytes [13]. Zalts- is in the outer membrane of the organ- duction of MTCH2/MIMP. The reduced man and coworkers analyzed whether elle. This result opened the possibility apoptosis is due to an impairment of loss of MTCH2/MIMP that abolished that MTCH2 participates in the steps of tBID accumulation in mitochondria, in vitro recruitment of tBID on mito- mitochondrial targeting of tBID during following stimuli that converge on this chondria could have significant effects apoptosis. In order to verify this hypoth- BH3-only protein, including activation on hepatocellular apoptosis in vivo. Cell Research | Vol 20 No 8 | August 2010 npg 865 They generated MTCH2/MIMP liver- polymorphic variants are associated 4 Cipolat S, Rudka T, Hartmann D, et specific knockout mice and assessed with increased body mass index. Among al. Mitochondrial rhomboid PARL ther sensitivity to Fas. The liver-specific them, MTCH2 was the only one whose regulates cytochrome c release during apoptosis via OPA1-dependent cristae knockout animals show less liver injury mRNA was not detected in the hypo- remodeling. Cell 2006; 126:163-175. and are more resistant to death than thalamus. This suggests that MTCH2 5 Frezza C, Cipolat S, Martins dB, et al. heterozygotes. In order to investigate could play roles in the regulation of OPA1 controls apoptotic cristae remod- the molecular mechanism of these ef- body mass in the periphery, as a regula- eling independently from mitochondri- fects, they analyzed the activation of tor of energy expenditure. Apoptosis has al fusion. Cell 2006; 126:177-189. caspases and the recruitment of tBID been previously linked to metabolism 6 Scorrano L, Ashiya M, Buttle K, et al. to mitochondria. The results clearly when the BH3-only protein BAD was A distinct pathway remodels mitochon- showed that in mice lacking MTCH2/ discovered to be a scaffold for enzymes drial cristae and mobilizes cytochrome c during apoptosis.
Recommended publications
  • MARCH5 Requires MTCH2 to Coordinate Proteasomal Turnover of the MCL1:NOXA Complex
    Cell Death & Differentiation (2020) 27:2484–2499 https://doi.org/10.1038/s41418-020-0517-0 ARTICLE MARCH5 requires MTCH2 to coordinate proteasomal turnover of the MCL1:NOXA complex 1,2 1,2,5 1,2 1,2 1,2,3 1,2 Tirta Mario Djajawi ● Lei Liu ● Jia-nan Gong ● Allan Shuai Huang ● Ming-jie Luo ● Zhen Xu ● 4 1,2 1,2 1,2 Toru Okamoto ● Melissa J. Call ● David C. S. Huang ● Mark F. van Delft Received: 3 July 2019 / Revised: 6 February 2020 / Accepted: 7 February 2020 / Published online: 24 February 2020 © The Author(s) 2020. This article is published with open access Abstract MCL1, a BCL2 relative, is critical for the survival of many cells. Its turnover is often tightly controlled through both ubiquitin-dependent and -independent mechanisms of proteasomal degradation. Several cell stress signals, including DNA damage and cell cycle arrest, are known to elicit distinct E3 ligases to ubiquitinate and degrade MCL1. Another trigger that drives MCL1 degradation is engagement by NOXA, one of its BH3-only protein ligands, but the mechanism responsible has remained unclear. From an unbiased genome-wide CRISPR-Cas9 screen, we discovered that the ubiquitin E3 ligase MARCH5, the ubiquitin E2 conjugating enzyme UBE2K, and the mitochondrial outer membrane protein MTCH2 co- — fi 1234567890();,: 1234567890();,: operate to mark MCL1 for degradation by the proteasome speci cally when MCL1 is engaged by NOXA. This mechanism of degradation also required the MCL1 transmembrane domain and distinct MCL1 lysine residues to proceed, suggesting that the components likely act on the MCL1:NOXA complex by associating with it in a specific orientation within the mitochondrial outer membrane.
    [Show full text]
  • Mechanisms Controlling Cell Life and Death Decisions
    Department of Biological Regulation echanisms controlling cell Atan Gross Yehudit Zaltsman, Mlife and death decisions Natalie Yivgi-Ohana, Iris Kamer, Galia Oberkovitz, Liat Shachnai, Maria Maryanovich Programmed cell death or apoptosis in the extraembryonic (ExEm) region of is essential for both the development E7.5 wild type embryos, and this region and maintenance of tissue homeostasis is largely impaired in the Mtch2/Mimp-/- in multicellular organisms. The BCL-2 embryos. Thus, Mtch2/Mimp might play family members are critical regulators a critical role in the formation of the 972 8 934 3656 of the apoptotic program, whereas ExEm region. To study the connection the caspase proteases are the major between Mtch2/Mimp and apoptosis FAX 972 8 934 4116 executioners of this program. Members we generated Mtch2/Mimp-/- stable [email protected] of the BCL-2 family include both anti- and embryonic stem (ES) cell lines carrying www.weizmann.ac.il/ pro-apoptotic proteins. The BH3-only either an empty vector or Mtch2/Mimp. Biological_Regulation/gross proteins (e.g., BID) are an important Using these lines we demonstrated that subset of the pro-apoptotic proteins the presence of Mtch2/Mimp sensitizes that act as sentinels of intercellular cells to tBID-induced MOMP. Thus, we damage. In our laboratory, we are discovered that Mtch2/Mimp is critical S phase and inhibition of apoptosis focused on elucidating the mechanisms for normal embryonic development, following DNA damage. This surprising that balance between cell life and and is an important positive regulator and new pro-survival function of BID death, and BID is one of our primary of tBID-induced apoptosis at the is regulated by its phosphorylation tools to study these mechanisms.
    [Show full text]
  • Cops5 Safeguards Genomic Stability of Embryonic Stem Cells Through Regulating Cellular Metabolism and DNA Repair
    Cops5 safeguards genomic stability of embryonic stem cells through regulating cellular metabolism and DNA repair Peng Lia, Lulu Gaoa, Tongxi Cuia, Weiyu Zhanga, Zixin Zhaoa, and Lingyi Chena,1 aState Key Laboratory of Medicinal Chemical Biology, Collaborative Innovation Center of Tianjin for Medical Epigenetics, Collaborative Innovation Center for Biotherapy, Tianjin Key Laboratory of Protein Sciences, National Demonstration Center for Experimental Biology Education and College of Life Sciences, Nankai University, 300071 Tianjin, China Edited by Janet Rossant, Hospital for Sick Children, University of Toronto, Toronto, Canada, and approved December 24, 2019 (received for review August 29, 2019) The highly conserved COP9 signalosome (CSN), composed of 8 transiently expressed in about 5% of ESCs at a given time, subunits (Cops1 to Cops8), has been implicated in pluripotency promotes rapid telomere elongation by telomere recombination maintenance of human embryonic stem cells (ESCs). Yet, the mech- and regulates genomic stability (11). Induced by genotoxic stress, anism for the CSN to regulate pluripotency remains elusive. We Filia stimulates the PARP1 activity and relocates from centro- previously showed that Cops2, independent of the CSN, is essential somes to DNA damage sites and mitochondria to regulate DDR for the pluripotency maintenance of mouse ESCs. In this study, we and apoptosis (12). Sall4, a pluripotency transcription factor, set out to investigate how Cops5 and Cops8 regulate ESC differ- facilitates the ataxia telangiectasia-mutated activation in re- entiation and tried to establish Cops5 and Cops8 knockout (KO) sponse to DSBs (13). To minimize the ROS-induced genomic ESC lines by CRISPR/Cas9. To our surprise, no Cops5 KO ESC clones DNA damage, ESCs produce lower levels of mitochondrial ROS were identified out of 127 clones, while three Cops8 KO ESC lines and express higher levels of antioxidants than differentiated cells were established out of 70 clones.
    [Show full text]
  • Downloaded As a Non-Linear Data Structure Containing Ordered Pairs of 68 Proteins and All the Other Proteins with Which They Interact
    bioRxiv preprint doi: https://doi.org/10.1101/854695; this version posted November 27, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. Network potential identifies therapeutic miRNA cocktails in Ewings Sarcoma Davis T. Weaver1, 2, *, Kathleen I. Pishas3,*, Drew Williamson4,*, Jessica Scarborough1, 2, Stephen L. Lessnick3, Andrew Dhawan2, 5, †, and Jacob G. Scott1, 2, 6, † 1Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA 2Translational Hematology Oncology Research, Cleveland Clinic, Cleveland OH, 44106, USA 3Nationwide Children’s Hospital, Columbus, Ohio, 43205 4Department of Pathology, Massachusetts General Hospital, Boston, MA, 02144 5Division of Neurology, Cleveland Clinic, Cleveland Ohio, 44195 6Department of Physics, Case Western Reserve University, Cleveland, OH, 44106, USA *contributed equally †[email protected], [email protected] ABSTRACT Introduction: Micro-RNA (miRNA)-based therapies are an emerging class of cancer therapies with many potential applications in the field owing to their ability to repress multiple, predictable targets and cause widespread changes in a cell signaling network. New miRNA-based oligonucleotide drugs have have shown significant promise for the treatment of cancer in pre-clinical studies. Because of the broad effects miRNAs can have on different cells and tissues, a network science-based approach is well-equipped to evaluate and identify miRNA candidates and combinations of candidates for the repression of key oncogenic targets. Methods: In this work, we present a novel network science-based approach for identification of potential miRNA therapies, using Ewings Sarcoma as a model system.
    [Show full text]
  • MOAP-1 Mediates Fas-Induced Apoptosis in Liver by Facilitating Tbid Recruitment to Mitochondria
    Article MOAP-1 Mediates Fas-Induced Apoptosis in Liver by Facilitating tBid Recruitment to Mitochondria Graphical Abstract Authors Chong Teik Tan, Qi-Ling Zhou, Yu-Chin Su, ..., Kanaga Sabapathy, Chun-Dong Yu, Victor C. Yu Correspondence [email protected] In Brief Activation of Fas apoptotic signaling triggers acute liver injury. Tan et al. show that deletion of the MOAP-1 gene protects mice from this injury. MOAP-1 binds to MTCH2, and the interaction appears necessary for MTCH2 recruitment of tBid to mitochondria, an essential step for executing Fas-induced apoptosis in the liver. Highlights d MOAP-1 is required to mediate Fas apoptotic signaling in liver d Loss of MOAP-1 protects mice from Fas-induced liver injury and lethality d MOAP-1 is required for efficient tBid recruitment to mitochondria d Binding of MOAP-1 to MTCH2 engages the receptor function of MTCH2 for tBid Tan et al., 2016, Cell Reports 16, 174–185 June 28, 2016 ª 2016 The Authors. http://dx.doi.org/10.1016/j.celrep.2016.05.068 Cell Reports Article MOAP-1 Mediates Fas-Induced Apoptosis in Liver by Facilitating tBid Recruitment to Mitochondria Chong Teik Tan,1 Qi-Ling Zhou,1,2 Yu-Chin Su,1 Nai Yang Fu,3 Hao-Chun Chang,1 Ran N. Tao,1 Sunil K. Sukumaran,1 Shairaz Baksh,4 Yee-Joo Tan,5 Kanaga Sabapathy,3,6 Chun-Dong Yu,2 and Victor C. Yu1,* 1Department of Pharmacy, National University of Singapore, Singapore 117543, Singapore 2School of Life Sciences, Xiamen University, Xiamen 361102, China 3Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore 169857, Singapore
    [Show full text]
  • Table S1. 103 Ferroptosis-Related Genes Retrieved from the Genecards
    Table S1. 103 ferroptosis-related genes retrieved from the GeneCards. Gene Symbol Description Category GPX4 Glutathione Peroxidase 4 Protein Coding AIFM2 Apoptosis Inducing Factor Mitochondria Associated 2 Protein Coding TP53 Tumor Protein P53 Protein Coding ACSL4 Acyl-CoA Synthetase Long Chain Family Member 4 Protein Coding SLC7A11 Solute Carrier Family 7 Member 11 Protein Coding VDAC2 Voltage Dependent Anion Channel 2 Protein Coding VDAC3 Voltage Dependent Anion Channel 3 Protein Coding ATG5 Autophagy Related 5 Protein Coding ATG7 Autophagy Related 7 Protein Coding NCOA4 Nuclear Receptor Coactivator 4 Protein Coding HMOX1 Heme Oxygenase 1 Protein Coding SLC3A2 Solute Carrier Family 3 Member 2 Protein Coding ALOX15 Arachidonate 15-Lipoxygenase Protein Coding BECN1 Beclin 1 Protein Coding PRKAA1 Protein Kinase AMP-Activated Catalytic Subunit Alpha 1 Protein Coding SAT1 Spermidine/Spermine N1-Acetyltransferase 1 Protein Coding NF2 Neurofibromin 2 Protein Coding YAP1 Yes1 Associated Transcriptional Regulator Protein Coding FTH1 Ferritin Heavy Chain 1 Protein Coding TF Transferrin Protein Coding TFRC Transferrin Receptor Protein Coding FTL Ferritin Light Chain Protein Coding CYBB Cytochrome B-245 Beta Chain Protein Coding GSS Glutathione Synthetase Protein Coding CP Ceruloplasmin Protein Coding PRNP Prion Protein Protein Coding SLC11A2 Solute Carrier Family 11 Member 2 Protein Coding SLC40A1 Solute Carrier Family 40 Member 1 Protein Coding STEAP3 STEAP3 Metalloreductase Protein Coding ACSL1 Acyl-CoA Synthetase Long Chain Family Member 1 Protein
    [Show full text]
  • Gene-Wide Analysis Detects Two New Susceptibility Genes for Alzheimerâ
    Washington University School of Medicine Digital Commons@Becker Open Access Publications 2014 Gene-wide analysis detects two new susceptibility genes for Alzheimer’s disease Carlos Cruchaga Washington University School of Medicine in St. Louis Alison M. Goate Washington University School of Medicine in St. Louis et al Follow this and additional works at: https://digitalcommons.wustl.edu/open_access_pubs Recommended Citation Cruchaga, Carlos; Goate, Alison M.; and et al, ,"Gene-wide analysis detects two new susceptibility genes for Alzheimer’s disease." PLoS One.9,6. e94661. (2014). https://digitalcommons.wustl.edu/open_access_pubs/2979 This Open Access Publication is brought to you for free and open access by Digital Commons@Becker. It has been accepted for inclusion in Open Access Publications by an authorized administrator of Digital Commons@Becker. For more information, please contact [email protected]. Gene-Wide Analysis Detects Two New Susceptibility Genes for Alzheimer’s Disease Valentina Escott-Price1.,Ce´line Bellenguez2,3,4., Li-San Wang5., Seung-Hoan Choi6., Denise Harold1, Lesley Jones1, Peter Holmans1, Amy Gerrish1, Alexey Vedernikov1, Alexander Richards1, Anita L. DeStefano6, Jean-Charles Lambert2,3,4, Carla A. Ibrahim-Verbaas7, Adam C. Naj8, Rebecca Sims1, Gyungah Jun6,9,10, Joshua C. Bis11, Gary W. Beecham12,13, Benjamin Grenier-Boley2,3,4, Giancarlo Russo14, Tricia A. Thornton-Wells15, Nicola Denning1, Albert V. Smith16,17, Vincent Chouraki2,3,4,18, Charlene Thomas1, M. Arfan Ikram19,20, Diana Zelenika21, Badri N. Vardarajan9,27,28, Yoichiro Kamatani22, Chiao-Feng Lin5, Helena Schmidt23, Brian Kunkle12, Melanie L. Dunstan1, Maria Vronskaya1, the United Kingdom Brain Expression Consortium24", Andrew D. Johnson25, Agustin Ruiz26, Marie- The´re`se Bihoreau21, Christiane Reitz27,28, Florence Pasquier3,29, Paul Hollingworth1, Olivier Hanon30, Annette L.
    [Show full text]
  • Obesity Genetics
    Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Medicine 921 Obesity Genetics Functional Aspects of Four Genetic Loci Associated with Obesity and Body Mass MATHIAS RASK-ANDERSEN ACTA UNIVERSITATIS UPSALIENSIS ISSN 1651-6206 ISBN 978-91-554-8713-3 UPPSALA urn:nbn:se:uu:diva-204449 2013 Dissertation presented at Uppsala University to be publicly examined in A1:111, BMC, Husargatan 3, Uppsala, Thursday, September 19, 2013 at 09:15 for the degree of Doctor of Philosophy (Faculty of Medicine). The examination will be conducted in English. Abstract Rask-Andersen, M. 2013. Obesity Genetics: Functional Aspects of Four Genetic Loci Associated with Obesity and Body Mass. Acta Universitatis Upsaliensis. Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Medicine 921. 48 pp. Upssala. ISBN 978-91-554-8713-3. Obesity is a complex disorder which has reached epidemic proportions in many parts of the world. Twin studies have demonstrated a high heritability for obesity. The subsequent appli- cation of genome wide association studies (GWAS) in the last decade have identified at least 32 genetic loci associated with body mass and obesity. Despite these great advances, these loci are almost exclusively completely naïve in a functional context. Genetic variations within the gene encoding the fat mass and obesity associated gene (FTO) are the strongest and most consistently observed genetic variants associated with obesity and body mass throughout various studied populations from all parts of the world. The identification of association of FTO with obesity has spurred immense interest in the function of the FTO protein and the functional consequences of its variants.
    [Show full text]
  • THE USE of WHOLE EXOME SEQUENCING to DETECT NOVEL GENETIC DISORDERS: TWO CASES and an ASSESSMENT of the TECHNOLOGY by Lauren
    THE USE OF WHOLE EXOME SEQUENCING TO DETECT NOVEL GENETIC DISORDERS: TWO CASES AND AN ASSESSMENT OF THE TECHNOLOGY by Lauren Westerfield BS Psychology, Florida State University, 2011 Submitted to the Graduate Faculty of Graduate School of Public Health in partial fulfillment of the requirements for the degree of Master of Science University of Pittsburgh 2013 UNIVERSITY OF PITTSBURGH Graduate School of Public Health This thesis was presented by Lauren Westerfield It was defended on March 26, 2013 and approved by Robin Grubs, Ph.D., Assistant Professor, Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh M. Michael Barmada, Ph.D., Associate Professor, Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh Thesis Director: Gerard Vockley, M.D., Ph.D., Professor, Department of Pediatrics, School of Medicine, University of Pittsburgh ii Copyright © by Lauren Westerfield 2013 iii THE USE OF WHOLE EXOME SEQUENCING TO DETECT NOVEL GENETIC DISORDERS: TWO CASES AND AN ASSESSMENT OF THE TECHNOLOGY Lauren Westerfield, MS University of Pittsburgh, 2013 ABSTRACT Over the past several years whole exome sequencing (WES) by high-throughput sequencing of target-enriched genomic DNA has become both technically feasible and financially practical as a means of studying Mendelian disorders. It is also entering the clinical realm as a powerful diagnostic tool for cases that have eluded answers and a cost effective one for cases with a suspected genetically heterogeneous disorder or set of differentials. This thesis examines the strategies for use and impact of such a technology in both the research and clinical setting. It presents an analysis of two cases in which WES was used to determine the causative mutation in the phenotype of an unknown/undiagnosed genetic disorder.
    [Show full text]
  • 343747125.Pdf
    Washington University School of Medicine Digital Commons@Becker Open Access Publications 2019 Associations of mitochondrial and nuclear mitochondrial variants and genes with seven metabolic traits Aldi T. Kraja Charles Gu Mary F. Feitosa Shiow J. Lin Lihua Wang See next page for additional authors Follow this and additional works at: https://digitalcommons.wustl.edu/open_access_pubs Authors Aldi T. Kraja, Charles Gu, Mary F. Feitosa, Shiow J. Lin, Lihua Wang, Mary J. Wojczynski, Ruteja A. Barve, Ping An, Thomas J. Baranski, E. Warwick Daw, Lisa de Las Fuentes, Latisha D. Love-Gregory, Christine Williams, Wei Yang, D. C. Rao, Victor G. Davila-Roman, Michael Province, and et al ARTICLE Associations of Mitochondrial and Nuclear Mitochondrial Variants and Genes with Seven Metabolic Traits Aldi T. Kraja,1,101,* Chunyu Liu,2,101 Jessica L. Fetterman,3,101 Mariaelisa Graff,4,101 Christian Theil Have,5,101 Charles Gu,6,101 Lisa R. Yanek,7 Mary F. Feitosa,1 Dan E. Arking,8 Daniel I. Chasman,9,10 Kristin Young,4 Symen Ligthart,11 W. David Hill,12 Stefan Weiss,13 Jian’an Luan,14 Franco Giulianini,9 Ruifang Li-Gao,15 Fernando P. Hartwig,16,17 Shiow J. Lin,1 Lihua Wang,1 Tom G. Richardson,17 Jie Yao,18 Eliana P. Fernandez,11 Mohsen Ghanbari,11 Mary K. Wojczynski,1 Wen-Jane Lee,19,20 Maria Argos,21 Sebastian M. Armasu,22 Ruteja A. Barve,23 Kathleen A. Ryan,24 Ping An,1 Thomas J. Baranski,25 Suzette J. Bielinski,26 Donald W. Bowden,27 Ulrich Broeckel,28 Kaare Christensen,29 Audrey Y.
    [Show full text]
  • Multi-Omics Integration Analysis Identifies Novel Genes for Alcoholism with Potential Link to Neurodegenerative Diseases
    bioRxiv preprint doi: https://doi.org/10.1101/2020.10.15.341750; this version posted October 16, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Multi-omics integration analysis identifies novel genes for alcoholism with potential link to neurodegenerative diseases Manav Kapoor1*, Michael Chao1, Emma C. Johnson2, Gloriia Novikova1, Dongbing Lai3, Jacquelyn Meyers5, Jessica Schulman1, John I Nurnberger Jr4, Bernice Porjesz5, Yunlong Liu3, COGA collaborators, Tatiana Foroud3,4, Howard J. Edenberg3,6, Edoardo Marcora1, Arpana Agrawal2 and Alison Goate1 1Dept. of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 2Dept. of Psychiatry, Washington University School of Medicine, St. Louis, MO 3Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 4Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN 5Department of Psychiatry, State University of New York, Downstate Medical Center, Brooklyn, NY, USA 6Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN *Corresponding Author Manav Kapoor, PhD Assistant Professor Dept. of Neuroscience Dept. of Genetics and Genomic Sciences Icahn School of Medicine at Mount Sinai 1425 Madison Avenue, Room 10-75B Box #1065 New York, NY 10029 Tel: (212) 659-5967 email: [email protected] bioRxiv preprint doi: https://doi.org/10.1101/2020.10.15.341750; this version posted October 16, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
    [Show full text]
  • MTCH2 Antibody Cat
    MTCH2 Antibody Cat. No.: 5063 MTCH2 Antibody Immunofluorescence of MTCH2 in Mouse Kidney cells with Immunohistochemistry of MTCH2 in mouse kidney tissue MTCH2 antibody at 20 μg/mL. with MTCH2 antibody at 5 μg/mL. Specifications HOST SPECIES: Rabbit SPECIES REACTIVITY: Human, Mouse HOMOLOGY: Predicted species reactivity based on immunogen sequence: Bovine: (75%) MTCH2 antibody was raised against a 15 amino acid synthetic peptide near the amino terminus of human MTCH2. IMMUNOGEN: The immunogen is located within amino acids 80 - 130 of MTCH2. TESTED APPLICATIONS: ELISA, IF, IHC-P, WB October 2, 2021 1 https://www.prosci-inc.com/mtch2-antibody-5063.html MTCH2 antibody can be used for detection of MTCH2 by Western blot at 1 μg/mL. Antibody can also be used for immunohistochemistry starting at 5 μg/mL. For immunofluorescence start at 20 μg/mL. APPLICATIONS: Antibody validated: Western Blot in human samples; Immunohistochemistry in mouse samples and Immunofluorescence in mouse samples. All other applications and species not yet tested. POSITIVE CONTROL: 1) Cat. No. 1210 - HEK293 Cell Lysate Properties PURIFICATION: MTCH2 Antibody is affinity chromatography purified via peptide column. CLONALITY: Polyclonal ISOTYPE: IgG CONJUGATE: Unconjugated PHYSICAL STATE: Liquid BUFFER: MTCH2 Antibody is supplied in PBS containing 0.02% sodium azide. CONCENTRATION: 1 mg/mL MTCH2 antibody can be stored at 4˚C for three months and -20˚C, stable for up to one STORAGE CONDITIONS: year. As with all antibodies care should be taken to avoid repeated freeze thaw cycles. Antibodies should not be exposed to prolonged high temperatures. Additional Info OFFICIAL SYMBOL: Mtch2 MTCH2 Antibody: HSPC032, 2310034D24Rik, 4930539J07Rik, Mitochondrial carrier ALTERNATE NAMES: homolog 2 ACCESSION NO.: NP_055157 PROTEIN GI NO.: 5815347 GENE ID: 56428 USER NOTE: Optimal dilutions for each application to be determined by the researcher.
    [Show full text]