Spontaneous Chromosomal Instability in Peripheral Blood Lymphocytes

Total Page:16

File Type:pdf, Size:1020Kb

Spontaneous Chromosomal Instability in Peripheral Blood Lymphocytes Genetics and Molecular Biology, 44, 3, e20200332 (2021) Copyright © Sociedade Brasileira de Genética. DOI: https://doi.org/10.1590/1678-4685-GMB-2020-0332 Short Communication Human and Medical Genetics Spontaneous chromosomal instability in peripheral blood lymphocytes from two molecularly confirmed Italian patients with Hereditary Fibrosis Poikiloderma: insights into cancer predisposition 1,2 2 2 2 3 Gaia Roversi *, Elisa Adele Colombo * , Ivana Magnani , Cristina Gervasini , Giuseppe Maggiore , Mauro Paradisi4# and Lidia Larizza5 1University of Milano-Bicocca, School of Medicine and Surgery, Department of Medicine and Surgery, Monza, Italy. 2Università degli Studi di Milano, Genetica Medica, Dipartimento di Scienze della Salute, Milan, Italy. 3Bambino Gesù Children’s Hospital IRCCS, Division of Hepatology and Gastroenterology, Rome, Italy. 4Istituto Dermopatico dell’Immacolata, IDI-IRCCS, Laboratory of Molecular and Cell Biology, Rome, Italy. 5IRCCS Istituto Auxologico Italiano, Laboratorio di Citogenetica e Genetica Molecolare Umana, Milan, Italy. Abstract Two Italian patients with the initial clinical diagnosis of Rothmund-Thomson syndrome were negative for RECQL4 mutations but showed in peripheral blood cells a spontaneous chromosomal instability significantly higher than controls. Revisiting after time their clinical phenotype, the suggestive matching with the autosomal dominant syndrome Poikiloderma, Hereditary Fibrosing with Tendon Contracture, Myopathy and Pulmonary fibrosis (POIKTMP) was confirmed by identification of the c.1879A>G (p.Arg627Gly) alteration in FAM111B. We compare the overall clinical signs of our patients with those of reported carriers of the same mutation and present the up-to-date mutational repertoire of FAM111B and the related phenotypic spectrum. Our snapshot highlights the age-dependent clinical expressivity of POIKTMP and the need to follow-up patients to monitor the multi-tissue impairment caused by FAM111B alterations. We link our chromosomal instability data to the role of FAM111B in cancer predisposition, pointed out by its implication in DNA-repair pathways and the outcome of pancreatic cancer in 2 out of 17 adult POIKTMP patients. The chromosomal instability herein highlighted well connects POIKTMP to cancer-predisposing syndromes, such as Rothmund-Thomson which represents the first hereditary poikiloderma entering in differential diagnosis with POIKTMP. Keywords: POIKTMP, FAM111B pathogenic variants, chromosomal instability, cancer predisposition, pancreatic carcinoma. Received: September 16, 2020; Accepted: April 08, 2021. Blood samples of two unrelated patients with a phenotype with ductopenia, as attested by hepatic biopsy, but had a much suggestive of a genodermatosis reminiscent of Rothmund- less impaired liver function; unfortunately, she prematurely Thomson syndrome (RTS, MIM #268400) were sent to our died following a trauma that occurred when she was 15 laboratory in 2002 to perform RECQL4 (MIM *603780) years old. Sanger sequencing of the entire RECQL4 gene molecular analysis, after obtainment of informed consents. (NG_016430.1), 21 exons and 20 introns, except for IVS12 Briefly, the two Italian patients, a male (patient A) and a minisatellite (Colombo et al., 2018), was carried out but did female (patient B) both representing the only child born to not detect any pathogenic alteration. non-consanguineous parents, presented typical RTS clinical In parallel to RECQL4 gene scan, spontaneous and signs, such as poikiloderma, sparse and rare hair, eyelashes induced chromosomal instability, a cellular hallmark of RTS and eyebrows, short stature, and photosensitivity, combined syndrome (Larizza et al., 2010) and other autosomal recessive with peculiar features, mainly oedema, muscular weakness syndromes driven by defects in RECQ helicase genes (such as and liver dysfunction with vanishing bile duct syndrome Werner Syndrome, MIM #277700) or entering in differential since infancy, rarely or never reported in RTS. Their clinical diagnosis with RTS (such as Fanconi Anemia, MIM Phenotypic conditions deteriorated with time and the liver involvement in Series-PS227650) was monitored on heparinized peripheral patient A caused ascites and sepsis that led him to premature blood lymphocytes from the two probands and six healthy death at age 17 years. Patient B also had a liver impairment: controls, including both probands’ parents. A minimum of 50 she suffered from idiopathic inflammatory cholangiopathy metaphase spreads prepared according to standard procedures and QFQ-banded were analysed per sample. As shown in Table 1, a significantly higher number of chromatid and Send correspondence to Elisa Adele Colombo. Università degli Studi di Milano, Genetica Medica, Dipartimento di Scienze della chromosome gaps and breaks per metaphase was highlighted Salute, via Antonio di Rudinì 8, 20142, Milan, Italy. E-mail: elisaadele. in both probands (patient A: 0.25 (13/52), patient B: 0.22 [email protected]. (11/51)) as compared to controls (0.11 (34/318)) (p<.05 at *These authors contributed equally to this work. the chi-square test). The chromosomal lesions, widespread in #In memoriam. the genome, involved different chromosomal locations, rarely 2 Roversi et al. coincident with fragile sites, as apparent in the set of eight The identified missense pathogenic variant affects different Q-banded chromosomes (Figure 1). Conversely, the a highly conserved amino acid residue placed in the loop search for chromosomal fragility after aphidicolin treatment that splits into two parts the functional enzymatic domain (0.4 M for 24 hr) did not evidence a rate of chromosome lesions of FAM111B (Mercier et al., 2013) (Figure 2B). Of note, significantly higher in the probands than in parallel control six additional FAM111B mutations map in this linker region lymphocytes cultures as the ratio of aberrations/metaphases (41 amino acids in length) that can be considered the major was 3.21 in patient A, 4.96 in patient B, and 4.52 in controls. mutation cluster; a minor cluster of three pathogenic variants As the molecular identity of the syndromic condition maps upstream the catalytic domain (Figure 2B). of the two patients was unknown at that time this data could Including our cases, the c.1879A>G (p.Arg627Gly) neither be associated with a specific rare syndrome nor mutation has been reported so far in five patients from four corroborated by testing similarly affected patients. families (Figure 2B and Table 2): our two from Italy, namely Many years later, the phenotype of our probands was patient A and patient B (alias F3-II1 reported by Mercier et revisited in the context of the literature. We noted a reasonable al., 2013, 2015), a third one from France (patient C, F1-II2, match between the phenotype of our cases and that of patients Mercier et al., 2013, 2015), and two from Algeria (patient D, with the ultra-rare autosomal dominant syndrome Poikiloderma, F2-II4, Mercier et al., 2013, 2015, 2019, and his son patient E, Hereditary Fibrosing, with Tendon contracture, Myopathy and F2-III1, Mercier et al., 2015). Table 2 summarizes the clinical Pulmonary fibrosis (POIKTMP, MIM #615704) (Khumalo signs of the reported POIKTMP cases sharing the hot spot et al., 2006; Mercier et al., 2013). Hence, targeted Sanger c.1879A>G (p.Arg627Gly) pathogenic variant. A detailed sequencing of the POIKTMP-causative gene FAM111B (MIM clinical report of patient B marking the evolution of the disease #615584), encoding a trypsin-like cysteine/serine peptidase can be found in Supplementary File 1. (Mercier et al., 2013), highlighted on both our patients the Briefly, all patients showed in the first year of life monoallelic c.1879A>G alteration (NG_034129.1) (Figure poikiloderma, predominant in the sun-exposed skin areas, 2A). This pathogenic variant is not present in the DNA of and hypotrichosis involving hair, eyelashes, and eyebrows. patient B’ mother, the only parent we could test. Moreover, Then, except patient E who was in the first childhood when we detected this alteration in the probands’ lymphoblastoid the disease is not yet fully expressed, all manifested muscle cell lines RNA (data not shown) confirming the stability of weakness and limb contractures starting from childhood the mutated FAM111B transcript r.1879A>G (p.Arg627Gly). and/or adolescence. Patient C (F1-II2) suffered from asthma Table 1 – Spontaneous chromosomal instability in peripheral blood cells from two unrelated patients with a Rothmund-Thomson-like phenotype. Patients Controls Observed aberrations Parents of patient A Parents of patient B Patient A Patient B Controls total Control 1 Control 2 Mother Father Mother Father Chromatid Gaps 7 4 19 1 2 5 3 5 3 Chromatid Breaks 1 0 5 1 0 3 0 0 1 Chromosome Gaps 1 4 6 1 0 2 0 2 1 Chromosome Breaks 4 3 4 1 1 1 1 0 0 Total aberrations 13 11 34 4 3 11 4 7 5 No. scored metaphases 52 51 318 50 54 53 56 54 51 Aberrations/ metaphase 0.25* 0.22* 0.11* 0.08 0.06 0.21 0.07 0.13 0.10 * Significant at p < .05 at the chi-square test Figure 1 – Spontaneous breaks and gaps in two unrelated Italian patients with a clinical presentation reminiscent of Rothmund-Thomson syndrome. Selected representative images document the spontaneous breaks and gaps observed in the QFQ-banded chromosome spreads from blood samples of the two patients herein reported. Chromosomal instability in POIKTMP 3 Figure 2 – The mutational repertoire of FAM111B. A) Electropherograms showing the c.1879A>G FAM111B missense variant (framed by the red rectangle) detected in
Recommended publications
  • Open Full Page
    CCR PEDIATRIC ONCOLOGY SERIES CCR Pediatric Oncology Series Recommendations for Childhood Cancer Screening and Surveillance in DNA Repair Disorders Michael F. Walsh1, Vivian Y. Chang2, Wendy K. Kohlmann3, Hamish S. Scott4, Christopher Cunniff5, Franck Bourdeaut6, Jan J. Molenaar7, Christopher C. Porter8, John T. Sandlund9, Sharon E. Plon10, Lisa L. Wang10, and Sharon A. Savage11 Abstract DNA repair syndromes are heterogeneous disorders caused by around the world to discuss and develop cancer surveillance pathogenic variants in genes encoding proteins key in DNA guidelines for children with cancer-prone disorders. Herein, replication and/or the cellular response to DNA damage. The we focus on the more common of the rare DNA repair dis- majority of these syndromes are inherited in an autosomal- orders: ataxia telangiectasia, Bloom syndrome, Fanconi ane- recessive manner, but autosomal-dominant and X-linked reces- mia, dyskeratosis congenita, Nijmegen breakage syndrome, sive disorders also exist. The clinical features of patients with DNA Rothmund–Thomson syndrome, and Xeroderma pigmento- repair syndromes are highly varied and dependent on the under- sum. Dedicated syndrome registries and a combination of lying genetic cause. Notably, all patients have elevated risks of basic science and clinical research have led to important in- syndrome-associated cancers, and many of these cancers present sights into the underlying biology of these disorders. Given the in childhood. Although it is clear that the risk of cancer is rarity of these disorders, it is recommended that centralized increased, there are limited data defining the true incidence of centers of excellence be involved directly or through consulta- cancer and almost no evidence-based approaches to cancer tion in caring for patients with heritable DNA repair syn- surveillance in patients with DNA repair disorders.
    [Show full text]
  • Senescence Induced by RECQL4 Dysfunction Contributes to Rothmund–Thomson Syndrome Features in Mice
    Citation: Cell Death and Disease (2014) 5, e1226; doi:10.1038/cddis.2014.168 OPEN & 2014 Macmillan Publishers Limited All rights reserved 2041-4889/14 www.nature.com/cddis Senescence induced by RECQL4 dysfunction contributes to Rothmund–Thomson syndrome features in mice HLu1, EF Fang1, P Sykora1, T Kulikowicz1, Y Zhang2, KG Becker2, DL Croteau1 and VA Bohr*,1 Cellular senescence refers to irreversible growth arrest of primary eukaryotic cells, a process thought to contribute to aging- related degeneration and disease. Deficiency of RecQ helicase RECQL4 leads to Rothmund–Thomson syndrome (RTS), and we have investigated whether senescence is involved using cellular approaches and a mouse model. We first systematically investigated whether depletion of RECQL4 and the other four human RecQ helicases, BLM, WRN, RECQL1 and RECQL5, impacts the proliferative potential of human primary fibroblasts. BLM-, WRN- and RECQL4-depleted cells display increased staining of senescence-associated b-galactosidase (SA-b-gal), higher expression of p16INK4a or/and p21WAF1 and accumulated persistent DNA damage foci. These features were less frequent in RECQL1- and RECQL5-depleted cells. We have mapped the region in RECQL4 that prevents cellular senescence to its N-terminal region and helicase domain. We further investigated senescence features in an RTS mouse model, Recql4-deficient mice (Recql4HD). Tail fibroblasts from Recql4HD showed increased SA-b-gal staining and increased DNA damage foci. We also identified sparser tail hair and fewer blood cells in Recql4HD mice accompanied with increased senescence in tail hair follicles and in bone marrow cells. In conclusion, dysfunction of RECQL4 increases DNA damage and triggers premature senescence in both human and mouse cells, which may contribute to symptoms in RTS patients.
    [Show full text]
  • Reconstructing Cell Cycle Pseudo Time-Series Via Single-Cell Transcriptome Data—Supplement
    School of Natural Sciences and Mathematics Reconstructing Cell Cycle Pseudo Time-Series Via Single-Cell Transcriptome Data—Supplement UT Dallas Author(s): Michael Q. Zhang Rights: CC BY 4.0 (Attribution) ©2017 The Authors Citation: Liu, Zehua, Huazhe Lou, Kaikun Xie, Hao Wang, et al. 2017. "Reconstructing cell cycle pseudo time-series via single-cell transcriptome data." Nature Communications 8, doi:10.1038/s41467-017-00039-z This document is being made freely available by the Eugene McDermott Library of the University of Texas at Dallas with permission of the copyright owner. All rights are reserved under United States copyright law unless specified otherwise. File name: Supplementary Information Description: Supplementary figures, supplementary tables, supplementary notes, supplementary methods and supplementary references. CCNE1 CCNE1 CCNE1 CCNE1 36 40 32 34 32 35 30 32 28 30 30 28 28 26 24 25 Normalized Expression Normalized Expression Normalized Expression Normalized Expression 26 G1 S G2/M G1 S G2/M G1 S G2/M G1 S G2/M Cell Cycle Stage Cell Cycle Stage Cell Cycle Stage Cell Cycle Stage CCNE1 CCNE1 CCNE1 CCNE1 40 32 40 40 35 30 38 30 30 28 36 25 26 20 20 34 Normalized Expression Normalized Expression Normalized Expression 24 Normalized Expression G1 S G2/M G1 S G2/M G1 S G2/M G1 S G2/M Cell Cycle Stage Cell Cycle Stage Cell Cycle Stage Cell Cycle Stage Supplementary Figure 1 | High stochasticity of single-cell gene expression means, as demonstrated by relative expression levels of gene Ccne1 using the mESC-SMARTer data. For every panel, 20 sample cells were randomly selected for each of the three stages, followed by plotting the mean expression levels at each stage.
    [Show full text]
  • PDGF Engages an E2F-USP1 Signaling Pathway to Support ID2-Mediated Survival of Proneural Glioma Cells Gilbert J
    Published OnlineFirst March 7, 2016; DOI: 10.1158/0008-5472.CAN-15-2157 Cancer Molecular and Cellular Pathobiology Research PDGF Engages an E2F-USP1 Signaling Pathway to Support ID2-Mediated Survival of Proneural Glioma Cells Gilbert J. Rahme1,2,3, Zhonghua Zhang2,3,4, Alison L. Young2,3,4, Chao Cheng1,2,3, Eric J. Bivona5, Steven N. Fiering1,2,3, Yasuyuki Hitoshi2,3,4, and Mark A. Israel1,2,3,4 Abstract Glioblastoma is the most aggressive primary brain tumor and activated Usp1. Furthermore, PDGF-mediated expression of responds poorly to currently available therapies. Transcriptomic USP1 led to the stabilization of Inhibitor of DNA-binding 2 characterization of glioblastoma has identified distinct molec- (ID2), which we found to be required for glioma cell survival. ular subtypes of glioblastoma. Gain-of-function alterations Genetic ablation of Id2 delayed tumor-induced mortality, and leading to enhanced platelet-derived growth factor (PDGF) pharmacologic inhibition of USP1, resulting in decreased ID2 signaling are commonly observed in the proneural subtype of levels, also delayed tumorigenesis in mice. Notably, decreased glioblastoma and can drive gliomagenesis. However, little is USP1 expression was associated with prolonged survival in known about the downstream effectors of PDGF signaling in patients with proneural glioblastoma, but not with other sub- glioblastoma. Using a mouse model of proneural glioma and types of glioblastoma. Collectively, our findings describe a comparative transcriptomics, we determined that PDGF signal- signaling cascade downstream of PDGF that sustains proneural ing upregulated ubiquitin-specificpeptidase1(Usp1)topro- glioblastoma cells and suggest that inhibition of the PDGF– mote the survival of murine proneural glioma cells.
    [Show full text]
  • Whole Genome Sequencing in an Acrodermatitis Enteropathica Family from the Middle East
    Hindawi Dermatology Research and Practice Volume 2018, Article ID 1284568, 9 pages https://doi.org/10.1155/2018/1284568 Research Article Whole Genome Sequencing in an Acrodermatitis Enteropathica Family from the Middle East Faisel Abu-Duhier,1 Vivetha Pooranachandran,2 Andrew J. G. McDonagh,3 Andrew G. Messenger,4 Johnathan Cooper-Knock,2 Youssef Bakri,5 Paul R. Heath ,2 and Rachid Tazi-Ahnini 4,6 1 Prince Fahd Bin Sultan Research Chair, Department of Medical Lab Technology, Faculty of Applied Medical Science, Prince Fahd Research Chair, University of Tabuk, Tabuk, Saudi Arabia 2Department of Neuroscience, SITraN, Te Medical School, University of Shefeld, Shefeld S10 2RX, UK 3Department of Dermatology, Royal Hallamshire Hospital, Shefeld S10 2JF, UK 4Department of Infection, Immunity and Cardiovascular Disease, Te Medical School, University of Shefeld, Shefeld S10 2RX, UK 5Biology Department, Faculty of Science, University Mohammed V Rabat, Rabat, Morocco 6Laboratory of Medical Biotechnology (MedBiotech), Rabat Medical School and Pharmacy, University Mohammed V Rabat, Rabat, Morocco Correspondence should be addressed to Rachid Tazi-Ahnini; [email protected] Received 4 April 2018; Revised 28 June 2018; Accepted 26 July 2018; Published 7 August 2018 Academic Editor: Gavin P. Robertson Copyright © 2018 Faisel Abu-Duhier et al. Tis is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. We report a family from Tabuk, Saudi Arabia, previously screened for Acrodermatitis Enteropathica (AE), in which two siblings presented with typical features of acral dermatitis and a pustular eruption but difering severity.
    [Show full text]
  • RAPADILINO RECQL4 Mutant Protein Lacks Helicase and Atpase Activity
    Biochimica et Biophysica Acta 1822 (2012) 1727–1734 Contents lists available at SciVerse ScienceDirect Biochimica et Biophysica Acta journal homepage: www.elsevier.com/locate/bbadis RAPADILINO RECQL4 mutant protein lacks helicase and ATPase activity Deborah L. Croteau, Marie L. Rossi, Jennifer Ross, Lale Dawut, Christopher Dunn, Tomasz Kulikowicz, Vilhelm A. Bohr ⁎ Laboratory of Molecular Gerontology, National Institute on Aging, Baltimore, MD, 21224, USA article info abstract Article history: The RecQ family of helicases has been shown to play an important role in maintaining genomic stability. In Received 18 May 2012 humans, this family has five members and mutations in three of these helicases, BLM, WRN and RECQL4, are Received in revised form 17 July 2012 associated with disease. Alterations in RECQL4 are associated with three diseases, Rothmund–Thomson Accepted 26 July 2012 syndrome, Baller–Gerold syndrome, and RAPADILINO syndrome. One of the more common mutations found in Available online 31 July 2012 RECQL4 is the RAPADILINO mutation, c.1390+2delT which is a splice-site mutation leading to an in-frame skip- ping of exon 7 resulting in 44 amino acids being deleted from the protein (p.Ala420–Ala463del). In order to char- Keywords: fi RecQ helicase acterize the RAPADILINO RECQL4 mutant protein, it was expressed in bacteria and puri ed using an established RECQL4 protocol. Strand annealing, helicase, and ATPase assays were conducted to characterize the protein's activities RAPADILINO relative to WT RECQL4. Here we show that strand annealing activity in the absence of ATP is unchanged from Rothmund–Thomson syndrome that of WT RECQL4. However, the RAPADILINO protein variant lacks helicase and ssDNA-stimulated ATPase ATPase activity.
    [Show full text]
  • USP1 Deubiquitinates Protein Kinase Akt to Inhibit PI3K-Akt-Foxo Signaling
    bioRxiv preprint doi: https://doi.org/10.1101/654921; this version posted May 30, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. USP1 deubiquitinates protein kinase Akt to inhibit PI3K-Akt-FoxO signaling Dana Goldbraikh†, Danielle Neufeld†, Yara Mutlak-Eid, Inbal Lasry, Anna Parnis, and Shenhav Cohen*. Faculty of Biology, Technion Institute of Technology, Haifa, Israel † These authors contributed equally * Correspondence to Dr. Shenhav Cohen: Faculty of Biology, Technion Institute of Technology, Haifa 32000, Israel Tel: 972-4-8294214 [email protected] Running title: USP1 Inhibits Insulin Signaling by Promoting Akt Deubiquitination bioRxiv preprint doi: https://doi.org/10.1101/654921; this version posted May 30, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. ABSTRACT PI3K-Akt-FoxO-mTOR signaling is the central pathway controlling growth and metabolism in all cells. Activation of this pathway requires ubiquitination of Akt prior to its activation by phosphorylation. Here, we found that the deubiquitinating (DUB) enzyme USP1 removes K63- linked polyubiquitin chains on Akt to sustain PI3K-Akt-FoxO signaling low during prolonged starvation. DUB screening platform identified USP1 as a direct DUB for Akt, and USP1 depletion in atrophying muscle increased Akt ubiquitination, PI3K-Akt-FoxO signaling, and glucose uptake during fasting.
    [Show full text]
  • Gene Silencing of USP1 by Lentivirus Effectively Inhibits Proliferation and Invasion of Human Osteosarcoma Cells
    INTERNATIONAL JOURNAL OF ONCOLOGY 49: 2549-2557, 2016 Gene silencing of USP1 by lentivirus effectively inhibits proliferation and invasion of human osteosarcoma cells JINBO LIU1, HONGJUN ZHU2, NING ZHONG3, ZIFENG JIANG4, LELE XU5, YOUPING DENG6, ZHENHUAN JIANG7, HONGWEI WANG8 and JINZHI WANG9 1Department of Orthopaedics, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003; 2Department of Thoracic Surgery, The First People's Hospital of Shangqiu, Shangqiu, Henan 476100; 3Department of Thoracic Surgery, Kunshan First People's Hospital Affiliated to Jiangsu University, Kunshan, Jiangsu 215000, P.R. China; 4Clinical Laboratories, The University of Chicago Medical Center, Chicago, IL 60637, USA; 5Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215200, P.R. China; 6Department of Medicine, Rush University Medical Center, Chicago, IL 60612, USA; 7Department of Orthopaedics, People's Hospital of Yixing City, Yixing, Jiangsu 214200, P.R. China; 8Department of Medicine, University of Chicago, Chicago, IL 60637, USA; 9Department of Cell Biology, School of Medicine, Soochow University, Suzhou, Jiangsu 215007, P.R. China Received August 17, 2016; Accepted October 20, 2016 DOI: 10.3892/ijo.2016.3752 Abstract. Osteosarcoma is the most frequent malignant bone and invasion in U2OS cells. Therefore, USP1 may provide a tumor, affecting the extremities of adolescents and young novel therapeutic target for the treatment of osteosarcoma. adults. Ubiquitin-specific protease 1 (USP1) plays a critical role in many cellular processes including proteasome degrada- Introduction tion, chromatin remodeling and cell cycle regulation. In the present study, we discovered that USP1 was overexpressed in Osteosarcoma is the most common bone malignancy in the 26 out of 30 osteosarcoma tissues compared to cartilage tumor pediatric age group, with a very high propensity for local inva- tissues and normal bone tissues.
    [Show full text]
  • Nationwide Survey of Baller‑Gerold Syndrome in Japanese Population
    3222 MOLECULAR MEDICINE REPORTS 15: 3222-3224, 2017 Nationwide survey of Baller‑Gerold syndrome in Japanese population HIDEO KANEKO1, RIE IZUMI2, HIROTSUGU ODA3, OSAMU OHARA4, KIYOKO SAMESHIMA5, HIDENORI OHNISHI6, TOSHIYUKI FUKAO6 and MICHINORI FUNATO1 1Department of Clinical Research, National Hospital Organization Nagara Medical Center, Gifu 502-8558; 2Niigata Prefecture Hamagumi Medical Rehabilitation Center for Children, Niigata 951-8121; 3Laboratory for Integrative Genomics, RIKEN Center for Integrative Medical Sciences (RIKEN‑IMS), Yokohama, Kanagawa 230-0045; 4Department of Technology Development, Kazusa DNA Research Institute, Kisarazu, Chiba 292-0818; 5Division of Medical Genetics, Gunma Children's Medical Center, Shibukawa, Gunma 377‑8577; 6Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu 501-1194, Japan Received July 19, 2016; Accepted March 10, 2017 DOI: 10.3892/mmr.2017.6408 Abstract. Baller-Gerold syndrome (BGS) is a rare autosomal mutations of the RECQL4 gene causes Rothmund-Thomson genetic disorder characterized by radial aplasia/hypoplasia syndrome (3,4). and craniosynostosis. The causative gene for BGS encodes However, mutations in the RECQL4 gene have been associ- RECQL4, which belongs to the RecQ helicase family. To ated with two other recessive disorders: One is RAPADILINO understand BGS patients in Japan, a nationwide survey was syndrome (OMIM 266280) which is characterized by radial conducted, which identified 2 families and 3 patients affected hypoplasia, patella hypoplasia and arched plate, diarrhoea and by the syndrome. All the three patients showed radial defects dislocated joints, little size and limb malformation, slender and craniosynostosis. In one patient who showed a dislocated nose and normal intelligence (4). The other is Baller-Gerold joint of the hip and flexion contracture of both the elbow syndrome (BGS) (OMIM 218600) characterized by radial joints and wrists at birth, a homozygous large deletion in the aplasia/hypoplasia and craniosynostosis (5).
    [Show full text]
  • Genome-Wide CRISPR-Cas9 Screens Reveal Loss of Redundancy Between PKMYT1 and WEE1 in Glioblastoma Stem-Like Cells
    Article Genome-wide CRISPR-Cas9 Screens Reveal Loss of Redundancy between PKMYT1 and WEE1 in Glioblastoma Stem-like Cells Graphical Abstract Authors Chad M. Toledo, Yu Ding, Pia Hoellerbauer, ..., Bruce E. Clurman, James M. Olson, Patrick J. Paddison Correspondence [email protected] (J.M.O.), [email protected] (P.J.P.) In Brief Patient-derived glioblastoma stem-like cells (GSCs) can be grown in conditions that preserve patient tumor signatures and their tumor initiating capacity. Toledo et al. use these conditions to perform genome-wide CRISPR-Cas9 lethality screens in both GSCs and non- transformed NSCs, revealing PKMYT1 as a candidate GSC-lethal gene. Highlights d CRISPR-Cas9 lethality screens performed in patient brain- tumor stem-like cells d PKMYT1 is identified in GSCs, but not NSCs, as essential for facilitating mitosis d PKMYT1 and WEE1 act redundantly in NSCs, where their inhibition is synthetic lethal d PKMYT1 and WEE1 redundancy can be broken by over- activation of EGFR and AKT Toledo et al., 2015, Cell Reports 13, 2425–2439 December 22, 2015 ª2015 The Authors http://dx.doi.org/10.1016/j.celrep.2015.11.021 Cell Reports Article Genome-wide CRISPR-Cas9 Screens Reveal Loss of Redundancy between PKMYT1 and WEE1 in Glioblastoma Stem-like Cells Chad M. Toledo,1,2,14 Yu Ding,1,14 Pia Hoellerbauer,1,2 Ryan J. Davis,1,2,3 Ryan Basom,4 Emily J. Girard,3 Eunjee Lee,5 Philip Corrin,1 Traver Hart,6,7 Hamid Bolouri,1 Jerry Davison,4 Qing Zhang,4 Justin Hardcastle,1 Bruce J. Aronow,8 Christopher L.
    [Show full text]
  • Crystal Structure of the Werner's Syndrome Helicase
    bioRxiv preprint doi: https://doi.org/10.1101/2020.05.04.075176; this version posted May 5, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. Crystal Structure of the Werner’s Syndrome Helicase Joseph A. Newman1, Angeline E. Gavard1, Simone Lieb2, Madhwesh C. Ravichandran2, Katja Hauer2, Patrick Werni2, Leonhard Geist2, Jark Böttcher2, John. R. Engen3, Klaus Rumpel2, Matthias Samwer2, Mark Petronczki2 and Opher Gileadi1,* 1- Structural Genomics Consortium, University of Oxford, ORCRB, Roosevelt Drive, Oxford, United Kingdom. 2- Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria. 3- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA. Abstract Werner syndrome helicase (WRN) plays important roles in DNA repair and the maintenance of genome integrity. Germline mutations in WRN give rise to Werner syndrome, a rare autosomal recessive progeroid syndrome that also features cancer predisposition. Interest in WRN as a therapeutic target has increased massively following the identification of WRN as the top synthetic lethal target for microsatellite instable (MSI) cancers. High throughput screens have identified candidate WRN helicase inhibitors, but the development of potent, selective inhibitors would be significantly enhanced by high-resolution structural information.. In this study we have further characterized the functions of WRN that are required for survival of MSI cancer cells, showing that ATP binding and hydrolysis are required for complementation of siRNA-mediated WRN silencing. A crystal structure of the WRN helicase core at 2.2 Å resolutionfeatures an atypical mode of nucleotide binding with extensive contacts formed by motif VI, which in turn defines the relative positioning of the two RecA like domains.
    [Show full text]
  • Roles of the Werner Syndrome Recq Helicase in DNA Replication
    dna repair 7 (2008) 1776–1786 available at www.sciencedirect.com journal homepage: www.elsevier.com/locate/dnarepair Mini-review Roles of the Werner syndrome RecQ helicase in DNA replication Julia M. Sidorova ∗ Department of Pathology, University of Washington, Seattle, WA 98195-7705, USA article info abstract Article history: Congenital deficiency in the WRN protein, a member of the human RecQ helicase family, Received 22 July 2008 gives rise to Werner syndrome, a genetic instability and cancer predisposition disorder with Accepted 23 July 2008 features of premature aging. Cellular roles of WRN are not fully elucidated. WRN has been Published on line 6 September 2008 implicated in telomere maintenance, homologous recombination, DNA repair, and other processes. Here I review the available data that directly address the role of WRN in preserv- Keywords: ing DNA integrity during replication and propose that WRN can function in coordinating Werner syndrome replication fork progression with replication stress-induced fork remodeling. I further dis- RecQ helicase cuss this role of WRN within the contexts of damage tolerance group of regulatory pathways, Human cell culture and redundancy and cooperation with other RecQ helicases. Replication stress Published by Elsevier B.V. Damage tolerance Contents 1. Introduction ................................................................................................................. 1777 1.1. Is S phase prolonged in WRN-deficient cells? ...................................................................... 1777 1.2. What is the mechanism of the S phase extension in the absence of WRN? ...................................... 1778 1.3. Are all forks equal when it comes to WRN? ........................................................................ 1779 1.4. A mechanistic model for WRN role in replication elongation ..................................................... 1779 1.5. WRN and damage tolerance pathways ............................................................................. 1781 1.6.
    [Show full text]