Medium Term Effects of Physical Conditioning on Breath-Hold Diving Performance
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
APNEA TRAINING and PHYSICAL CHARACTERISTICS: ENHANCEMENT of the DIVE RESPONSE, APNEIC TIME, and RECOVERY by Nathanael Stanford A
APNEA TRAINING AND PHYSICAL CHARACTERISTICS: ENHANCEMENT OF THE DIVE RESPONSE, APNEIC TIME, AND RECOVERY by Nathanael Stanford A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Kinesiology Boise State University May 2019 © 2019 Nathanael Stanford ALL RIGHTS RESERVED BOISE STATE UNIVERSITY GRADUATE COLLEGE DEFENSE COMMITTEE AND FINAL READING APPROVALS of the thesis submitted by Nathanael Stanford Thesis Title: Apnea Training and Physical Characteristics: Enhancement of The Dive Response, Apneic Time, and Recovery Date of Final Oral Examination: 08 March 2019 The following individuals read and discussed the thesis submitted by student Nathanael Stanford, and they evaluated his presentation and response to questions during the final oral examination. They found that the student passed the final oral examination. Shawn R. Simonson, Ed.D. Chair, Supervisory Committee Timothy R. Kempf, Ph.D. Member, Supervisory Committee Jeffrey M. Anderson, MA Member, Supervisory Committee The final reading approval of the thesis was granted by Shawn R. Simonson, Ed.D., Chair of the Supervisory Committee. The thesis was approved by the Graduate College. ACKNOWLEDGEMENTS I would first like to thank my thesis advisor, Shawn Simonson for his continual assistance and guidance throughout this master thesis. He fostered an environment that encouraged me to think critically about the scientific process. The mentorship he offered directed me on a path of independent thinking and learning. I would like to thank my research technician, Sarah Bennett for the hundreds of hours she assisted me during data collection. This thesis would not have been possible without her help. To my committee member Tim Kempf, I want to express my gratitude for his assistance with study design and the scientific writing process. -
Sep-Class-4.Pdf
INCREASE AEROBIC CAPACITY INCREASE AEROBIC CAPACITY • Blood is made up of three parts: oxygen-carrying red cells, white blood cells and plasma. • Hemoglobin is a protein found within the red cells. INCREASE AEROBIC CAPACITY • Hematocrit refers to the percentage of red blood cells in the blood. Under normal conditions, hematocrit will relate closely to the concentration of hemoglobin in the blood. Hematocrit is usually found to be 40.7- 50% for males and 36.1- 44.3% for females. INCREASE AEROBIC CAPACITY • Performance improves with an increase in hemoglobin and hematocrit, which increases oxygen carrying capacity of the blood thus improving aerobic ability. • J Appl Physiol. 1972 Aug;33(2):175-80. Response to exercise after blood loss and reinfusion. Ekblom B, Goldbarg AN, Gullbring B. THE SPLEEN THE SPLEEN • The Spleen acts as a blood bank by absorbing excess volume and releasing stores during increased oxygen demands or decreased oxygen availability. • Isbister JP. Physiology and pathophysiology of blood volume regulation. Transfus Sci.1997;(Sep;18(3):):409-423 THE SPLEEN • The spleen stores blood to a volume that may amount to about 200–300 ml, with 80% of the content consisting of hematocrite (Laub et al., 1993). • Andrzej Ostrowski,1 Marek Strzała,1 Arkadiusz Stanula,2 Mirosław Juszkiewicz,1 Wanda Pilch,3 and Adam Maszczyk. The Role of Training in the Development of Adaptive Mechanisms in Freedivers. J Hum Kinet. 2012 May; 32: 197–210. THE SPLEEN • During the breath-hold, the spleen contracts to the same extent, regardless of whether the diver is above or under water. • Andrzej Ostrowski,1 Marek Strzała,1 Arkadiusz Stanula,2 Mirosław Juszkiewicz,1 Wanda Pilch,3 and Adam Maszczyk. -
Wooran Rugby
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/322579177 Repeated sprint training in hypoxia induced by voluntary hypoventilation improves running repeated sprint ability in rugby players Article in European Journal of Sport Science · January 2018 DOI: 10.1080/17461391.2018.1431312 CITATIONS READS 0 1,019 3 authors: Charly Fornasier-Santos Gregoire P Millet Rugby Club Toulonnais SASP University of Lausanne 2 PUBLICATIONS 0 CITATIONS 443 PUBLICATIONS 6,517 CITATIONS SEE PROFILE SEE PROFILE Xavier Woorons University of Lille, Pluridisciplinary Research Unit Sport Health & … 26 PUBLICATIONS 494 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: RunUp! View project Effectiveness of altitude/hypoxic training in elite athletes View project All content following this page was uploaded by Xavier Woorons on 18 January 2018. The user has requested enhancement of the downloaded file. Repeated sprint training in hypoxia induced by voluntary hypoventilation improves running repeated sprint ability in rugby players Charly Fornasier-Santos 1, Grégoire P. Millet 2, & Xavier Woorons 3,4 1 Laboratoire de Pharm-Ecologie Cardiovasculaire - EA4278 – Université d'Avignon et des Pays de Vaucluse, France. 2 ISSUL, Institute of Sport Sciences, Faculty of Biology and Medicine, University of Lausanne, Switzerland. 3 URePSSS, Multidisciplinary Research Unit "Sport Health & Society" – EA 7369 – Department "Physical Activity, Muscle & Health", Lille University, France. 4 ARPEH, Association pour la Recherche et la Promotion de l'Entraînement en Hypoventilation, Lille, France. Correspondence: Xavier Woorons, 18 rue Saint Gabriel, 59800, Lille, France. E-mail: [email protected] The authors declare that they received no funding for this work Statement concerning ethics in publishing The authors declare that they have no conflict of interest. -
Breath Hold Diving As a Brain Survival Response
Review Article • DOI: 10.2478/s13380-013-0130-5 • Translational Neuroscience • 4(3) • 2013 • 302-313 Translational Neuroscience Zeljko Dujic*, BREATHHOLD DIVING Toni Breskovic, Darija Bakovic AS A BRAIN SURVIVAL RESPONSE Department of Integrative Physiology, Abstract University of Split School of Medicine, Elite breath-hold divers are unique athletes challenged with compression induced by hydrostatic pressure and Split, Croatia extreme hypoxia/hypercapnia during maximal field dives. The current world records for men are 214 meters for depth (Herbert Nitsch, No-Limits Apnea discipline), 11:35 minutes for duration (Stephane Mifsud, Static Apnea discipline), and 281 meters for distance (Goran Čolak, Dynamic Apnea with Fins discipline). The major physi- ological adaptations that allow breath-hold divers to achieve such depths and duration are called the “diving response” that is comprised of peripheral vasoconstriction and increased blood pressure, bradycardia, decreased cardiac output, increased cerebral and myocardial blood flow, splenic contraction, and preserved 2O delivery to the brain and heart. This complex of physiological adaptations is not unique to humans, but can be found in all diving mammals. Despite these profound physiological adaptations, divers may frequently show hypoxic loss of consciousness. The breath-hold starts with an easy-going phase in which respiratory muscles are inactive, whereas during the second so-called “struggle” phase, involuntary breathing movements start. These contrac- tions increase cerebral blood flow by facilitating left stroke volume, cardiac output, and arterial pressure. The analysis of the compensatory mechanisms involved in maximal breath-holds can improve brain survival during conditions involving profound brain hypoperfusion and deoxygenation. Keywords • Apnea • Breath-hold diving • Brain perfusion • Brain oxygenation Received 13 July 2013 accepted 25 July 2013 © Versita Sp. -
Breath-Hold Training of Humans Reduces Oxidative Stress and Blood Acidosis After Static and Dynamic Apnea
Respiratory Physiology & Neurobiology 137 (2003) 19Á/27 www.elsevier.com/locate/resphysiol Breath-hold training of humans reduces oxidative stress and blood acidosis after static and dynamic apnea Fabrice Joulia c, Jean Guillaume Steinberg a,b, Marion Faucher a,b, Thibault Jamin c, Christophe Ulmer a,b, Nathalie Kipson a,b,Yves Jammes a,b,* a Laboratoire de Physiopathologie Respiratoire (UPRES EA 2201), Institut Jean Roche, Faculte´deMe´decine, Universite´dela Me´diterrane´e, Blvd. Pierre Dramard, 13916 cedex 20, Marseille, France b Service des Explorations Fonctionnelles Respiratoires, Hoˆpital Nord, Assistance Publique-Hoˆpitaux de Marseille, Marseille, France c Laboratoire d’Ergonomie Sportive et Performance (EA 20548), U.F.R. STAPS, Universite´ de Toulon et du Var, 83130 La Garde cedex, France Accepted 19 April 2003 Abstract Repeated epochs of breath-holding were superimposed to the regular training cycling program of triathletes to reproduce the adaptative responses to hypoxia, already described in elite breath-hold divers [Respir. Physiol. Neurobiol. 133 (2002) 121]. Before and after a 3-month breath-hold training program, we tested the response to static apnea and to a 1-min dynamic forearm exercise executed during apnea (dynamic apnea). The breath-hold training program did not modify the maximal performances measured during an incremental cycling exercise. After training, the duration of static apnea significantly lengthened and the associated bradycardia was accentuated; we also noted a reduction of the post-apnea decrease in venous blood pH and increase in lactic acid concentration, and the suppression of the post-apnea oxidative stress (increased concentration of thiobarbituric acid reactive substances). After dynamic apnea, the blood acidosis was reduced and the oxidative stress no more occurred. -
Research and Discoveries the Revolution of Science Through Scuba
Smithsonian Institution Scholarly Press smithsonian contributions to the marine sciences • number 39 Smithsonian Institution Scholarly Press Research and Discoveries The Revolution of Science through Scuba Edited by Michael A. Lang, Roberta L. Marinelli, Susan J. Roberts, and Phillip R. Taylor SERIES PUBLICATIONS OF THE SMITHSONIAN INSTITUTION Emphasis upon publication as a means of “diffusing knowledge” was expressed by the first Secretary of the Smithsonian. In his formal plan for the Institution, Joseph Henry outlined a program that included the following statement: “It is proposed to publish a series of reports, giving an account of the new discoveries in science, and of the changes made from year to year in all branches of knowledge.” This theme of basic research has been adhered to through the years by thousands of titles issued in series publications under the Smithsonian imprint, com- mencing with Smithsonian Contributions to Knowledge in 1848 and continuing with the following active series: Smithsonian Contributions to Anthropology Smithsonian Contributions to Botany Smithsonian Contributions to History and Technology Smithsonian Contributions to the Marine Sciences Smithsonian Contributions to Museum Conservation Smithsonian Contributions to Paleobiology Smithsonian Contributions to Zoology In these series, the Institution publishes small papers and full-scale monographs that report on the research and collections of its various museums and bureaus. The Smithsonian Contributions Series are distributed via mailing lists to libraries, universities, and similar institu- tions throughout the world. Manuscripts submitted for series publication are received by the Smithsonian Institution Scholarly Press from authors with direct affilia- tion with the various Smithsonian museums or bureaus and are subject to peer review and review for compliance with manuscript preparation guidelines. -
Claire Paris
USA Freediving Contact: John Hullverson President, USA Freediving [email protected] 415-203-5191 www.usafreediving.com November 1, 2019 FOR IMMEDIATE RELEASE CLAIRE BEATRIX PARIS BREAKS TWO USA NATIONAL FREEDIVING RECORDS Miami, Florida. Claire Beatrix Paris broke two USA Women’s National Freediving Records at the 5th Annual South Florida Apnea Challenge event held this past weekend at the Florida International University Aquatic Center in Miami. On Saturday, October 26, Claire set a record in the discipline of Dynamic Apnea with Bi-Fins (DYNB) swimming a distance of 142 meters/ 465 feet underwater on a single breath of air, using two swim fins. The following day, Sunday, October 27, Claire broke another national record in the discipline of Dynamic Apnea (DYN) swimming with a mono-fin a distance of 187 meters/ 613 feet. In the competition freediving discipline of Dynamic Apnea (DYN), as recognized by Association Internationale pour le Développement de l'Apnée (AIDA), the sport’s international governing body, an athlete takes a single breath on the surface and then swims for distance underwater, using a dolphin kick with a monofin. The discipline of Dynamic Apnea with Bi-Fins is done using a flutter kick using two fins. The records are Paris’ third and fourth USA national records. She has also held the USA national record in the pool discipline of Dynamic No Fins (DNF), in which an athlete swims underwater for distance in a pool on a single breath of air without the aid of a fin or fins. Paris set that record of 128 meters/420 feet at the South California Apnea Challenge freediving competition held in Los Angeles in 2015. -
Hypoventilation Training: a Systematic Review
published online on 01.11.2019 https://doi.org/10.34045/SSEM/2018/23 REVIEW Hypoventilation Training: a systematic review EXERCISE PHYSIOLOGY / HYPOXIA / SPORTS SCIENCE / TRAINING Atemmangeltraining: eine systematische Übersichtsarbeit Holfelder B1, Becker F1 1 Institut für Sport- und Bewegungswissenschaft, Universität Stuttgart Abstract Background: High altitude training seems beneficial for many athletes. However, training in altitude is always associated with travel and high expenses. Thus, methods have been developed to achieve similar effects as with high altitude training. One method is voluntary hypoventilation training (VHT). Although published online on 01.11.2019 https://doi.org/10.34045/SSEM/2018/23 commonly used in training, the effectiveness of this method has not been analysed sufficiently. Methods: Intervention studies of voluntary hypoventilation training were identified from searches in PubMed, SciVerse Science Direct, Web of Science, Cochrane Library, EBSCOhost and Google Scholar. Results: Ten studies met the inclusion criteria. In seven studies, an intervention of VHT lead to greater improvements of the performance compared to a control programme. Conclusions: The overall positive study results support the usefulness of VHT for improving the performance and designing a varied training. Due to the limited numbers of intervention studies and the heterogeneous study designs, the outcomes must be interpreted with caution. Zusammenfassung Hintergrund: Höhentraining bietet einen wirkungsvollen Trainingsreiz für viele Sportler. -
Confined Water Training
WSF Freediver - Confined Water Training World Series Freediving™ www.freedivingRAID.com CONFINED WATER TRAINING WSF Freediver - Confined Water Training INTRODUCTION ................................................................................................. 2 SWIM TEST ......................................................................................................... 4 WSF FREEDIVER SESSION 1 AND 2 ............................................................... 5 FREEDIVING PREPARATION ............................................................................ 5 FREEDIVING SKILLS ......................................................................................... 7 FREEDIVING SAFETY ....................................................................................... 10 FREEDIVING COMPLETION ............................................................................. 12 Section 5 - Page 1 RAID WSF FREEDIVER www.freedivingRAID.com INTRODUCTION It’s now time for you to start your confined water training. This is the most important part of your development and will set you up for success in the following sections of the course. Your instructor will guide you through all your skills with a dive briefing explaining the skills first, then demonstrating them. Your instructor will be helping you with the skills until you are comfortable with each of them. This is a development session for you so there is no real pass or fail. It is a series of sessions to help you gain the basic freediving skills required to go further. Remember -
System Safety Analysis of the Opelika Fire Department's Crawling
System Safety Analysis of the Opelika Fire Department’s Crawling Simulator by Alexander Ross Sherman A thesis submitted to the Graduate Faculty of Auburn University in partial fulfillment of the requirements for the Degree of Master of Industrial and Systems Engineering Auburn, Alabama December 12th, 2015 Keywords: system safety, firefighting, crawling simulator, tractor trailer, biometrics Copyright 2015 by Alexander Ross Sherman Approved by Jerry Davis, Chair, Associate Professor of Industrial and Systems Engineering Richard F. Sesek, Associate Professor of Industrial and Systems Engineering Sean Gallagher, Associate Professor of Industrial and Systems Engineering Mark Schall, Associate Professor of Industrial and Systems Engineering Abstract Firefighters have among the most physically and psychologically challenging jobs in the world, incurring more than 80,000 injuries each year. Firefighter training is crucial, as higher knowledge and experience levels are inversely proportional to their risk of injury or work-related illness. However, a paradox is created in that the training itself is the third highest cause of firefighter injury. Therefore, enhancing training safety is paramount to creating a safer overall work and training environment for firefighters. This study focused on a particular training facility, a crawling training device used by the East Alabama Fire Departments. The simulator is built into a cargo trailer and is located in Lee County, Alabama. A system safety analysis was performed incorporating the use of tools such as a preliminary hazard list (PHL), preliminary hazard analysis (PHA), risk assessment matrix, fault tree analysis (FTA), and failure mode and effect analysis (FMEA). Through the analysis, several hazards were identified and assessed, and recommendations for abating these hazards were proposed, specifically for hazards resulting from the lack of an evacuation plan and absence of an occupant monitoring system. -
Medium Term Effects of Physical Conditioning on Breath-Hold Diving
Respiratory Physiology & Neurobiology 259 (2019) 70–74 Contents lists available at ScienceDirect Respiratory Physiology & Neurobiology journal homepage: www.elsevier.com/locate/resphysiol Medium term effects of physical conditioning on breath-hold diving performance T ⁎ F.A. Fernandeza, , R. Martin-Martinb, I. García-Camachab, D. Juarezc, P. Fidelb, J.M. González-Ravéc a Breatherapy, Faculty of Health, CSEU La Salle, Madrid, Spain b Statistics and Operational Research Area, University of Castilla-la Mancha, Toledo, Spain c Faculty of Sports Sciences, University of Castilla-La Mancha, Toledo, Spain ARTICLE INFO ABSTRACT Keywords: The current study aimed to analyze the effects of physical conditioning inclusion on apnea performance after a Apnea 22-week structured apnea training program. Twenty-nine male breath-hold divers participated and were allo- Hypoxia cated into: (1) cross-training in apnea and physical activity (CT; n = 10); (2) apnea training only (AT; n = 10); Training and control group (CG; n = 9). Measures were static apnea (STA), dynamic with fins (DYN) and dynamic no fins Respiratory (DNF) performance, body composition, hemoglobin, vital capacity (VC), maximal aerobic capacity (VO2max), resting metabolic rate, oxygen saturation, and pulse during a static apnea in dry conditions at baseline and after the intervention. Total performance, referred as POINTS (constructed from the variables STA, DNF and DYN) was used as a global performance variable on apnea indoor diving. + 30, +26 vs. + 4 average POINTS of difference after-before training for CT, AT and CG respectively were found. After a discriminant analysis, CT appears to be the most appropriate for DNF performance. The post-hoc analysis determined that the CT was the only group in which the difference of means was significant before and after training for the VC (p < 0.01) and VO2max (p < 0.05) variables. -
7. Safety Freediver
Performance Freediving International Standards and Procedures Part 2: PFI Diver Standards 7. Safety Freediver 7.1 Introduction The PFI Safety Freediver course is a recreational level program where successful participants will learn the knowledge, skills and techniques for advanced level safety that may be used in demanding freediving environments, Advanced level depths of freediving, and competition style freediving for depths beyond 40m/132ft. 7.2 Course Objectives The objective of this course is to train individuals in the benefits, skills, techniques and safety & problem management for advanced level and competition style safety. Safety Freediver focuses on safety and problem management as well as risk mitigation with an emphasis on counter-balance set-up and use. It also incorporates primary and secondary safety freedivers for accident management. 7.3 Program Prerequisites 1. 16 years of age 2. Above average swimming skills 3. PFI Intermediate Freediver, or equivalent from another recognized agency that have also completed the PFI Intermediate Freediver Crossover Exam 4. Be an active status CPR, first aid and AED provider with a program that include marine life injuries and neurological assessments* 5. Be certified to administer O2 for dive related injuries* * These programs can be taught concurrently with Safety Freediver. 7.4 Required Student Equipment 1. Freediving quality mask, fins, snorkel 2. Freediving quality exposure protection (appropriate for local environment) 3. Freediving quality waist and neck weight belt and weights (appropriate for local environment) 4. Freediving computer and additional timing device Version v0221 97 Performance Freediving International Standards and Procedures Part 2: PFI Diver Standards 7.5 Support Materials Student materials: 1.