Algebraic Logic and Its Critics the History of Logic from Leibniz to Frege University of Chicago Spring Quarter 2014

Total Page:16

File Type:pdf, Size:1020Kb

Algebraic Logic and Its Critics the History of Logic from Leibniz to Frege University of Chicago Spring Quarter 2014 Algebraic Logic and Its Critics The History of Logic from Leibniz to Frege University of Chicago Spring Quarter 2014 Instructor: Marko Malink Course ID: PHIL 39406 E-mail: [email protected] Location: 302 Cobb Office Hours: T, 1:30-3:30 pm, Walker 202B Times: TR, 12:00-1:20pm Instructor: Anubav Vasudevan E-mail: [email protected] Office Hours: T, 1:30-3:30 pm, Walker 202D Course Description: The study of logic in the second half of the 19th century was dominated by an algebraic approach to the subject. This tradition, as exemplified in George Boole’s Laws of Thought, aimed to develop a calculus of deductive reasoning based on the standard algebraic techniques employed in arithmetic. In this course, we will trace the historical development of the algebraic tradition in logic, beginning with the early attempts of Leibniz to formulate a calculus ratiocinator. We will then consider various aspects of the algebraic systems of logic developed in the 19th century in the works of Boole, Jevons, DeMorgan, Peirce, and Schröder, and conclude with an examination of Frege’s critique of Boole’s system in relation to his own Begriffsschrift. Readings: All readings will be made available for download through the “Chalk” course website (to access Chalk, navigate to chalk.uchicago.edu and login using your CNetID and password). If you are not able to access the Chalk site please let us know, so that we can grant you access manually. Course Requirements: Undergraduate students are required to write two papers: a 5-7 page midterm paper and a 8-10 page final paper. These two papers will be worth 80% of the final grade. The remaining 20% of the final grade will be assessed on the basis of participation in class. The midterm paper should address a topic related to the material discussed in weeks 1-4 of the course, and is due on Monday, April 28. The final paper should address a topic related to the material discussed in weeks 5-10 of the course, and is due on Friday, June 6. Graduate students are required to write one paper (15-20 pages in length) on any related topic, due on Friday, June 6. Syllabus: Week 1. Introduction and Aristotle April 1: Introduction April 3: Aristotle’s Syllogistic - Aristotle, Prior Analytics, R. Smith (tran.), ch. 1-2 and 4-7, pp. 1-12. - M. Malink, Aristotle’s Modal Syllogistic, Harvard University Press 2013, ch. 1-6, pp. 19-101. Week 2. Leibniz April 8: Leibniz I G.W. Leibniz, General Inquiries about the Analysis of Concepts and of Truths (1686), in G.H.R. Parkinson (tran. and ed.), Leibniz: Logical Papers, Oxford University Press 1966, pp. 47-87. April 10: Leibniz II Optional: W. Lenzen, ‘Leibniz’ Logic’, in D.M. Gabbay and J. Woods (eds.), Handbook of the History of Logic, Volume 3. The Rise of Modern Logic: from Leibniz to Frege, Elsevier 2004, pp. 1-83. Week 3. Boole April 15: Boole I G. Boole, The Mathematical Analysis of Logic (1847), pp. 14-48. April 17: Boole II G. Boole, The Laws of Thought (1854), chapters 1-3, pp. 1-51. Week 4. Boole and Jevons April 22: Boole III G. Boole, The Laws of Thought (1854), ch. 4-5,15, pp. 52-79. April 24: Jevons - W.S. Jevons, Pure Logic (1864), ch. 4-10, 14-15, pp. 41-62, 88-103. - I. Grattan-Guinness, ‘The Correspondence between George Boole and Stanley Jevons, 1863-64,’ History and Philosophy of Logic, vol. 12, issue 1 (1991), pp. 16-19, 23-31 (ltrs. 1-8) Optional: T. Hailperin, ‘Boole’s Algebra isn’t Boolean Algebra’, Mathematics Magazine, vol. 54, no. 4 (1981), pp. 172-184. Week 5. De Morgan April 29: De Morgan I - A. De Morgan, ’On the Syllogism: II’ (1864), in W. Stark (ed.), On the Syllogism and other Logical Writings, Yale University Press 1966, pp. 50-68. - D. Merrill, Augustus De Morgan and the Logic of Relations, Kluwer Academic Publishers 1990, ch. 3 (‘Generalizing the Copula’), pp. 48-78. May 1: De Morgan II - A. De Morgan, ’On the Syllogism: III’ (1864), in W. Stark (ed.), On the Syllogism and other Logical Writings, Yale University Press 1966, §§1–6, pp. 74-91. - D. Merrill, Augustus De Morgan and the Logic of Relations, Kluwer Academic Publishers 1990, ch. 4 (’The Problem of Form and Matter’), pp. 89-112. Week 6. Peirce May 6: Peirce I C.S. Peirce, ‘Description of a Notation for the Logic of Relatives’ (1870), in C. Hartshorne and P. Weiss (eds.), Collected Papers of Charles Sanders Peirce, vol. 3, Cambridge University Press (1933), pp. 85-98. May 8: Peirce II - C.S. Peirce, ‘Description of a Notation for the Logic of Relatives’ (1870), pp. 85-98. Optional: G. Brady, From Peirce to Skolem, Elsevier 2000, ch. 2 (‘Peirce’s Calculus of Relatives: 1870’), pp. 23-50. Week 7. Peirce May 13: Peirce III C.S. Peirce, ‘The Logic of Relatives’ (1883), in C. Hartshorne and P. Weiss (eds.), Collected Papers of Charles Sanders Peirce, vol. 3, Cambridge University Press (1933), pp. 195-209. May 15: Peirce IV Optional: G. Brady, From Peirce to Skolem, Elsevier 2000, ch. 4 (‘Peirce on the Algebra of Relatives’), pp. 95-112. Week 8. Schröder vs. Frege May 20: Schröder vs. Frege I - E. Schröder, ‘Review of G. Frege’s Conceptual Notation’, in T.W. Bynum (tran. and ed.), Gottlob Frege: Conceptual Notation and Related Articles, Oxford University Press 1972, pp. 218-232. - G. Frege, ‘On the Aim of the Conceptual Notation’, in T.W. Bynum (tran. and ed.), Gottlob Frege: Conceptual Notation and Related Articles, Oxford University Press 1972, pp. 90-100. - G. Frege, ‘Boole’s Logical Formula-Language and my Concept-Script’, in G. Frege, Posthumous Works, ed. by H. Hermes, F. Kambartel, F. Kaulbach, tran. by P. Long & R. White, Blackwell Press 1979, pp. 47-52. May 22 Schröder vs. Frege II - G. Frege, ‘Boole’s Logical Calculus and the Concept-Script’, in G. Frege, Posthumous Works, ed. by H. Hermes, F. Kambartel, F. Kaulbach, tran. by P. Long & R. White, Blackwell Press 1979, pp. 9-46. - J. can Heijenoort, ‘Logic as Calculus and Logic as Language’, Synthese 17 (1967), pp. 324-330. - V. Peckhaus, ‘Calculus Ratiocinator vs. Characteristics Universalis? The Two Traditions in Logic, Revisited’, History and Philosophy of Logic 25 (2004), 3-14. Week 9. Schröder vs. Frege and Tarski May 27: Schröder vs. Frege III - H. Sluga ‘Frege Against the Booleans’, Notre Dame Journal of Formal Logic 28 (1987), pp. 80-98 Optional: W. Goldfarb, ‘Logic in the Twenties: The Nature of the Quantifier’, Journal of Symbolic Logic 44 (1979), pp. 351-68. May 29: Tarski I TBA Week 10. Tarski June 3: Tarski II TBA Contacting the Instructors: If you wish to set up an appointment outside of our regularly scheduled office hours, please send us an e-mail, briefly describing your question and proposing a time at which we can meet. For filtering purposes, all course-related e-mails should include the expression ‘algebra’ somewhere in their subject line. This will ensure that your message will be replied to with the least possible delay. Except during scheduled office hours, phone calls are to be limited to time-sensitive queries or other emergencies..
Recommended publications
  • What Is Abstract Algebraic Logic?
    What is Abstract Algebraic Logic? Umberto Rivieccio University of Genoa Department of Philosophy Via Balbi 4 - Genoa, Italy email [email protected] Abstract Our aim is to answer the question of the title, explaining which kind of problems form the nucleus of the branch of algebraic logic that has come to be known as Abstract Algebraic Logic. We give a concise account of the birth and evolution of the field, that led from the discovery of the connections between certain logical systems and certain algebraic structures to a general theory of algebraization of logics. We consider first the so-called algebraizable logics, which may be regarded as a paradigmatic case in Abstract Algebraic Logic; then we shift our attention to some wider classes of logics and to the more general framework in which they are studied. Finally, we review some other topics in Abstract Algebraic Logic that, though equally interesting and promising for future research, could not be treated here in detail. 1 Introduction Algebraic logic can be described in very general terms as the study of the relations between algebra and logic. One of the main reasons that motivate such a study is the possibility to treat logical problems with algebraic methods. This means that, in order to solve a logical problem, we may try to translate it into algebraic terms, find the solution using algebraic techniques, and then translate back the result into logic. This strategy proved to be fruitful, since algebra is an old and well{established field of mathematics, that offers powerful tools to treat problems that would possibly be much harder to solve using the logical machinery alone.
    [Show full text]
  • George Boole?
    iCompute For more fun computing lessons and resources visit: Who was George Boole? 8 He was an English mathematician 8 He believed that human thought could be George Boole written down as ‘rules’ 8 His ideas led to boolean logic which is Biography for children used by computers today The story of important figures in the history of computing George Boole (1815 – 1864) © iCompute 2015 www.icompute -uk.com iCompute Why is George Boole important? 8 He invented a set of rules for thinking that are used by computers today 8 The rules were that some statements can only ever be ‘true’ or ‘false’ 8 His idea was first used in computers as switches either being ‘on’ or ‘off’ 8 Today this logic is used in almost every device and almost every line of computer code His early years nd 8 Born 2 November 1815 8 His father was a struggling shoemaker 8 George had had very little education and taught himself maths, French, German and Latin © iCompute 2015 www.icompute -uk.com iCompute 8 He also taught himself Greek and published a translation of a Greek poem in 1828 at the age of 14! 8 Aged 16, the family business collapsed and George began working as a teacher to support the family 8 At 19 he started his own school 8 In 1840 he began having his books about mathematics published 8 In 1844, he was given the first gold medal for Mathematics by the Royal Society 8 Despite never having been to University himself, in 1849 he became professor of Mathematics at Queens College Cork in Ireland 8 He married Mary Everett in 1855 8 They had four daughters between 1956-1864
    [Show full text]
  • Explanations
    © Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher. CHAPTER 1 Explanations 1.1 SALLIES Language is an instrument of Logic, but not an indispensable instrument. Boole 1847a, 118 We know that mathematicians care no more for logic than logicians for mathematics. The two eyes of exact science are mathematics and logic; the mathematical sect puts out the logical eye, the logical sect puts out the mathematical eye; each believing that it sees better with one eye than with two. De Morgan 1868a,71 That which is provable, ought not to be believed in science without proof. Dedekind 1888a, preface If I compare arithmetic with a tree that unfolds upwards in a multitude of techniques and theorems whilst the root drives into the depthswx . Frege 1893a, xiii Arithmetic must be discovered in just the same sense in which Columbus discovered the West Indies, and we no more create numbers than he created the Indians. Russell 1903a, 451 1.2 SCOPE AND LIMITS OF THE BOOK 1.2.1 An outline history. The story told here from §3 onwards is re- garded as well known. It begins with the emergence of set theory in the 1870s under the inspiration of Georg Cantor, and the contemporary development of mathematical logic by Gottlob Frege andŽ. especially Giuseppe Peano. A cumulation of these and some related movements was achieved in the 1900s with the philosophy of mathematics proposed by Alfred North Whitehead and Bertrand Russell.
    [Show full text]
  • AUGUSTUS DE MORGAN and the LOGIC of RELATIONS the New Synthese Historical Library Texts and Studies in the History of Philosophy
    AUGUSTUS DE MORGAN AND THE LOGIC OF RELATIONS The New Synthese Historical Library Texts and Studies in the History of Philosophy VOLUME 38 Series Editor: NORMAN KRETZMANN, Cornell University Associate Editors: DANIEL ELLIOT GARBER, University of Chicago SIMO KNUUTTILA, University of Helsinki RICHARD SORABJI, University of London Editorial Consultants: JAN A. AERTSEN, Free University, Amsterdam ROGER ARIEW, Virginia Polytechnic Institute E. JENNIFER ASHWORTH, University of Waterloo MICHAEL AYERS, Wadham College, Oxford GAIL FINE, Cornell University R. J. HANKINSON, University of Texas JAAKKO HINTIKKA, Boston University, Finnish Academy PAUL HOFFMAN, Massachusetts Institute of Technology DAVID KONSTAN, Brown University RICHARD H. KRAUT, University of Illinois, Chicago ALAIN DE LIBERA, Ecole Pratique des Hautes Etudes, Sorbonne DAVID FATE NORTON, McGill University LUCA OBERTELLO, Universita degli Studi di Genova ELEONORE STUMP, Virginia Polytechnic Institute ALLEN WOOD, Cornell University The titles published in this series are listed at the end of this volume. DANIEL D. MERRILL Department of Philosophy, Oberlin College, USA AUGUSTUS DE MORGAN AND THE LOGIC OF RELATIONS KLUWER ACADEMIC PUBLISHERS DORDRECHT I BOSTON I LONDON Library of Congress Cataloging. in·Publication Data Merrill, Daniel D. (Daniel Davy) Augustus De Morgan and the lOglC of relations / Daniel D. Merril. p. cm. -- <The New synthese historical library; 38) 1. De Morgan, Augustus, 1806-1871--Contributions in logic of relations. 2. Inference. 3. Syllogism. 4. Logic, Symbolic and mathematical--History--19th cenTury. I. Title. II. Series. BC185.M47 1990 160' .92--dc20 90-34935 ISBN·13: 978·94·010·7418·6 e-ISBN -13: 978-94-009-2047-7 DOl: 10.1007/978-94-009-2047-7 Published by Kluwer Academic Publishers, P.O.
    [Show full text]
  • How Peircean Was the “'Fregean' Revolution” in Logic?
    HOW PEIRCEAN WAS THE “‘FREGEAN’ REVOLUTION” IN LOGIC? Irving H. Anellis Peirce Edition, Institute for American Thought Indiana University – Purdue University at Indianapolis Indianapolis, IN, USA [email protected] Abstract. The historiography of logic conceives of a Fregean revolution in which modern mathematical logic (also called symbolic logic) has replaced Aristotelian logic. The preeminent expositors of this conception are Jean van Heijenoort (1912–1986) and Don- ald Angus Gillies. The innovations and characteristics that comprise mathematical logic and distinguish it from Aristotelian logic, according to this conception, created ex nihlo by Gottlob Frege (1848–1925) in his Begriffsschrift of 1879, and with Bertrand Rus- sell (1872–1970) as its chief This position likewise understands the algebraic logic of Augustus De Morgan (1806–1871), George Boole (1815–1864), Charles Sanders Peirce (1838–1914), and Ernst Schröder (1841–1902) as belonging to the Aristotelian tradi- tion. The “Booleans” are understood, from this vantage point, to merely have rewritten Aristotelian syllogistic in algebraic guise. The most detailed listing and elaboration of Frege’s innovations, and the characteristics that distinguish mathematical logic from Aristotelian logic, were set forth by van Heijenoort. I consider each of the elements of van Heijenoort’s list and note the extent to which Peirce had also developed each of these aspects of logic. I also consider the extent to which Peirce and Frege were aware of, and may have influenced, one another’s logical writings. AMS (MOS) 2010 subject classifications: Primary: 03-03, 03A05, 03C05, 03C10, 03G27, 01A55; secondary: 03B05, 03B10, 03E30, 08A20; Key words and phrases: Peirce, abstract algebraic logic; propositional logic; first-order logic; quantifier elimina- tion, equational classes, relational systems §0.
    [Show full text]
  • Abstract Algebraic Logic an Introductory Chapter
    Abstract Algebraic Logic An Introductory Chapter Josep Maria Font 1 Introduction . 1 2 Some preliminary issues . 5 3 Bare algebraizability . 10 3.1 The equational consequence relative to a class of algebras . 11 3.2 Translating formulas into equations . 13 3.3 Translating equations into formulas . 15 3.4 Putting it all together . 15 4 The origins of algebraizability: the Lindenbaum-Tarski process . 18 4.1 The process for classical logic . 18 4.2 The process for algebraizable logics . 20 4.3 The universal Lindenbaum-Tarski process: matrix semantics . 23 4.4 Algebraizability and matrix semantics: definability . 27 4.5 Implicative logics . 29 5 Modes of algebraizability, and non-algebraizability . 32 6 Beyond algebraizability . 37 6.1 The Leibniz hierarchy . 37 6.2 The general definition of the algebraic counterpart of a logic . 45 6.3 The Frege hierarchy . 49 7 Exploiting algebraizability: bridge theorems and transfer theorems . 55 8 Algebraizability at a more abstract level . 65 References . 69 1 Introduction This chapter has been conceived as a brief introduction to (my personal view of) abstract algebraic logic. It is organized around the central notion of algebraizabil- ity, with particular emphasis on its connections with the techniques of traditional algebraic logic and especially with the so-called Lindenbaum-Tarski process. It Josep Maria Font Departament of Mathematics and Computer Engineering, Universitat de Barcelona (UB), Gran Via de les Corts Catalanes 585, E-08007 Barcelona, Spain. e-mail: [email protected] 1 2 Josep Maria Font goes beyond algebraizability to offer a general overview of several classifications of (sentential) logics—basically, the Leibniz hierarchy and the Frege hierarchy— which have emerged in recent decades, and to show how the classification of a logic into any of them provides some knowledge regarding its algebraic or its metalogical properties.
    [Show full text]
  • George Boole. Selected Manuscripts on Logic and Its Philosophy (Science Networks
    George Boole. Selected Manuscripts on Logic and its Philosophy (Science Networks. Historical Studies, vol. 20). Ivor Grattan-Guinness/G´erard Bor- net, eds. Birkh¨auser Verlag: Basel/Boston/Berlin, 1997, e 37.30, ISBN 0- 8176-5456-9, lxiv + 236 pp. Reviewed by Volker Peckhaus Universit¨at Paderborn Kulturwissenschaftliche Fakult¨at Warburger Str. 100, D – 33098 Paderborn E-mail: [email protected] George Boole, the founder of the algebra of logic, did not stop working on logic after having published his seminal An Investigation of the Laws of Thought (1854 ). Among his aims was to write a philosophical comple- ment to his writings in the algebra of logic, but he died before he was able to finish it. All this was known already to his contemporaries and although leading authorities like Augustus De Morgan, Bertrand Russell, Philip E. B. Jourdain and Louis Couturat were involved in attempts to publish Boole’s posthumous logical papers, only bits and pieces from his logical manuscripts have been published up to now. This insufficient situation comes now to an end with this scholarly edition by Ivor Grattan-Guinness and G´erard Bornet. The editors have compiled a selection of about 40 % of Boole’s unpublished manuscripts on logic “from a scattered and chronologically unclear textual universe” (p. xxv). The bad condition of the manuscripts is due to Boole’s working style. He usually started each time from scratch producing not really substantial texts but notes and further work-plans. This is explained by Boole himself when he reported his plans to Augustus De Morgan in March 1859 (quoted p.
    [Show full text]
  • Download Article (PDF)
    Nonlinear Engineering 2015; 4(1): 39–41 Majid Khan*, Tariq Shah, and Ali Shahab A brief description about the fathers of computer and information sciences Abstract: In this article, we are mainly presenting a trib- 1985) [1]. We will utilize both this book [1] and the life story ute to the fathers of computer and information sciences, composed by O’connor and Robertson for the Mactutor George Boole and Claude Elwood Shannon with their hard- History of Mathematics document [2]. Also, we have taken ships and achievements. This piece of writing also elabo- some of historical memories from the book of Thomas [3]. rates the applications of George Boole’s and Claude Shan- George Boole was born in November 1815 in Lincoln, non’s works in dierent disciplines. England. His father was an ordinary tradesman. He gave Boole his rst mathematics lessons and planted in him the Keywords: George Boole; Computer Science; Claude Shan- passion of learning. A family friend ,who was a local book- non; Information Science seller, helped him learn basic Latin. By the age of 12, Boole was beginning to translate Latin poetry. By 14, the adoles- DOI 10.1515/nleng-2014-0029 cent Boole was uent in French, German, and Italian as Received December 31, 2014; accepted February 27, 2015. well. His love for poetry and novels was remarkable. His capabilities in higher maths did not indicate un- til he was 17 years of age . He read his maiden progressed arithmetic book, in particular Lacroix’s Dierential and 1 The Contributions of George Integral Calculus. Since his father’s business zzled, he Boole was compelled to earn his bread to look after his family.
    [Show full text]
  • Algebraic Logic, Where Does It Stand Today? Part 2: Algebraic Logic; Counting Varieties and Models, Vaught’S Conjecture and New Physics
    1 What happened since ’ Algebraic Logic, where does it stand today? Part 2: Algebraic logic; Counting varieties and models, Vaught’s conjecture and new physics Tarek Sayed Ahmed Department of Mathematics, Faculty of Science, Cairo University, Giza, Egypt. Dedicated to my mentors Andreka´ and Nemeti´ No Institute Given Summary. * In the article ’Algebraic logic, where does it stand today?’ published in the Bulletin of Symbolic logic in 2005 logic, we gave a fairly comprehensive review of Tarskian algebraic logic reaching the boundaries of current research back then. In this paper we take it from there, giving the reader more than a glimpse of the recent develoments till the present day. In the process, we take a magical tour in algebraic logic, starting from classical results on neat embeddings due to Henkin, Monk and Tarski, all the way to recent results in algebraic logic using so–called rainbow constructions. Highlighting the connections with graph theory, model theory, and finite combinatorics, this article aspires to present topics of broad interest in a way that is hopefully accessible to a large audience. Other topics dealt with include the inter- action of algebraic and modal logic, the so–called (central still active) finitizability problem, Godels’s¨ incompleteness Theorem in guarded fragments, counting the number of subvarieties of RCAw which is reminiscent of Shelah’s stability theory and the interaction of algebraic logic and descriptive set theory as means to approach Vaught’s conjecture in model theory. Rainbow constructions conjuncted with variations on Andreka’s´ methods of splitting (atoms) are used to solve problems adressing classes of cylindric–like algebras consisting of algebras having a neat embedding property.
    [Show full text]
  • On the Interplay Between Logic and Philosophy : a Historical Perspective Séminaire De Philosophie Et Mathématiques, 1992, Fascicule 7 « Logique Et Philosophie », , P
    Séminaire de philosophie et mathématiques YEHUDA RAV On the Interplay between Logic and Philosophy : a Historical Perspective Séminaire de Philosophie et Mathématiques, 1992, fascicule 7 « Logique et philosophie », , p. 1-21 <http://www.numdam.org/item?id=SPHM_1992___7_A1_0> © École normale supérieure – IREM Paris Nord – École centrale des arts et manufactures, 1992, tous droits réservés. L’accès aux archives de la série « Séminaire de philosophie et mathématiques » implique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright. Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ ON THE INTERPLAY BETWEEN LOGIC AND PHILOSOPHY: A HISTORICAL PERSPECTIVE Yehuda RAV* ABSTRACT In this historical essay, we examine the reciprocal influences of philosophical doctrines and logic, their interrelations with language, and the place of mathematics in these developments. Our concern in this essay is the interplay between logic and philosophy. The spectrum of philosophical traditions and topics is wide, ranging from inspirational, aphoristic, and poetic wisdom-searching philosophies to stark anti- metaphysical logical positivism. However, logic has flourished only within those philosophical traditions in which critical discussion and debates played a major role. "Formal logic,
    [Show full text]
  • John Venn on the Foundations of Symbolic Logic: a Non-Conceptualist Boole
    UvA-DARE (Digital Academic Repository) "A terrible piece of bad metaphysics"? Towards a history of abstraction in nineteenth- and early twentieth-century probability theory, mathematics and logic Verburgt, L.M. Publication date 2015 Document Version Final published version Link to publication Citation for published version (APA): Verburgt, L. M. (2015). "A terrible piece of bad metaphysics"? Towards a history of abstraction in nineteenth- and early twentieth-century probability theory, mathematics and logic. General rights It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons). Disclaimer/Complaints regulations If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible. UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl) Download date:25 Sep 2021 chapter 7 John Venn on the foundations of symbolic logic: a non-conceptualist Boole 0. Introduction: Venn,
    [Show full text]
  • George Boole, John Venn and CS Peirce
    Origins of Boolean Algebra in the Logic of Classes: George Boole, John Venn and C. S. Peirce Janet Heine Barnett∗ 9 March 2013 1 Introduction On virtually the same day in 1847, two major new works on logic were published by prominent British mathematicians. Augustus De Morgan (1806{1871) opened his Formal Logic with the following description of what is known today as `logical validity' [6, p. 1]: The first notion which a reader can form of Logic is by viewing it as the examination of that part of reasoning which depends upon the manner in which inferences are formed, and the investigation of general maxims and rules for constructing arguments, so that the conclusion may contain no inaccuracy which was not previously asserted in the premises. It has so far nothing to do with the truth of the facts, opinions, or presump- tions, from which an inference is derived; but simply takes care that the inference shall certainly be true, if the premises be true. Whether the premises be true or false, is not a question of logic, but of morals, philosophy, history, or any other knowledge to which their subject-matter belongs: the question of logic is, does the conclusion certainly follow if the premises be true? The second of these new nineteenth century works on logic was The Mathematical Analysis of Logic by George Boole (1815{1864). Like De Morgan, Boole sought to stretch the boundaries of traditional syllogistic1 logic by developing a general method for representing and manipulating all logically valid inferences or, as DeMorgan described it to Boole in a letter dated 28 November 1847, to develop `mechanical modes of making transitions, with a notation which represents our head work' [22, p.
    [Show full text]