Abstract Algebraic Logic an Introductory Chapter
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Survey of Abstract Algebraic Logic 15 Bras
J. M. Font A Survey of Abstract Algebraic R. Jansana D. Pigozzi Logic Contents Introduction 14 1. The First Steps 16 1.1. Consequence operations and logics . 17 1.2. Logical matrices . 20 1.3. Lindenbaum-Tarski algebras . 22 2. The Lindenbaum-Tarski Process Fully Generalized 24 2.1. Frege's principles . 24 2.2. Algebras and matrices canonically associated with a logic . 26 3. The Core Theory of Abstract Algebraic Logic 29 3.1. Elements of the general theory of matrices . 29 3.2. Protoalgebraic logics . 33 3.3. Algebraizable logics . 38 3.4. The Leibniz hierarchy . 43 4. Extensions of the Core Theory 50 4.1. k-deductive systems and universal algebra . 50 4.2. Gentzen systems and their generalizations . 55 4.3. Equality-free universal Horn logic . 61 4.4. Algebras of Logic . 64 5. Generalized Matrix Semantics and Full Models 71 6. Extensions to More Complex Notions of Logic 79 6.1. The semantics-based approach . 80 6.2. The categorial approach . 85 References 88 Special Issue on Abstract Algebraic Logic { Part II Edited by Josep Maria Font, Ramon Jansana, and Don Pigozzi Studia Logica 74: 13{97, 2003. c 2003 Kluwer Academic Publishers. Printed in the Netherlands. 14 J. M. Font, R. Jansana, and D. Pigozzi Introduction Algebraic logic was born in the XIXth century with the work of Boole, De Morgan, Peirce, Schr¨oder, etc. on classical logic, see [12, 16]. They took logical equivalence rather than truth as the primitive logical predicate, and, exploiting the similarity between logical equivalence and equality, they devel- oped logical systems in which metalogical investigations take on a distinctly algebraic character. -
What Is Abstract Algebraic Logic?
What is Abstract Algebraic Logic? Umberto Rivieccio University of Genoa Department of Philosophy Via Balbi 4 - Genoa, Italy email [email protected] Abstract Our aim is to answer the question of the title, explaining which kind of problems form the nucleus of the branch of algebraic logic that has come to be known as Abstract Algebraic Logic. We give a concise account of the birth and evolution of the field, that led from the discovery of the connections between certain logical systems and certain algebraic structures to a general theory of algebraization of logics. We consider first the so-called algebraizable logics, which may be regarded as a paradigmatic case in Abstract Algebraic Logic; then we shift our attention to some wider classes of logics and to the more general framework in which they are studied. Finally, we review some other topics in Abstract Algebraic Logic that, though equally interesting and promising for future research, could not be treated here in detail. 1 Introduction Algebraic logic can be described in very general terms as the study of the relations between algebra and logic. One of the main reasons that motivate such a study is the possibility to treat logical problems with algebraic methods. This means that, in order to solve a logical problem, we may try to translate it into algebraic terms, find the solution using algebraic techniques, and then translate back the result into logic. This strategy proved to be fruitful, since algebra is an old and well{established field of mathematics, that offers powerful tools to treat problems that would possibly be much harder to solve using the logical machinery alone. -
What Is a Logic Translation? in Memoriam Joseph Goguen
, 1{29 c 2009 Birkh¨auserVerlag Basel/Switzerland What is a Logic Translation? In memoriam Joseph Goguen Till Mossakowski, R˘azvan Diaconescu and Andrzej Tarlecki Abstract. We study logic translations from an abstract perspective, with- out any commitment to the structure of sentences and the nature of logical entailment, which also means that we cover both proof-theoretic and model- theoretic entailment. We show how logic translations induce notions of logical expressiveness, consistency strength and sublogic, leading to an explanation of paradoxes that have been described in the literature. Connectives and quanti- fiers, although not present in the definition of logic and logic translation, can be recovered by their abstract properties and are preserved and reflected by translations under suitable conditions. 1. Introduction The development of a notion of logic translation presupposes the development of a notion of logic. Logic has been characterised as the study of sound reasoning, of what follows from what. Hence, the notion of logical consequence is central. It can be obtained in two complementary ways: via the model-theoretic notion of satisfaction in a model and via the proof-theoretic notion of derivation according to proof rules. These notions can be captured in a completely abstract manner, avoiding any particular commitment to the nature of models, sentences, or rules. The paper [40], which is the predecessor of our current work, explains the notion of logic along these lines. Similarly, an abstract notion of logic translation can be developed, both at the model-theoretic and at the proof-theoretic level. A central question concern- ing such translations is their interaction with logical structure, such as given by logical connectives, and logical properties. -
Explanations
© Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher. CHAPTER 1 Explanations 1.1 SALLIES Language is an instrument of Logic, but not an indispensable instrument. Boole 1847a, 118 We know that mathematicians care no more for logic than logicians for mathematics. The two eyes of exact science are mathematics and logic; the mathematical sect puts out the logical eye, the logical sect puts out the mathematical eye; each believing that it sees better with one eye than with two. De Morgan 1868a,71 That which is provable, ought not to be believed in science without proof. Dedekind 1888a, preface If I compare arithmetic with a tree that unfolds upwards in a multitude of techniques and theorems whilst the root drives into the depthswx . Frege 1893a, xiii Arithmetic must be discovered in just the same sense in which Columbus discovered the West Indies, and we no more create numbers than he created the Indians. Russell 1903a, 451 1.2 SCOPE AND LIMITS OF THE BOOK 1.2.1 An outline history. The story told here from §3 onwards is re- garded as well known. It begins with the emergence of set theory in the 1870s under the inspiration of Georg Cantor, and the contemporary development of mathematical logic by Gottlob Frege andŽ. especially Giuseppe Peano. A cumulation of these and some related movements was achieved in the 1900s with the philosophy of mathematics proposed by Alfred North Whitehead and Bertrand Russell. -
Duality Theory and Abstract Algebraic Logic
Duality Theory and Abstract Algebraic Logic María Esteban ADVERTIMENT. La consulta d’aquesta tesi queda condicionada a l’acceptació de les següents condicions d'ús: La difusió d’aquesta tesi per mitjà del servei TDX (www.tdx.cat) i a través del Dipòsit Digital de la UB (diposit.ub.edu) ha estat autoritzada pels titulars dels drets de propietat intel·lectual únicament per a usos privats emmarcats en activitats d’investigació i docència. No s’autoritza la seva reproducció amb finalitats de lucre ni la seva difusió i posada a disposició des d’un lloc aliè al servei TDX ni al Dipòsit Digital de la UB. No s’autoritza la presentació del seu contingut en una finestra o marc aliè a TDX o al Dipòsit Digital de la UB (framing). Aquesta reserva de drets afecta tant al resum de presentació de la tesi com als seus continguts. En la utilització o cita de parts de la tesi és obligat indicar el nom de la persona autora. ADVERTENCIA. La consulta de esta tesis queda condicionada a la aceptación de las siguientes condiciones de uso: La difusión de esta tesis por medio del servicio TDR (www.tdx.cat) y a través del Repositorio Digital de la UB (diposit.ub.edu) ha sido autorizada por los titulares de los derechos de propiedad intelectual únicamente para usos privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción con finalidades de lucro ni su difusión y puesta a disposición desde un sitio ajeno al servicio TDR o al Repositorio Digital de la UB. -
An Institutional View on Categorical Logic and the Curry-Howard-Tait-Isomorphism
An Institutional View on Categorical Logic and the Curry-Howard-Tait-Isomorphism Till Mossakowski1, Florian Rabe2, Valeria De Paiva3, Lutz Schr¨oder1, and Joseph Goguen4 1 Department of Computer Science, University of Bremen 2 School of Engineering and Science, International University of Bremen 3 Intelligent Systems Laboratory, Palo Alto Research Center, California 4 Dept. of Computer Science & Engineering, University of California, San Diego Abstract. We introduce a generic notion of propositional categorical logic and provide a construction of an institution with proofs out of such a logic, following the Curry-Howard-Tait paradigm. We then prove logic-independent soundness and completeness theorems. The framework is instantiated with a number of examples: classical, intuitionistic, linear and modal propositional logics. Finally, we speculate how this framework may be extended beyond the propositional case. 1 Introduction The well-known Curry-Howard-Tait isomorphism establishes a correspondence between { propositions and types { proofs and terms { proof reductions and term reductions. Moreover, in this context, a number of deep correspondences between cate- gories and logical theories have been established (identifying `types' with `objects in a category'): conjunctive logic cartesian categories [19] positive logic cartesian closed categories [19] intuitionistic propositional logic bicartesian closed categories [19] classical propositional logic bicartesian closed categories with [19] ::-elimination linear logic ∗-autonomous categories [33] first-order logic hyperdoctrines [31] Martin-L¨of type theory locally cartesian closed categories [32] Here, we present work aimed at casting these correspondences in a common framework based on the theory of institutions. The notion of institution arose within computer science as a response to the population explosion among logics in use, with the ambition of doing as much as possible at a level of abstraction independent of commitment to any particular logic [16, 18]. -
How Peircean Was the “'Fregean' Revolution” in Logic?
HOW PEIRCEAN WAS THE “‘FREGEAN’ REVOLUTION” IN LOGIC? Irving H. Anellis Peirce Edition, Institute for American Thought Indiana University – Purdue University at Indianapolis Indianapolis, IN, USA [email protected] Abstract. The historiography of logic conceives of a Fregean revolution in which modern mathematical logic (also called symbolic logic) has replaced Aristotelian logic. The preeminent expositors of this conception are Jean van Heijenoort (1912–1986) and Don- ald Angus Gillies. The innovations and characteristics that comprise mathematical logic and distinguish it from Aristotelian logic, according to this conception, created ex nihlo by Gottlob Frege (1848–1925) in his Begriffsschrift of 1879, and with Bertrand Rus- sell (1872–1970) as its chief This position likewise understands the algebraic logic of Augustus De Morgan (1806–1871), George Boole (1815–1864), Charles Sanders Peirce (1838–1914), and Ernst Schröder (1841–1902) as belonging to the Aristotelian tradi- tion. The “Booleans” are understood, from this vantage point, to merely have rewritten Aristotelian syllogistic in algebraic guise. The most detailed listing and elaboration of Frege’s innovations, and the characteristics that distinguish mathematical logic from Aristotelian logic, were set forth by van Heijenoort. I consider each of the elements of van Heijenoort’s list and note the extent to which Peirce had also developed each of these aspects of logic. I also consider the extent to which Peirce and Frege were aware of, and may have influenced, one another’s logical writings. AMS (MOS) 2010 subject classifications: Primary: 03-03, 03A05, 03C05, 03C10, 03G27, 01A55; secondary: 03B05, 03B10, 03E30, 08A20; Key words and phrases: Peirce, abstract algebraic logic; propositional logic; first-order logic; quantifier elimina- tion, equational classes, relational systems §0. -
Interpolation: Theory and Applications
Interpolation: Theory and Applications Vijay D’Silva Google Inc., San Francisco UC Berkeley 2016 Wednesday, March 30, 16 1 A Brief History of Interpolation 2 Verification with Interpolants 3 Interpolant Construction 4 Further Reading and Research Wednesday, March 30, 16 Craig Interpolants For two formulae A and B such that A implies B B,aCraig interpolant is a formula I such that 1. A implies I, and I 2. I implies B, and 3. the non-logical symbols in I occur in A and in B. A P (P = Q)=Q = R = Q ^ ) ) ) ) Wednesday, March 30, 16 Reverse Interpolants or “Interpolants” For a contradiction A B,areverse interpolant is ^ a formula I such that B 1. A implies I, and 2. I B is a contradiction, and ^ I 3. the non-logical symbols in I occur in A and in B. Note: In classical logic, A = B is valid exactly ) A if A B is a contradiction. ^¬ In the verification literature, “interpolant” usually means “reverse interpolant.” Wednesday, March 30, 16 International Business Machines Corporation 2050 Rt 52 Hopewell Junction, NY 12533 845-892-5262 October 7, 2008 Dear Andreas, I would like to congratulate Cadence Research Labs on their 15th Anniversary. In these 15 years, Cadence Research Labs has worked at several frontiers of Electronic Design Automation. They focus on hard problems that when solved significantly push the state of the art forward. They found novel solutions to system, synthesis and formal verification problems. Formal verification is the process of exhaustively validating that a logic entity behaves correctly. In contrast to testing-based approaches, which may expose flaws though generally cannot yield a proof of correctness, the exhaustiveness of formal verification ensures that no flaw will be left unexposed. -
Algebraic Logic, Where Does It Stand Today? Part 2: Algebraic Logic; Counting Varieties and Models, Vaught’S Conjecture and New Physics
1 What happened since ’ Algebraic Logic, where does it stand today? Part 2: Algebraic logic; Counting varieties and models, Vaught’s conjecture and new physics Tarek Sayed Ahmed Department of Mathematics, Faculty of Science, Cairo University, Giza, Egypt. Dedicated to my mentors Andreka´ and Nemeti´ No Institute Given Summary. * In the article ’Algebraic logic, where does it stand today?’ published in the Bulletin of Symbolic logic in 2005 logic, we gave a fairly comprehensive review of Tarskian algebraic logic reaching the boundaries of current research back then. In this paper we take it from there, giving the reader more than a glimpse of the recent develoments till the present day. In the process, we take a magical tour in algebraic logic, starting from classical results on neat embeddings due to Henkin, Monk and Tarski, all the way to recent results in algebraic logic using so–called rainbow constructions. Highlighting the connections with graph theory, model theory, and finite combinatorics, this article aspires to present topics of broad interest in a way that is hopefully accessible to a large audience. Other topics dealt with include the inter- action of algebraic and modal logic, the so–called (central still active) finitizability problem, Godels’s¨ incompleteness Theorem in guarded fragments, counting the number of subvarieties of RCAw which is reminiscent of Shelah’s stability theory and the interaction of algebraic logic and descriptive set theory as means to approach Vaught’s conjecture in model theory. Rainbow constructions conjuncted with variations on Andreka’s´ methods of splitting (atoms) are used to solve problems adressing classes of cylindric–like algebras consisting of algebras having a neat embedding property. -
What Is a Logic? Till Mossakowski Joseph Goguen R˘Azvan Diaconescu Andrzej Tarlecki October 16, 2004
What is a Logic? Till Mossakowski Joseph Goguen R¸azvan Diaconescu Andrzej Tarlecki October 16, 2004 TODO: Joseph: Our cardinality spectra generalize traditional cardinality properties from func- tions of signature cardinality, to functors of signature isomorphism type. TODO: Replace diagram by equations? Vertical spaces as small as possible; combine paragraphs when possible; reduce model theory details; be cruel with references, use smaller font, less space between refs; better explanations of key material for main point. TODO: Razvan: mention new results for classical logics obtained by institution theory: Craig interpolation of some fragments of classical logic (see Studia Logica paper). 1 Introduction Logic is often informally described as the study of sound reasoning. As such, it plays a crucial role in several areas of mathematics (especially foundations) and of computer science (especially formal methods), as well as in other ¯elds, such as analytic philosophy and formal linguistics. In an enormous development beginning in the late 19th century, it has been found that a wide variety of di®erent principles are needed for sound reasoning in di®erent domains, and \a logic" has come to mean a set of principles for some form of sound reasoning. But in a subject the essence of which is formalization, it is embarrassing that there is no widely acceptable formal de¯nition of \a logic". It is clear that two key problems here are to de¯ne what it means for two presentations of a logic to be equivalent, and to provide e®ective means to demonstrate equivalence and inequivalence. This essay addresses these problems using the notion of \institution", which arose within computer science in response to the recent population explosion among logics in use there, with the ambition of doing as much as possible at a level of abstraction independent of commitment to any particular logic [16, 19]. -
Universal Logic and the Geography of Thought – Reflections on Logical
Universal Logic and the Geography of Thought – Reflections on logical pluralism in the light of culture Tzu-Keng Fu Dissertation zur Erlangung des Grades eines Doktors der Ingenieurwissenschaften –Dr.-Ing.– Vorgelegt im Fachbereich 3 (Mathematik und Informatik) der Universit¨at Bremen Bremen, Dezember, 2012 PhD Committee Supervisor: Dr. Oliver Kutz (Spatial Cognition Re- search Center (SFB/TR 8), University of Bremen, Germany) External Referee : Prof. Dr. Jean-Yves B´eziau (Depart- ment of Philosophy, University of Rio de Janeiro, Brazil) Committee Member : Prof. Dr. Till Mossakowski (German re- search center for artificial intelligence (DFKI), Germany) Committee Member : Prof. Dr. Frieder Nake (Fachbereich 3, Faculty of Mathematics and Informatics, the University of Bremen, Germany) Committee Member : Dr. Mehul Bhatt (Cognitive Systems (CoSy) group, Faculty of Mathematics and Informatics, University of Bremen, Germany) Committee Member : Minqian Huang (Cognitive Systems (CoSy) group, Faculty of Mathematics and Informatics, University of Bremen, Germany) Sponsoring Institution The Chiang Ching-kuo Foundation for International Scholarly Exchange, Taipei, Taiwan. To my Parents. 獻給我的 父母。 Acknowledgment I owe many thanks to many people for their help and encouragement, without which I may never have finished this dissertation, and their constructive criticism, without which I would certainly have finished too soon. I would like to thank Dr. Oliver Kutz, Prof. Dr. Till Mossakowski, and Prof. Dr. Jean- Yves B´eziau for assisting me with this dissertation. Warmest and sincere thanks are also due to Prof. Dale Jacquette of the Philosophy Department, the University of Bern, Switzerland, and to Prof. Dr. Stephen Bloom of the Computer Science Department, Stevens Institute of Technology, Hoboken, New Jersey, USA, who provided me with valuable original typescripts on abstract logic. -
In Quantum Logics. an Algebraic Approach
Model-Theoretic Investigations into Consequence Operation ( Cn ) in Quantum Logics. An Algebraic Approach. Piotr Wilczek, Department of Algebra and Combinatorics, Warsaw University of Technology, Address for correspondence: os. Piastowskie 99/ 24, 61-163 Pozna, POLAND, e-mail [email protected] Abstract In this paper we present the fundamentals of the so-called algebraic approach to propositional quantum logics. We define the set of formulas describing quantum reality as a free algebra freely generated by the set of quantum propostional variables. We define the general notion of logic as a structural consequence operation. Next we introduce the concept of logical matrices understood as a models of quantum logics. We give the definitions of two quantum consequence operations defined in these models. Key words: algebraic logic; consequence operation; logical matrices; models of qunatum logics 1. Introduction Historically speaking we can distinguish two different and competitive ways of understanding of the concept of “logic”. An approach considering the logic as a set of logically valid sentences was the first manner of understanding logic. In this approach one can perceive a logical system as a set of sentences closed under substitutions and some rules of inference. A paradigmatic example is a set of tautologies of classical propositional calculus. Second and more general approach enables one to comprehend a logic as a logical consequence operation (or relation). This approach formalizes the most general principles of reasoning and not a set of logically valid sentences. Following the second approach one will uniquely obtain a set of logically valid sentences as a set of consequences of an empty set of premises.