Introduction to String Theory

Total Page:16

File Type:pdf, Size:1020Kb

Introduction to String Theory Introduction to String Theory Angel M. Uranga Contents I Introductory Overview 1 1 Motivation 3 1.1 Standard Model and beyond . 3 1.1.1 Our Model of Elementary Particles and Interactions . 3 1.1.2 Theoretical questions raised by this description . 5 1.1.3 Some proposals for physics beyond the Standard Model 7 1.1.4 String theory as a theory beyond the Standard Model . 13 2 Overview of string theory in perturbation theory 15 2.1 Basic ideas . 15 2.1.1 What are strings? . 15 2.1.2 The worldsheet . 17 2.1.3 String interactions . 19 2.1.4 Critical dimension . 23 2.1.5 Overview of closed bosonic string theory . 24 2.1.6 String theory in curved spaces . 26 2.1.7 Compactification . 31 2.2 Superstrings and Heterotic string phenomenology . 34 2.2.1 Superstrings . 34 2.2.2 Heterotic string phenomenology . 39 2.2.3 The picture of our world as a heterotic string compact- ification . 40 2.2.4 Phenomenological features and comparison with other proposals beyond the standard model . 42 3 Overview of string theory beyond perturbation theory 45 3.1 The problem . 45 3.2 Non-perturbative states in string theory . 47 i ii CONTENTS 3.2.1 Non-perturbative states in field theory . 47 3.2.2 Non-perturbative p-brane states in string theory . 52 3.2.3 Duality in string theory . 55 3.3 D-branes . 62 3.3.1 What are D-branes . 62 3.3.2 Worldvolume theory . 64 3.3.3 D-branes in string theory . 66 3.3.4 D-branes as probes of spacetime . 69 3.3.5 D-branes and gauge field theories . 71 3.4 Our world as a brane-world model . 72 4 Quantization of the closed bosonic string 77 4.1 Worldsheet action . 77 4.1.1 The Nambu-Goto action . 78 4.1.2 The Polyakov action . 78 4.1.3 Symmetries of Polyakov action . 79 4.2 Light-cone quantization . 80 4.2.1 Light-cone gauge fixing . 80 4.2.2 Gauge-fixed Polyakov action, Hamiltonian . 83 4.2.3 Oscillator expansions . 85 4.2.4 Light spectrum . 88 4.2.5 Lessons . 89 4.2.6 Final comments . 90 5 Modular invariance 91 5.1 Generalities . 91 5.2 Worldsheet coordinatization in light-cone gauge . 92 5.3 The computation . 93 5.3.1 Structure of the amplitude in operator formalism . 93 5.3.2 The momentum piece . 95 5.3.3 The oscillator piece . 95 5.4 Modular invariance . 96 5.4.1 Modular group of T2 . 96 5.4.2 Modular invariance of the partition function . 99 5.4.3 UV behaviour of the string amplitude . 100 CONTENTS iii 6 Toroidal compactification of closed bosonic string theory 105 6.1 Motivation . 105 6.2 Toroidal compactification in field theory . 106 6.3 Toroidal compactification in string theory . 110 6.3.1 Quantization and spectrum . 111 6.3.2 α0 effects I: Enhanced gauge symmetries . 117 6.3.3 α0 effects II: T-duality . 120 6.3.4 Additional comments . 123 7 Type II Superstrings 125 7.1 Superstrings . 125 7.1.1 Fermions on the worldsheet . 125 7.1.2 Boundary conditions . 127 7.1.3 Spectrum of states for NS and R fermions . 128 7.1.4 Modular invariance . 133 7.1.5 Type II superstring partition function . 135 7.1.6 GSO projection . 135 7.1.7 Light spectrum . 136 7.2 Type 0 superstrings . 140 7.3 Bosonization∗ . 141 8 Heterotic superstrings 145 8.1 Heterotic superstrings in bosonic formulation . 145 8.1.1 Heteroticity . 145 8.1.2 Hamiltonian quantization . 146 8.1.3 Modular invariance and lattices . 148 8.1.4 Spectrum . 151 8.2 Heterotic strings in the fermionic formulation . 154 8.3 Spacetime Non-susy heterotic string theories . 158 8.4 A few words on anomalies . 159 8.4.1 What is an anomaly? . 159 8.4.2 Anomalies in string theory and Green-Schwarz mech- anism . 162 9 Open strings 165 9.1 Generalities . 165 9.2 Open bosonic string . 167 9.2.1 Light-cone gauge . 167 iv CONTENTS 9.2.2 Boundary conditions . 168 9.2.3 Hamiltonian . 169 9.2.4 Oscillator expansions . 170 9.2.5 Spectrum . 171 9.2.6 Open-closed duality . 172 9.3 Chan-Paton factors . 175 9.4 Open superstrings . 177 9.4.1 Hamiltonian quantization . 177 9.4.2 Spectrum for NS and R sectors . 179 9.4.3 GSO projection . 180 9.4.4 Open-closed duality . 180 9.4.5 RR tadpole cancellation condition . 181 10 Type I superstring 185 10.1 Unoriented closed strings . 185 10.1.1 Generalities . 185 10.1.2 Unoriented closed bosonic string . 187 10.1.3 Unoriented closed superstring theory IIB/Ω . 188 10.2 Unoriented open strings . 191 10.2.1 Action of Ω on open string sectors . 191 10.2.2 Spectrum . 192 10.3 Type I superstring . 193 10.3.1 Computation of RR tadpoles . 193 10.4 Final comments . 200 11 Toroidal compactification of superstrings 203 11.1 Motivation . 203 11.2 Type II superstrings . 203 11.2.1 Circle compactification . 203 11.2.2 T-duality for type II theories . 208 11.2.3 Compactification of several dimensions . 210 11.3 Heterotic superstrings . 215 11.3.1 Circle compactification without Wilson lines . 215 11.3.2 Compactification with Wilson lines . 218 11.3.3 Field theory description of Wilson lines . 218 11.3.4 String theory description . 221 11.4 Toroidal compactification of type I superstring . 226 11.4.1 Circle compactification without Wilson lines . 227 CONTENTS v 11.4.2 T-duality . 229 11.4.3 Toroidal compactification and T-duality in type I with Wilson lines . 234 11.5 Final comments . 238 12 Calabi-Yau compactification of superstrings. Heterotic string phenomenology 239 12.1 Motivation . 239 12.1.1 Supersymmetry and holonomy . 240 12.1.2 Calabi-Yau manifolds . 242 12.2 Type II string theories on Calabi-Yau spaces . 246 12.2.1 Supersymmetry . 246 12.2.2 KK reduction of p-forms . 247 12.2.3 Spectrum . 248 12.2.4 Mirror symmetry . 249 12.3 Compactification of heterotic strings on Calabi-Yau threefolds 250 12.3.1 General considerations . 250 12.3.2 Spectrum . 253 12.3.3 Phenomenological features of these models . 257 13 Orbifold compactification 261 13.1 Introduction . 261 13.1.1 Motivation . 261 13.1.2 The geometry of orbifolds . 262 13.1.3 Generalities of string theory on orbifolds . 265 6 13.2 Type II string theory on T =Z3 . 268 13.2.1 Geometric interpretation . 274 6 13.3 Heterotic string compactification on T =Z3 . 275 13.3.1 Gauge bundles for orbifolds . 275 13.3.2 Computation of the spectrum . 276 13.3.3 Final comments . 279 14 Non-perturbative states in string theory 281 14.1 Motivation . 281 14.2 p-branes in string theory . 281 14.2.1 p-brane solutions . 283 14.2.2 Dirac charge quantization condition . 287 14.2.3 BPS property . 288 vi CONTENTS 14.3 Duality for type II string theories . 289 14.3.1 Type IIB SL(2; Z) duality . 290 14.3.2 Toroidal compactification and U-duality . 291 14.4 Final comments . 294 .1 Some similar question in the simpler context of field theory . 295 .1.1 States in field theory . 295 .1.2 BPS bounds . ..
Recommended publications
  • Orthogonal Symmetric Affine Kac-Moody Algebras
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 367, Number 10, October 2015, Pages 7133–7159 http://dx.doi.org/10.1090/tran/6257 Article electronically published on April 20, 2015 ORTHOGONAL SYMMETRIC AFFINE KAC-MOODY ALGEBRAS WALTER FREYN Abstract. Riemannian symmetric spaces are fundamental objects in finite dimensional differential geometry. An important problem is the construction of symmetric spaces for generalizations of simple Lie groups, especially their closest infinite dimensional analogues, known as affine Kac-Moody groups. We solve this problem and construct affine Kac-Moody symmetric spaces in a series of several papers. This paper focuses on the algebraic side; more precisely, we introduce OSAKAs, the algebraic structures used to describe the connection between affine Kac-Moody symmetric spaces and affine Kac-Moody algebras and describe their classification. 1. Introduction Riemannian symmetric spaces are fundamental objects in finite dimensional dif- ferential geometry displaying numerous connections with Lie theory, physics, and analysis. The search for infinite dimensional symmetric spaces associated to affine Kac-Moody algebras has been an open question for 20 years, since it was first asked by C.-L. Terng in [Ter95]. We present a complete solution to this problem in a series of several papers, dealing successively with the functional analytic, the algebraic and the geometric aspects. In this paper, building on work of E. Heintze and C. Groß in [HG12], we introduce and classify orthogonal symmetric affine Kac- Moody algebras (OSAKAs). OSAKAs are the central objects in the classification of affine Kac-Moody symmetric spaces as they provide the crucial link between the geometric and the algebraic side of the theory.
    [Show full text]
  • String Theory. Volume 1, Introduction to the Bosonic String
    This page intentionally left blank String Theory, An Introduction to the Bosonic String The two volumes that comprise String Theory provide an up-to-date, comprehensive, and pedagogic introduction to string theory. Volume I, An Introduction to the Bosonic String, provides a thorough introduction to the bosonic string, based on the Polyakov path integral and conformal field theory. The first four chapters introduce the central ideas of string theory, the tools of conformal field theory and of the Polyakov path integral, and the covariant quantization of the string. The next three chapters treat string interactions: the general formalism, and detailed treatments of the tree-level and one loop amplitudes. Chapter eight covers toroidal compactification and many important aspects of string physics, such as T-duality and D-branes. Chapter nine treats higher-order amplitudes, including an analysis of the finiteness and unitarity, and various nonperturbative ideas. An appendix giving a short course on path integral methods is also included. Volume II, Superstring Theory and Beyond, begins with an introduction to supersym- metric string theories and goes on to a broad presentation of the important advances of recent years. The first three chapters introduce the type I, type II, and heterotic superstring theories and their interactions. The next two chapters present important recent discoveries about strongly coupled strings, beginning with a detailed treatment of D-branes and their dynamics, and covering string duality, M-theory, and black hole entropy. A following chapter collects many classic results in conformal field theory. The final four chapters are concerned with four-dimensional string theories, and have two goals: to show how some of the simplest string models connect with previous ideas for unifying the Standard Model; and to collect many important and beautiful general results on world-sheet and spacetime symmetries.
    [Show full text]
  • String Theory in Magnetic Monopole Backgrounds
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CERN Document Server EFI-98-58, ILL-(TH)-98-06 hep-th/9812027 String Theory in Magnetic Monopole Backgrounds David Kutasov1,FinnLarsen1, and Robert G. Leigh2 1Enrico Fermi Institute, University of Chicago, 5640 S. Ellis Av., Chicago, IL 60637 2Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801 We discuss string propagation in the near-horizon geometry generated by Neveu-Schwarz fivebranes, Kaluza-Klein monopoles and fundamental strings. When the fivebranes and KK monopoles are wrapped around a compact four-manifold , the geometry is AdS S3/ZZ and the M 3 × N ×M spacetime dynamics is expected to correspond to a local two dimensional conformal field theory. We determine the moduli space of spacetime CFT’s, study the spectrum of the theory and compare the chiral primary operators obtained in string theory to supergravity expectations. 12/98 1. Introduction It is currently believed that many (perhaps all) vacua of string theory have the prop- erty that their spacetime dynamics can be alternatively described by a theory without gravity [1,2,3,4]. This theory is in general non-local, but in certain special cases it is ex- pected to become a local quantum field theory (QFT). It is surprising that string dynamics can be equivalent to a local QFT. A better understanding of this equivalence would have numerous applications to strongly coupled gauge theory, black hole physics and a non- perturbative formulation of string theory. An important class of examples for which string dynamics is described by local QFT is string propagation on manifolds that include an anti-de-Sitter spacetime AdSp+1[3,5,6].
    [Show full text]
  • TASI Lectures on String Compactification, Model Building
    CERN-PH-TH/2005-205 IFT-UAM/CSIC-05-044 TASI lectures on String Compactification, Model Building, and Fluxes Angel M. Uranga TH Unit, CERN, CH-1211 Geneve 23, Switzerland Instituto de F´ısica Te´orica, C-XVI Universidad Aut´onoma de Madrid Cantoblanco, 28049 Madrid, Spain angel.uranga@cern,ch We review the construction of chiral four-dimensional compactifications of string the- ory with different systems of D-branes, including type IIA intersecting D6-branes and type IIB magnetised D-branes. Such models lead to four-dimensional theories with non-abelian gauge interactions and charged chiral fermions. We discuss the application of these techniques to building of models with spectrum as close as possible to the Stan- dard Model, and review their main phenomenological properties. We finally describe how to implement the tecniques to construct these models in flux compactifications, leading to models with realistic gauge sectors, moduli stabilization and supersymmetry breaking soft terms. Lecture 1. Model building in IIA: Intersecting brane worlds 1 Introduction String theory has the remarkable property that it provides a description of gauge and gravitational interactions in a unified framework consistently at the quantum level. It is this general feature (beyond other beautiful properties of particular string models) that makes this theory interesting as a possible candidate to unify our description of the different particles and interactions in Nature. Now if string theory is indeed realized in Nature, it should be able to lead not just to `gauge interactions' in general, but rather to gauge sectors as rich and intricate as the gauge theory we know as the Standard Model of Particle Physics.
    [Show full text]
  • Arxiv:Hep-Th/0006117V1 16 Jun 2000 Oadmarolf Donald VERSION HYPER - Style
    Preprint typeset in JHEP style. - HYPER VERSION SUGP-00/6-1 hep-th/0006117 Chern-Simons terms and the Three Notions of Charge Donald Marolf Physics Department, Syracuse University, Syracuse, New York 13244 Abstract: In theories with Chern-Simons terms or modified Bianchi identities, it is useful to define three notions of either electric or magnetic charge associated with a given gauge field. A language for discussing these charges is introduced and the proper- ties of each charge are described. ‘Brane source charge’ is gauge invariant and localized but not conserved or quantized, ‘Maxwell charge’ is gauge invariant and conserved but not localized or quantized, while ‘Page charge’ conserved, localized, and quantized but not gauge invariant. This provides a further perspective on the issue of charge quanti- zation recently raised by Bachas, Douglas, and Schweigert. For the Proceedings of the E.S. Fradkin Memorial Conference. Keywords: Supergravity, p–branes, D-branes. arXiv:hep-th/0006117v1 16 Jun 2000 Contents 1. Introduction 1 2. Brane Source Charge and Brane-ending effects 3 3. Maxwell Charge and Asymptotic Conditions 6 4. Page Charge and Kaluza-Klein reduction 7 5. Discussion 9 1. Introduction One of the intriguing properties of supergravity theories is the presence of Abelian Chern-Simons terms and their duals, the modified Bianchi identities, in the dynamics of the gauge fields. Such cases have the unusual feature that the equations of motion for the gauge field are non-linear in the gauge fields even though the associated gauge groups are Abelian. For example, massless type IIA supergravity contains a relation of the form dF˜4 + F2 H3 =0, (1.1) ∧ where F˜4, F2,H3 are gauge invariant field strengths of rank 4, 2, 3 respectively.
    [Show full text]
  • Lectures on D-Branes
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CERN Document Server CPHT/CL-615-0698 hep-th/9806199 Lectures on D-branes Constantin P. Bachas1 Centre de Physique Th´eorique, Ecole Polytechnique 91128 Palaiseau, FRANCE [email protected] ABSTRACT This is an introduction to the physics of D-branes. Topics cov- ered include Polchinski’s original calculation, a critical assessment of some duality checks, D-brane scattering, and effective worldvol- ume actions. Based on lectures given in 1997 at the Isaac Newton Institute, Cambridge, at the Trieste Spring School on String The- ory, and at the 31rst International Symposium Ahrenshoop in Buckow. June 1998 1Address after Sept. 1: Laboratoire de Physique Th´eorique, Ecole Normale Sup´erieure, 24 rue Lhomond, 75231 Paris, FRANCE, email : [email protected] Lectures on D-branes Constantin Bachas 1 Foreword Referring in his ‘Republic’ to stereography – the study of solid forms – Plato was saying : ... for even now, neglected and curtailed as it is, not only by the many but even by professed students, who can suggest no use for it, never- theless in the face of all these obstacles it makes progress on account of its elegance, and it would not be astonishing if it were unravelled. 2 Two and a half millenia later, much of this could have been said for string theory. The subject has progressed over the years by leaps and bounds, despite periods of neglect and (understandable) criticism for lack of direct experimental in- put. To be sure, the construction and key ingredients of the theory – gravity, gauge invariance, chirality – have a firm empirical basis, yet what has often catalyzed progress is the power and elegance of the underlying ideas, which look (at least a posteriori) inevitable.
    [Show full text]
  • Towards a String Dual of SYK Arxiv:2103.03187V1 [Hep-Th] 4 Mar
    Towards A String Dual of SYK Akash Goel and Herman Verlinde Department of Physics, Princeton University, Princeton, NJ 08544, USA Abstract: We propose a paradigm for realizing the SYK model within string theory. Using the large N matrix description of c < 1 string theory, we show that the effective theory on a large number Q of FZZT D-branes in (p; 1) minimal string theory takes the form of the disorder averaged SYK model with J p interaction. The SYK fermions represent open strings between the FZZT branes and the ZZ branes that underly the matrix model. The continuum SYK dynamics arises upon taking the large Q limit. We observe several qualitative and quantitative links between the SYK model and (p; q) minimal string theory and propose that the two describe different phases of a single system. We comment on the dual string interpretation of double scaled SYK and on the relevance of our results to the recent discussion of the role of ensemble averaging in holography. arXiv:2103.03187v2 [hep-th] 24 Aug 2021 Contents 1 Introduction2 2 SYK from the Two Matrix Model4 2.1 FZZT-branes in the two matrix model4 2.2 Kontsevich matrix model from FZZT branes6 2.3 SYK matrix model from FZZT branes7 3 Towards the Continuum SYK model8 3.1 Non-commutative SYK8 4 From Minimal Strings to SYK 10 4.1 SYK and the (p; q) spectral curve 11 4.2 FZZT brane correlation function 12 4.3 Minimal String-SYK phase diagram 13 5 SYK as a Non-Critical String 14 6 Conclusion 16 A D-branes in Minimal String Theory 18 A.1 Matrices and the non-commutative torus 23 A.2 Non-commutative SYK 24 A.3 Matrix SYK 26 A.4 Mapping between Matrix SYK and Non-Commutative SYK 27 { 1 { 1 Introduction The SYK model is the prototype of a maximally chaotic quantum system with low energy dynamics given by near-AdS2 gravity.
    [Show full text]
  • Lattices and Vertex Operator Algebras
    My collaboration with Geoffrey Schellekens List Three Descriptions of Schellekens List Lattices and Vertex Operator Algebras Gerald H¨ohn Kansas State University Vertex Operator Algebras, Number Theory, and Related Topics A conference in Honor of Geoffrey Mason Sacramento, June 2018 Gerald H¨ohn Kansas State University Lattices and Vertex Operator Algebras My collaboration with Geoffrey Schellekens List Three Descriptions of Schellekens List How all began From gerald Mon Apr 24 18:49:10 1995 To: [email protected] Subject: Santa Cruz / Babymonster twisted sector Dear Prof. Mason, Thank you for your detailed letter from Thursday. It is probably the best choice for me to come to Santa Cruz in the year 95-96. I see some projects which I can do in connection with my thesis. The main project is the classification of all self-dual SVOA`s with rank smaller than 24. The method to do this is developed in my thesis, but not all theorems are proven. So I think it is really a good idea to stay at a place where I can discuss the problems with other people. [...] I must probably first finish my thesis to make an application [to the DFG] and then they need around 4 months to decide the application, so in principle I can come September or October. [...] I have not all of this proven, but probably the methods you have developed are enough. I hope that I have at least really constructed my Babymonster SVOA of rank 23 1/2. (edited for spelling and grammar) Gerald H¨ohn Kansas State University Lattices and Vertex Operator Algebras My collaboration with Geoffrey Schellekens List Three Descriptions of Schellekens List Theorem (H.
    [Show full text]
  • Pitp Lectures
    MIFPA-10-34 PiTP Lectures Katrin Becker1 Department of Physics, Texas A&M University, College Station, TX 77843, USA [email protected] Contents 1 Introduction 2 2 String duality 3 2.1 T-duality and closed bosonic strings .................... 3 2.2 T-duality and open strings ......................... 4 2.3 Buscher rules ................................ 5 3 Low-energy effective actions 5 3.1 Type II theories ............................... 5 3.1.1 Massless bosons ........................... 6 3.1.2 Charges of D-branes ........................ 7 3.1.3 T-duality for type II theories .................... 7 3.1.4 Low-energy effective actions .................... 8 3.2 M-theory ................................... 8 3.2.1 2-derivative action ......................... 8 3.2.2 8-derivative action ......................... 9 3.3 Type IIB and F-theory ........................... 9 3.4 Type I .................................... 13 3.5 SO(32) heterotic string ........................... 13 4 Compactification and moduli 14 4.1 The torus .................................. 14 4.2 Calabi-Yau 3-folds ............................. 16 5 M-theory compactified on Calabi-Yau 4-folds 17 5.1 The supersymmetric flux background ................... 18 5.2 The warp factor ............................... 18 5.3 SUSY breaking solutions .......................... 19 1 These are two lectures dealing with supersymmetry (SUSY) for branes and strings. These lectures are mainly based on ref. [1] which the reader should consult for original references and additional discussions. 1 Introduction To make contact between superstring theory and the real world we have to understand the vacua of the theory. Of particular interest for vacuum construction are, on the one hand, D-branes. These are hyper-planes on which open strings can end. On the world-volume of coincident D-branes, non-abelian gauge fields can exist.
    [Show full text]
  • Classification of Holomorphic Framed Vertex Operator Algebras of Central Charge 24
    Classification of holomorphic framed vertex operator algebras of central charge 24 Ching Hung Lam, Hiroki Shimakura American Journal of Mathematics, Volume 137, Number 1, February 2015, pp. 111-137 (Article) Published by Johns Hopkins University Press DOI: https://doi.org/10.1353/ajm.2015.0001 For additional information about this article https://muse.jhu.edu/article/570114/summary Access provided by Tsinghua University Library (22 Nov 2018 10:39 GMT) CLASSIFICATION OF HOLOMORPHIC FRAMED VERTEX OPERATOR ALGEBRAS OF CENTRAL CHARGE 24 By CHING HUNG LAM and HIROKI SHIMAKURA Abstract. This article is a continuation of our work on the classification of holomorphic framed vertex operator algebras of central charge 24. We show that a holomorphic framed VOA of central charge 24 is uniquely determined by the Lie algebra structure of its weight one subspace. As a consequence, we completely classify all holomorphic framed vertex operator algebras of central charge 24 and show that there exist exactly 56 such vertex operator algebras, up to isomorphism. 1. Introduction. The classification of holomorphic vertex operator alge- bras (VOAs) of central charge 24 is one of the fundamental problems in vertex operator algebras and mathematical physics. In 1993 Schellekens [Sc93] obtained a partial classification by determining possible Lie algebra structures for the weight one subspaces of holomorphic VOAs of central charge 24. There are 71 cases in his list but only 39 of the 71 cases were known explicitly at that time. It is also an open question if the Lie algebra structure of the weight one subspace will determine the VOA structure uniquely when the central charge is 24.
    [Show full text]
  • Arxiv:Hep-Th/0106048V4 18 Oct 2001 Contents ∗ Theory Field Noncommutative Lcrncades [email protected] Address: Electronic I.SLTN N INSTANTONS and SOLITONS III
    ITEP-TH-31/01, IHES/P/01/27, RUNHETC-2001-18 Noncommutative Field Theory 1,2, 2,3 Michael R. Douglas ∗ and Nikita A. Nekrasov 1Department of Physics and Astronomy, Rutgers University, Piscataway NJ 08855 U.S.A. 2Institut des Hautes Etudes Scientifiques, 35 route des Chartres, Bures-sur-Yvette France 91440 3Institute for Theoretical and Experimental Physics, 117259 Moscow Russia We review the generalization of field theory to space-time with noncommuting coordinates, starting with the basics and covering most of the active directions of research. Such theories are now known to emerge from limits of M theory and string theory, and to describe quantum Hall states. In the last few years they have been studied intensively, and many qualitatively new phenomena have been discovered, both on the classical and quantum level. Submitted to Reviews of Modern Physics. Contents VI. MATHEMATICAL ASPECTS 31 A. Operator algebraic aspects 31 I. INTRODUCTION 1 B. Other noncommutative spaces 33 C. Group algebras and noncommutative quotients 34 II. KINEMATICS 3 D. Gauge theory and topology 35 A. Formal considerations 3 E. The noncommutative torus 36 1. The algebra 3 F. Morita equivalence 37 2. The derivative and integral 4 G. Deformation quantization 38 B. Noncommutative flat space-time 4 d VII. RELATIONS TO STRING AND M THEORY 1. Symmetries of IRθ 5 39 2. Plane wave basis and dipole picture 5 A. Lightning overview of M theory 39 3. Deformation, operators and symbols 5 B. Noncommutativity in M(atrix) theory 41 4. The noncommutative torus 6 C. Noncommutativity in string theory 42 C.
    [Show full text]
  • String Phenomenology
    Introduction Model Building Moduli Stabilisation Flavour Problem String Phenomenology Joseph Conlon (Oxford University) EPS HEP Conference, Krakow July 17, 2009 Joseph Conlon (Oxford University) String Phenomenology Introduction Model Building Moduli Stabilisation Flavour Problem Chalk and Cheese? Figure: String theory and phenomenology? Joseph Conlon (Oxford University) String Phenomenology Introduction Model Building Moduli Stabilisation Flavour Problem String Theory ◮ String theory is where one is led by studying quantised relativistic strings. ◮ It encompasses lots of areas ( black holes, quantum field theory, quantum gravity, mathematics, particle physics....) and is studied by lots of different people. ◮ This talk is on string phenomenology - the part of string theory that aims at connecting to the Standard Model and its extensions. ◮ It aims to provide a (brief) overview of this area. (cf Angel Uranga’s plenary talk) Joseph Conlon (Oxford University) String Phenomenology Introduction Model Building Moduli Stabilisation Flavour Problem String Theory ◮ For technical reasons string theory is consistent in ten dimensions. ◮ Six dimensions must be compactified. ◮ Ten = (Four) + (Six) ◮ Spacetime = (M4) + Calabi-Yau Space ◮ All scales, matter, particle spectra and couplings come from the geometry of the extra dimensions. ◮ All scales, matter, particle spectra and couplings come from the geometry of the extra dimensions. Joseph Conlon (Oxford University) String Phenomenology Introduction Model Building Moduli Stabilisation Flavour Problem Model Building Various approaches in string theory to realising Standard Model-like spectra: ◮ E8 E8 heterotic string with gauge bundles × ◮ Type I string with gauge bundles ◮ IIA/IIB D-brane constructions ◮ Heterotic M-Theory ◮ M-Theory on G2 manifolds Joseph Conlon (Oxford University) String Phenomenology Introduction Model Building Moduli Stabilisation Flavour Problem Heterotic String Start with an E8 vis E8 hid gauge group in ten dimensions.
    [Show full text]