Introduction to String Theory

Introduction to String Theory

Introduction to String Theory Angel M. Uranga Contents I Introductory Overview 1 1 Motivation 3 1.1 Standard Model and beyond . 3 1.1.1 Our Model of Elementary Particles and Interactions . 3 1.1.2 Theoretical questions raised by this description . 5 1.1.3 Some proposals for physics beyond the Standard Model 7 1.1.4 String theory as a theory beyond the Standard Model . 13 2 Overview of string theory in perturbation theory 15 2.1 Basic ideas . 15 2.1.1 What are strings? . 15 2.1.2 The worldsheet . 17 2.1.3 String interactions . 19 2.1.4 Critical dimension . 23 2.1.5 Overview of closed bosonic string theory . 24 2.1.6 String theory in curved spaces . 26 2.1.7 Compactification . 31 2.2 Superstrings and Heterotic string phenomenology . 34 2.2.1 Superstrings . 34 2.2.2 Heterotic string phenomenology . 39 2.2.3 The picture of our world as a heterotic string compact- ification . 40 2.2.4 Phenomenological features and comparison with other proposals beyond the standard model . 42 3 Overview of string theory beyond perturbation theory 45 3.1 The problem . 45 3.2 Non-perturbative states in string theory . 47 i ii CONTENTS 3.2.1 Non-perturbative states in field theory . 47 3.2.2 Non-perturbative p-brane states in string theory . 52 3.2.3 Duality in string theory . 55 3.3 D-branes . 62 3.3.1 What are D-branes . 62 3.3.2 Worldvolume theory . 64 3.3.3 D-branes in string theory . 66 3.3.4 D-branes as probes of spacetime . 69 3.3.5 D-branes and gauge field theories . 71 3.4 Our world as a brane-world model . 72 4 Quantization of the closed bosonic string 77 4.1 Worldsheet action . 77 4.1.1 The Nambu-Goto action . 78 4.1.2 The Polyakov action . 78 4.1.3 Symmetries of Polyakov action . 79 4.2 Light-cone quantization . 80 4.2.1 Light-cone gauge fixing . 80 4.2.2 Gauge-fixed Polyakov action, Hamiltonian . 83 4.2.3 Oscillator expansions . 85 4.2.4 Light spectrum . 88 4.2.5 Lessons . 89 4.2.6 Final comments . 90 5 Modular invariance 91 5.1 Generalities . 91 5.2 Worldsheet coordinatization in light-cone gauge . 92 5.3 The computation . 93 5.3.1 Structure of the amplitude in operator formalism . 93 5.3.2 The momentum piece . 95 5.3.3 The oscillator piece . 95 5.4 Modular invariance . 96 5.4.1 Modular group of T2 . 96 5.4.2 Modular invariance of the partition function . 99 5.4.3 UV behaviour of the string amplitude . 100 CONTENTS iii 6 Toroidal compactification of closed bosonic string theory 105 6.1 Motivation . 105 6.2 Toroidal compactification in field theory . 106 6.3 Toroidal compactification in string theory . 110 6.3.1 Quantization and spectrum . 111 6.3.2 α0 effects I: Enhanced gauge symmetries . 117 6.3.3 α0 effects II: T-duality . 120 6.3.4 Additional comments . 123 7 Type II Superstrings 125 7.1 Superstrings . 125 7.1.1 Fermions on the worldsheet . 125 7.1.2 Boundary conditions . 127 7.1.3 Spectrum of states for NS and R fermions . 128 7.1.4 Modular invariance . 133 7.1.5 Type II superstring partition function . 135 7.1.6 GSO projection . 135 7.1.7 Light spectrum . 136 7.2 Type 0 superstrings . 140 7.3 Bosonization∗ . 141 8 Heterotic superstrings 145 8.1 Heterotic superstrings in bosonic formulation . 145 8.1.1 Heteroticity . 145 8.1.2 Hamiltonian quantization . 146 8.1.3 Modular invariance and lattices . 148 8.1.4 Spectrum . 151 8.2 Heterotic strings in the fermionic formulation . 154 8.3 Spacetime Non-susy heterotic string theories . 158 8.4 A few words on anomalies . 159 8.4.1 What is an anomaly? . 159 8.4.2 Anomalies in string theory and Green-Schwarz mech- anism . 162 9 Open strings 165 9.1 Generalities . 165 9.2 Open bosonic string . 167 9.2.1 Light-cone gauge . 167 iv CONTENTS 9.2.2 Boundary conditions . 168 9.2.3 Hamiltonian . 169 9.2.4 Oscillator expansions . 170 9.2.5 Spectrum . 171 9.2.6 Open-closed duality . 172 9.3 Chan-Paton factors . 175 9.4 Open superstrings . 177 9.4.1 Hamiltonian quantization . 177 9.4.2 Spectrum for NS and R sectors . 179 9.4.3 GSO projection . 180 9.4.4 Open-closed duality . 180 9.4.5 RR tadpole cancellation condition . 181 10 Type I superstring 185 10.1 Unoriented closed strings . 185 10.1.1 Generalities . 185 10.1.2 Unoriented closed bosonic string . 187 10.1.3 Unoriented closed superstring theory IIB/Ω . 188 10.2 Unoriented open strings . 191 10.2.1 Action of Ω on open string sectors . 191 10.2.2 Spectrum . 192 10.3 Type I superstring . 193 10.3.1 Computation of RR tadpoles . 193 10.4 Final comments . 200 11 Toroidal compactification of superstrings 203 11.1 Motivation . 203 11.2 Type II superstrings . 203 11.2.1 Circle compactification . 203 11.2.2 T-duality for type II theories . 208 11.2.3 Compactification of several dimensions . 210 11.3 Heterotic superstrings . 215 11.3.1 Circle compactification without Wilson lines . 215 11.3.2 Compactification with Wilson lines . 218 11.3.3 Field theory description of Wilson lines . 218 11.3.4 String theory description . 221 11.4 Toroidal compactification of type I superstring . 226 11.4.1 Circle compactification without Wilson lines . 227 CONTENTS v 11.4.2 T-duality . 229 11.4.3 Toroidal compactification and T-duality in type I with Wilson lines . 234 11.5 Final comments . 238 12 Calabi-Yau compactification of superstrings. Heterotic string phenomenology 239 12.1 Motivation . 239 12.1.1 Supersymmetry and holonomy . 240 12.1.2 Calabi-Yau manifolds . 242 12.2 Type II string theories on Calabi-Yau spaces . 246 12.2.1 Supersymmetry . 246 12.2.2 KK reduction of p-forms . 247 12.2.3 Spectrum . 248 12.2.4 Mirror symmetry . 249 12.3 Compactification of heterotic strings on Calabi-Yau threefolds 250 12.3.1 General considerations . 250 12.3.2 Spectrum . 253 12.3.3 Phenomenological features of these models . 257 13 Orbifold compactification 261 13.1 Introduction . 261 13.1.1 Motivation . 261 13.1.2 The geometry of orbifolds . 262 13.1.3 Generalities of string theory on orbifolds . 265 6 13.2 Type II string theory on T =Z3 . 268 13.2.1 Geometric interpretation . 274 6 13.3 Heterotic string compactification on T =Z3 . 275 13.3.1 Gauge bundles for orbifolds . 275 13.3.2 Computation of the spectrum . 276 13.3.3 Final comments . 279 14 Non-perturbative states in string theory 281 14.1 Motivation . 281 14.2 p-branes in string theory . 281 14.2.1 p-brane solutions . 283 14.2.2 Dirac charge quantization condition . 287 14.2.3 BPS property . 288 vi CONTENTS 14.3 Duality for type II string theories . 289 14.3.1 Type IIB SL(2; Z) duality . 290 14.3.2 Toroidal compactification and U-duality . 291 14.4 Final comments . 294 .1 Some similar question in the simpler context of field theory . 295 .1.1 States in field theory . 295 .1.2 BPS bounds . ..

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    528 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us