The Integrative Roles of Chemokines at the Maternal–Fetal Interface in Early Pregnancy

Total Page:16

File Type:pdf, Size:1020Kb

The Integrative Roles of Chemokines at the Maternal–Fetal Interface in Early Pregnancy Cellular & Molecular Immunology (2014) 11, 438–448 ß 2014 CSI and USTC. All rights reserved 1672-7681/14 $32.00 www.nature.com/cmi REVIEW The integrative roles of chemokines at the maternal–fetal interface in early pregnancy Mei-Rong Du1, Song-Cun Wang1 and Da-Jin Li Embryos express paternal antigens that are foreign to the mother, but the mother provides a special immune milieu at the fetal–maternal interface to permit rather than reject the embryo growth in the uterus until parturition by establishing precise crosstalk between the mother and the fetus. There are unanswered questions in the maintenance of pregnancy, including the poorly understood phenomenon of maternal tolerance to the allogeneic conceptus, and the remarkable biological roles of placental trophoblasts that invade the uterine wall. Chemokines are multifunctional molecules initially described as having a role in leukocyte trafficking and later found to participate in developmental processes such as differentiation and directed migration. It is increasingly evident that the gestational uterine microenvironment is characterized, at least in part, by the differential expression and secretion of chemokines that induce selective trafficking of leukocyte subsets to the maternal–fetal interface and regulate multiple events that are closely associated with normal pregnancy. Here, we review the expression and function of chemokines and their receptors at the maternal–fetal interface, with a special focus on chemokine as a key component in trophoblast invasiveness and placental angiogenesis, recruitment and instruction of immune cells so as to form a fetus-supporting milieu during pregnancy. The chemokine network is also involved in pregnancy complications. Cellular & Molecular Immunology (2014) 11, 438–448; doi:10.1038/cmi.2014.68; published online 11 August 2014 Keywords: chemokine; decidua; pregnancy; pregnant complications; trophoblast INTRODUCTION linked to some pregnancy failures, such as miscarriage, pre- The intimate association between maternal and placental tis- eclampsia, fetal growth restriction and so on. The chemo- sues elicits an interesting immunological paradox. Placental kine/chemokine receptor interactions play roles in almost all tissue contains paternal antigens, but under normal circum- facets of maternal–fetal crosstalk. In this review, we highlight stances, the allogeneic fetus and placenta are not attacked by the the contribution of chemokines and their receptors at the maternal immune system. Interestingly, this tolerance to fetal maternal–fetal interface to the maintenance of normal preg- antigens occurs in the presence of a large number of maternal nancy, especially to maternal–fetal tolerance and to placenta- leukocytes, almost all of which are members of the innate tion. Since normal pregnancy is a model of natural immune immune system. There is a delicate crosstalk and collaboration tolerance, pregnancy research may assist in the broader under- between fetus-derived trophoblast cells and maternally-derived standing of tumor immunology and of transplantation cells during normal pregnancy to establish a unique maternal– immunology. fetal immune milieu that contributes to embryo survival and development in the uterus until parturition. Dysfunction in the THE CHEMOKINE FAMILY interactions of trophoblasts and maternally-derived cells and The chemokines constitute a superfamily of small chemotactic dysregulation of maternal–fetal immune tolerance are highly cytokines. More than 50 chemokines and at least 20 chemokine Laboratory for Reproductive Immunology, Hospital and Institute of Obstetrics and Gynecology, Fudan University, Shanghai Medical College, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China 1M-RD and S-CW contributed equally to this work. Correspondence: Dr MR Du, Laboratory for Reproductive Immunology, Hospital and Institute of Obstetrics and Gynecology, Fudan University, Shanghai Medical College, Shanghai 200011, China. E-mail: [email protected] Or Dr DJ Li, Laboratory for Reproductive Immunology, Hospital and Institute of Obstetrics and Gynecology, Fudan University, Shanghai Medical College, Shanghai 200011, China. E-mail: [email protected] Received: 22 April 2014; Revised: 29 June 2014; Accepted: 1 July 2014 Roles of chemokine in early pregnancy MR Du et al 439 receptors have been identified.1,2 Chemokines exert their trophoblasts, maternal DSCs and DICs are the main compo- effects through G protein-coupled receptors.2 Based on their nents at the maternal–fetal interface. Figure 1 describes the structural motif, including the number and position of two dynamic formation process of maternal–fetal interface in early conserved cysteine residues, chemokines are classified into sub- human pregnancy. Functional chemokines and their receptors families: the CXC, CC, CX3C and C groups or the a, b, c and d are widely expressed at the maternal–fetal interface, and play a subfamilies. Chemokine receptors are also divided into four pivotal role in this intercellular communication. Through corresponding groups.3 One or three amino acids separate Reverse Transcription-Polymerase Chain Reaction (RT-PCR) the first and second cysteines in the CXC and CX3C chemo- assay, our group systematically analyzed the expression of 18 kines, respectively, the two cysteines are adjoining in the CC chemokine receptors at the maternal–fetal interface disclosing subfamily, and the C subfamily lacks the first and pairing third general and differential expression patterns. In primary tropho- conserved cystein residues. The fifth receptor subfamily, CX, blast, we found high levels of CXCR4 and CXCR6 mRNA, mod- reported only in zebrafish lacks the two N-terminal residues, erate expression of CCR1, CCR3, CCR5, CCR8, CCR9, CXCR1, 4 but retains the third and fourth residues. The CXC family can CXCR4, CXCR6, XCR1 and CX3CR1 and no expression of CCR2, be further subdivided by the presence or absence of a conserved CCR6, CCR7, CCR10 and CXCR5.15 In contrast, in human DSCs, ‘Glu-Leu-Arg’ (ELR) subsequence at the NH2 terminus. The CCR2, CCR5 and CCRl0 are highly expressed while CCR1, CCR3, 1 2 ELR family is involved in angiogenesis and the ELR family is CCR4, CCR6, CCR8-9, CXCRl, CXCR4, CXCR6, XCR1 and 5 involved in angiostatic activity. CX3CRl are moderately expressed. CCL2 and CCLl3, the ligands The primary functions of chemokines are the directional of CCR2, and CCL28, the ligand of CCRl0, are also expressed stimulation of immune-cell adhesion and migration into the highly in decidua and DSCs.16 Further studies have shown that infected or inflamed tissue to initiate effective immune res- primary trophoblasts secrete high levels of CXCL12 and CXCL16, ponses. However, chemokine functions are not restricted to while DSCs produce abundant CCL2.15–17 In addition, tropho- chemotaxis but serve many other immune purposes such as blasts secrete CCL24, whereas DSCs express its receptor, CCR3.18 dendritic cell (DC) maturation,6 B-cell antibody class switch- 7 8 These data suggest that a complicated chemokine/chemokine ing, and T-cell activation and differentiation. Chemokines receptor network is present at maternal–fetal interface. are also potent mediators of neoangiogenesis and tumor CXCL14 is a relatively newly-identified chemokine with an growth, invasion, and metastasis,9,10 and play a pivotal role unidentified receptor and undefined function. CXCL14 is in embryogenesis and organ transplantation.11 selectively expressed in early villous cytotrophoblasts and More recently, chemokine receptors with structural features DSCs.19 When villous cytotrophoblasts differentiates into syn- that are inconsistent with a signalling function have been cytiotrophoblast cells, CCR3 and CCR6 become highly described. When ligated, these ‘silent’ (non-signalling) chemo- expressed.20 CCR1 and CCL17 are localized on extravillous kine receptors do not elicit migration or conventional signalling cytotrophoblast cells (EVTs).21,22 CXCR4 and CXCR7 are responses, but regulate inflammatory and immune reactions in expressed during the differentiation process of cytotropho- different ways, such as acting as decoys or scavengers. The blasts towards the invasive phenotype,23 and their ligand availability of chemokines is regulated by three non-signalling CXCL12 is widely expressed in multiple cell types at the mater- decoy receptors: chemokine decoy receptor (D6), Duffy antigen 22 24 receptor for chemokines (DARC) and chemocentryx decoy nal–fetal interface. Invasive EVTs express CX3CR1. As for receptor (CCX CKR). The expression of decoy receptors is the maternal side of the interface, there is widespread expres- mainly restricted in placental cells and endothelial cells of sion of chemokines. On DSCs, these include the ligands CCL2, lymphatic afferent vessels in skin, gut and lung.12–14 CCL4, CCL7, CCL14, CCL16, CCL17, CXCL9, CXCL10, CXCL11, CXCL14 and CX3CL1 and the receptors CCR2, 25–27 THE CHEMOKINE NETWORK AT THE MATERNAL–FETAL CCR3, CCR10, CXCR3 and CXCR4. In addition, CCL2, INTERFACE CCL28 and CX3CL1 are also immunolocalized on the decidual 28,29 After the blastocyst hatches from the zona pellucida and epithelial cells (DECs). CCR3 and CCR4 are expressed on 30,31 adheres to the endometrium during the onset of the implanta- the invading interstitial EVTs. In addition to trophoblasts tion window, trophoblast cells proliferate and differentiate into and DSCs, chemokine receptors are expressed on decidual cytotrophoblast and syncytiotrophoblast, resulting in the
Recommended publications
  • Gene Expression Polarization
    Transcriptional Profiling of the Human Monocyte-to-Macrophage Differentiation and Polarization: New Molecules and Patterns of Gene Expression This information is current as of September 27, 2021. Fernando O. Martinez, Siamon Gordon, Massimo Locati and Alberto Mantovani J Immunol 2006; 177:7303-7311; ; doi: 10.4049/jimmunol.177.10.7303 http://www.jimmunol.org/content/177/10/7303 Downloaded from Supplementary http://www.jimmunol.org/content/suppl/2006/11/03/177.10.7303.DC1 Material http://www.jimmunol.org/ References This article cites 61 articles, 22 of which you can access for free at: http://www.jimmunol.org/content/177/10/7303.full#ref-list-1 Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision by guest on September 27, 2021 • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2006 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Transcriptional Profiling of the Human Monocyte-to-Macrophage Differentiation and Polarization: New Molecules and Patterns of Gene Expression1 Fernando O.
    [Show full text]
  • CCR8 Expression Defines Tissue-Resident Memory T Cells in Human Skin Michelle L
    CCR8 Expression Defines Tissue-Resident Memory T Cells in Human Skin Michelle L. McCully, Kristin Ladell, Robert Andrews, Rhiannon E. Jones, Kelly L. Miners, Laureline Roger, This information is current as Duncan M. Baird, Mark J. Cameron, Zita M. Jessop, Iain S. of September 24, 2021. Whitaker, Eleri L. Davies, David A. Price and Bernhard Moser J Immunol published online 2 February 2018 http://www.jimmunol.org/content/early/2018/02/02/jimmun Downloaded from ol.1701377 Supplementary http://www.jimmunol.org/content/suppl/2018/02/02/jimmunol.170137 Material 7.DCSupplemental http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists by guest on September 24, 2021 • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Author Choice Freely available online through The Journal of Immunology Author Choice option Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2018 The Authors All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. Published February 2, 2018, doi:10.4049/jimmunol.1701377 The Journal of Immunology CCR8 Expression Defines Tissue-Resident Memory T Cells in Human Skin Michelle L.
    [Show full text]
  • Differentiation and Bone Resorption Role of CX3CL1/Fractalkine In
    Role of CX3CL1/Fractalkine in Osteoclast Differentiation and Bone Resorption Keiichi Koizumi, Yurika Saitoh, Takayuki Minami, Nobuhiro Takeno, Koichi Tsuneyama, Tatsuro Miyahara, This information is current as Takashi Nakayama, Hiroaki Sakurai, Yasuo Takano, Miyuki of September 29, 2021. Nishimura, Toshio Imai, Osamu Yoshie and Ikuo Saiki J Immunol published online 18 November 2009 http://www.jimmunol.org/content/early/2009/11/18/jimmuno l.0803627.citation Downloaded from Why The JI? Submit online. http://www.jimmunol.org/ • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average by guest on September 29, 2021 Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. Published November 18, 2009, doi:10.4049/jimmunol.0803627 The Journal of Immunology Role of CX3CL1/Fractalkine in Osteoclast Differentiation and Bone Resorption1 Keiichi Koizumi,2* Yurika Saitoh,* Takayuki Minami,* Nobuhiro Takeno,* Koichi Tsuneyama,†‡ Tatsuro Miyahara,§ Takashi Nakayama,¶ Hiroaki Sakurai,*† Yasuo Takano,‡ Miyuki Nishimura,ʈ Toshio Imai,ʈ Osamu Yoshie,¶ and Ikuo Saiki*† The recruitment of osteoclast precursors toward osteoblasts and subsequent cell-cell interactions are critical for osteoclast dif- ferentiation.
    [Show full text]
  • Chemokine Receptors in Allergic Diseases Laure Castan, A
    Chemokine receptors in allergic diseases Laure Castan, A. Magnan, Grégory Bouchaud To cite this version: Laure Castan, A. Magnan, Grégory Bouchaud. Chemokine receptors in allergic diseases. Allergy, Wiley, 2017, 72 (5), pp.682-690. 10.1111/all.13089. hal-01602523 HAL Id: hal-01602523 https://hal.archives-ouvertes.fr/hal-01602523 Submitted on 11 Jul 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution - ShareAlike| 4.0 International License Allergy REVIEW ARTICLE Chemokine receptors in allergic diseases L. Castan1,2,3,4, A. Magnan2,3,5 & G. Bouchaud1 1INRA, UR1268 BIA; 2INSERM, UMR1087, lnstitut du thorax; 3CNRS, UMR6291; 4Universite de Nantes; 5CHU de Nantes, Service de Pneumologie, Institut du thorax, Nantes, France To cite this article: Castan L, Magnan A, Bouchaud G. Chemokine receptors in allergic diseases. Allergy 2017; 72: 682–690. Keywords Abstract asthma; atopic dermatitis; chemokine; Under homeostatic conditions, as well as in various diseases, leukocyte migration chemokine receptor; food allergy. is a crucial issue for the immune system that is mainly organized through the acti- Correspondence vation of bone marrow-derived cells in various tissues. Immune cell trafficking is Gregory Bouchaud, INRA, UR1268 BIA, rue orchestrated by a family of small proteins called chemokines.
    [Show full text]
  • S41467-017-02610-0.Pdf
    ARTICLE DOI: 10.1038/s41467-017-02610-0 OPEN Angiogenic factor-driven inflammation promotes extravasation of human proangiogenic monocytes to tumours Adama Sidibe 1,4, Patricia Ropraz1, Stéphane Jemelin1, Yalin Emre 1, Marine Poittevin1, Marc Pocard2,3, Paul F. Bradfield1 & Beat A. Imhof1 1234567890():,; Recruitment of circulating monocytes is critical for tumour angiogenesis. However, how human monocyte subpopulations extravasate to tumours is unclear. Here we show mechanisms of extravasation of human CD14dimCD16+ patrolling and CD14+CD16+ inter- mediate proangiogenic monocytes (HPMo), using human tumour xenograft models and live imaging of transmigration. IFNγ promotes an increase of the chemokine CX3CL1 on vessel lumen, imposing continuous crawling to HPMo and making these monocytes insensitive to chemokines required for their extravasation. Expression of the angiogenic factor VEGF and the inflammatory cytokine TNF by tumour cells enables HPMo extravasation by inducing GATA3-mediated repression of CX3CL1 expression. Recruited HPMo boosts angiogenesis by secreting MMP9 leading to release of matrix-bound VEGF-A, which amplifies the entry of more HPMo into tumours. Uncovering the extravasation cascade of HPMo sets the stage for future tumour therapies. 1 Department of Pathology and Immunology, Centre Médical Universitaire (CMU), Medical faculty, University of Geneva, Rue Michel-Servet 1, CH-1211 Geneva, Switzerland. 2 Department of Oncologic and Digestive Surgery, AP-HP, Hospital Lariboisière, 2 rue Ambroise Paré, F-75475 Paris cedex 10, France. 3 Université Paris Diderot, Sorbonne Paris Cité, CART, INSERM U965, 49 boulevard de la Chapelle, F-75475 Paris cedex 10, France. 4Present address: Department of Physiology and Metabolism, Centre Médical Universitaire (CMU), Medical faculty, University of Geneva, Rue Michel-Servet 1, CH-1211 Geneva, Switzerland.
    [Show full text]
  • Complementary DNA Microarray Analysis of Chemokines and Their Receptors in Allergic Rhinitis RX Zhang,1 SQ Yu,2 JZ Jiang,3 GJ Liu3
    RX Zhang, et al ORIGINAL ARTICLE Complementary DNA Microarray Analysis of Chemokines and Their Receptors in Allergic Rhinitis RX Zhang,1 SQ Yu,2 JZ Jiang,3 GJ Liu3 1 Department of Otolaryngology, Huadong Hospital, Fudan University, Shanghai, China 2 Department of Otolaryngology , Jinan General Hospital of PLA, Shandong, China 3 Department of Otolaryngology, Changhai Hospital, Second Military Medical University, Shanghai, China ■ Abstract Objective: To analyze the roles of chemokines and their receptors in the pathogenesis of allergic rhinitis by observing the complementary DNA (cDNA) expression of the chemokines and their receptors in the nasal mucosa of patients with and without allergic rhinitis, using gene chips. Methods: The total RNAs were isolated from the nasal mucosa of 20 allergic rhinitis patients and purifi ed to messenger RNAs, and then reversely transcribed to cDNAs and incorporated with samples of fl uorescence-labeled with Cy5-dUPT (rhinitis patient samples) or Cy3- dUTP (control samples of nonallergic nasal mucosa). Thirty-nine cDNAs of chemokines and their receptors were latticed into expression profi le chips, which were hybridized with probes and then scanned with the computer to study gene expression according to the different fl uorescence intensities. Results: The cDNAs of the following chemokines were upregulated: CCL1, CCL2, CCL5, CCL7, CCL8, CCL11, CCL13, CCL14, CCL17, CCL18, CCL19, CCL24, and CX3CL1 in most of the allergic rhinitis sample chips. CCR2, CCR3, CCR4, CCR5, CCR8 and CX3CR1 were the highly expressed receptor genes. Low expression of CXCL4 was found in these tissues. Conclusion: The T helper cell (TH) immune system is not well regulated in allergic rhinitis.
    [Show full text]
  • Review of Dendritic Cells, Their Role in Clinical Immunology, and Distribution in Various Animal Species
    International Journal of Molecular Sciences Review Review of Dendritic Cells, Their Role in Clinical Immunology, and Distribution in Various Animal Species Mohammed Yusuf Zanna 1 , Abd Rahaman Yasmin 1,2,* , Abdul Rahman Omar 2,3 , Siti Suri Arshad 3, Abdul Razak Mariatulqabtiah 2,4 , Saulol Hamid Nur-Fazila 3 and Md Isa Nur Mahiza 3 1 Department of Veterinary Laboratory Diagnosis, Faculty of Veterinary Medicine, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia; [email protected] 2 Laboratory of Vaccines and Biomolecules, Institute of Bioscience, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia; [email protected] (A.R.O.); [email protected] (A.R.M.) 3 Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia; [email protected] (S.S.A.); [email protected] (S.H.N.-F.); [email protected] (M.I.N.M.) 4 Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Science, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia * Correspondence: [email protected]; Tel.: +603-8609-3473 or +601-7353-7341 Abstract: Dendritic cells (DCs) are cells derived from the hematopoietic stem cells (HSCs) of the bone marrow and form a widely distributed cellular system throughout the body. They are the most effi- cient, potent, and professional antigen-presenting cells (APCs) of the immune system, inducing and dispersing a primary immune response by the activation of naïve T-cells, and playing an important role in the induction and maintenance of immune tolerance under homeostatic conditions. Thus, this Citation: Zanna, M.Y.; Yasmin, A.R.; review has elucidated the general aspects of DCs as well as the current dynamic perspectives and Omar, A.R.; Arshad, S.S.; distribution of DCs in humans and in various species of animals that includes mouse, rat, birds, dog, Mariatulqabtiah, A.R.; Nur-Fazila, cat, horse, cattle, sheep, pig, and non-human primates.
    [Show full text]
  • Acting on the CCR1 Receptor Mediates Neutrophil Migration in Immune Inflammation Via Sequential ␣ Release of TNF- and LTB4 Cleber D
    MIP-1␣[CCL3] acting on the CCR1 receptor mediates neutrophil migration in immune inflammation via sequential ␣ release of TNF- and LTB4 Cleber D. L. Ramos,* Claudio Canetti,*,† Janeusa T. Souto,‡,§ Joa˜ o S. Silva,‡ Cory M. Hogaboam,¶ Sergio H. Ferreira,* and Fernando Q. Cunha*,1 Departments of *Pharmacology and ‡Biochemistry and Immunology, School of Medicine of Ribeira˜o Preto, University of Sa˜o Paulo, Brazil; §Department of Microbiology and Parasitology, Federal University of Rio Grande do Norte, Natal, RN, Brazil; and †Division of Pulmonary & Critical Care Medicine and ¶Department of Pathology, University of Michigan, Ann Arbor Abstract: In the present study, we investigated nists might have a therapeutic potential. J. Leukoc. the involvement of macrophage-inflammatory pro- Biol. 78: 167–177; 2005. tein-1␣ (MIP-1␣)[CC chemokine ligand 3 (CCL3)], MIP-1␤[CCL4], regulated on activation, normal Key Words: chemokines ⅐ chemokine receptors ⅐ chemotaxis T expressed and secreted (RANTES)[CCL5], and CC chemokine receptors (CCRs) on neutrophil mi- gration in murine immune inflammation. Previ- INTRODUCTION ously, we showed that ovalbumin (OVA)-triggered neutrophil migration in immunized mice depends on the sequential release of tumor necrosis factor Neutrophil migration is a complex process, which results ␣ ␣ mainly from the release of neutrophil chemotactic factors by (TNF- ) and leukotriene B4 (LTB4). Herein, we show increased mRNA expression for MIP- resident cells, inducing rolling and adhesion of neutrophils on 1␣[CCL3], MIP-1␤[CCL4], RANTES[CCL5], and endothelial cells, followed by their transmigration to the ex- travascular space [1, 2]. Apart from its importance in host CCR1 in peritoneal cells harvested from OVA-chal- defense, the migration of neutrophils to the inflammatory site lenged, immunized mice, as well as MIP-1␣[CCL3] is, at least in part, responsible for tissue damage observed in and RANTES[CCL5] but not MIP-1␤[CCL4] proteins several inflammatory diseases such as rheumatoid arthritis, in the peritoneal exudates.
    [Show full text]
  • G Protein-Coupled Receptors As Therapeutic Targets for Multiple Sclerosis
    npg GPCRs as therapeutic targets for MS Cell Research (2012) 22:1108-1128. 1108 © 2012 IBCB, SIBS, CAS All rights reserved 1001-0602/12 $ 32.00 npg REVIEW www.nature.com/cr G protein-coupled receptors as therapeutic targets for multiple sclerosis Changsheng Du1, Xin Xie1, 2 1Laboratory of Receptor-Based BioMedicine, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sci- ences and Technology, Tongji University, Shanghai 200092, China; 2State Key Laboratory of Drug Research, the National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 189 Guo Shou Jing Road, Pudong New District, Shanghai 201203, China G protein-coupled receptors (GPCRs) mediate most of our physiological responses to hormones, neurotransmit- ters and environmental stimulants. They are considered as the most successful therapeutic targets for a broad spec- trum of diseases. Multiple sclerosis (MS) is an inflammatory disease that is characterized by immune-mediated de- myelination and degeneration of the central nervous system (CNS). It is the leading cause of non-traumatic disability in young adults. Great progress has been made over the past few decades in understanding the pathogenesis of MS. Numerous data from animal and clinical studies indicate that many GPCRs are critically involved in various aspects of MS pathogenesis, including antigen presentation, cytokine production, T-cell differentiation, T-cell proliferation, T-cell invasion, etc. In this review, we summarize the recent findings regarding the expression or functional changes of GPCRs in MS patients or animal models, and the influences of GPCRs on disease severity upon genetic or phar- macological manipulations.
    [Show full text]
  • Neutrophil Chemoattractant Receptors in Health and Disease: Double-Edged Swords
    Cellular & Molecular Immunology www.nature.com/cmi REVIEW ARTICLE Neutrophil chemoattractant receptors in health and disease: double-edged swords Mieke Metzemaekers1, Mieke Gouwy1 and Paul Proost 1 Neutrophils are frontline cells of the innate immune system. These effector leukocytes are equipped with intriguing antimicrobial machinery and consequently display high cytotoxic potential. Accurate neutrophil recruitment is essential to combat microbes and to restore homeostasis, for inflammation modulation and resolution, wound healing and tissue repair. After fulfilling the appropriate effector functions, however, dampening neutrophil activation and infiltration is crucial to prevent damage to the host. In humans, chemoattractant molecules can be categorized into four biochemical families, i.e., chemotactic lipids, formyl peptides, complement anaphylatoxins and chemokines. They are critically involved in the tight regulation of neutrophil bone marrow storage and egress and in spatial and temporal neutrophil trafficking between organs. Chemoattractants function by activating dedicated heptahelical G protein-coupled receptors (GPCRs). In addition, emerging evidence suggests an important role for atypical chemoattractant receptors (ACKRs) that do not couple to G proteins in fine-tuning neutrophil migratory and functional responses. The expression levels of chemoattractant receptors are dependent on the level of neutrophil maturation and state of activation, with a pivotal modulatory role for the (inflammatory) environment. Here, we provide an overview
    [Show full text]
  • HIV-1 Tat Protein Mimicry of Chemokines
    Proc. Natl. Acad. Sci. USA Vol. 95, pp. 13153–13158, October 1998 Immunology HIV-1 Tat protein mimicry of chemokines ADRIANA ALBINI*, SILVANO FERRINI*, ROBERTO BENELLI*, SABRINA SFORZINI*, DANIELA GIUNCIUGLIO*, MARIA GRAZIA ALUIGI*, AMANDA E. I. PROUDFOOT†,SAMI ALOUANI†,TIMOTHY N. C. WELLS†, GIULIANO MARIANI‡,RONALD L. RABIN§,JOSHUA M. FARBER§, AND DOUGLAS M. NOONAN*¶ *Centro di Biotecnologie Avanzate, Istituto Nazionale per la Ricerca sul Cancro, Largo Rosanna Benzi, 10, 16132 Genoa, Italy; †Geneva Biomedical Research Institute, Glaxo Wellcome Research and Development, 14 chemin des Aulx, 1228 Plan-les Ouates, Geneva, Switzerland; ‡Dipartimento di Medicina Interna, Medicina Nucleare, University of Genova, Viale Benedetto XV, 6, 16132 Genoa, Italy; and §National Institute of Allergy and Infectious Diseases, National Institutes of Health, Building 10, Room 11N228 MSC 1888, Bethesda, MD 20892 Edited by Anthony S. Fauci, National Institute of Allergy and Infectious Diseases, Bethesda, MD, and approved August 25, 1998 (received for review June 24, 1998) ABSTRACT The HIV-1 Tat protein is a potent chemoat- ceptors for some dual tropic HIV-1 strains (10, 11). A CCR2 tractant for monocytes. We observed that Tat shows conserved polymorphism has been found to correlate with delayed amino acids corresponding to critical sequences of the che- progression to AIDS (12, 13). mokines, a family of molecules known for their potent ability We report here that the HIV-1 Tat protein and the peptide to attract monocytes. Synthetic Tat and a peptide (CysL24–51) encompassing the cysteine-rich and core regions induce per- encompassing the ‘‘chemokine-like’’ region of Tat induced a tussis toxin sensitive Ca21 fluxes in monocytes.
    [Show full text]
  • Polymerization of Misfolded Z Alpha-1 Antitrypsin Protein Lowers CX3CR1
    SHORT REPORT Polymerization of misfolded Z alpha-1 antitrypsin protein lowers CX3CR1 expression in human PBMCs Srinu Tumpara1, Matthias Ballmaier2, Sabine Wrenger1, Mandy Ko¨ nig3, Matthias Lehmann3, Ralf Lichtinghagen4, Beatriz Martinez-Delgado5, Elena Korenbaum6, David DeLuca1, Nils Jedicke7, Tobias Welte1, Malin Fromme8, Pavel Strnad8, Jan Stolk9, Sabina Janciauskiene1,9* 1Department of Respiratory Medicine, Hannover Medical School, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany; 2Cell Sorting Core Facility Hannover Medical School, Hannover, Germany; 38sens.biognostic GmbH, Berlin, Germany; 4Institute of Clinical Chemistry, Hannover Medical School, Hannover, Germany; 5Department of Molecular Genetics, Institute of Health Carlos III, Center for Biomedical Research in the Network of Rare Diseases (CIBERER), Majadahonda, Spain; 6Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany; 7Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany; 8Medical Clinic III, Gastroenterology, Metabolic Diseases and Intensive Care, University Hospital RWTH Aachen, Aachen, Germany; 9Department of Pulmonology, Leiden University Medical Center, Member of European Reference Network LUNG, section Alpha-1- antitrypsin Deficiency, Leiden, Netherlands Abstract Expression levels of CX3CR1 (C-X3-C motif chemokine receptor 1) on immune cells have significant importance in maintaining tissue
    [Show full text]