Sudden Track Changes of Tropical Cyclones in Monsoon Gyres: Full-Physics, Idealized Numerical Experiments*

Total Page:16

File Type:pdf, Size:1020Kb

Sudden Track Changes of Tropical Cyclones in Monsoon Gyres: Full-Physics, Idealized Numerical Experiments* APRIL 2015 L I A N G A N D W U 1307 Sudden Track Changes of Tropical Cyclones in Monsoon Gyres: Full-Physics, Idealized Numerical Experiments* JIA LIANG AND LIGUANG WU Pacific Typhoon Research Center, Key Laboratory of Meteorological Disaster, Ministry of Education, Nanjing University of Information Science and Technology, Nanjing, and State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing, China (Manuscript received 9 December 2013, in final form 4 December 2014) ABSTRACT Tropical cyclones (TCs) in the eastern semicircle of large-scale monsoon gyres (MGs) were observed to take either a northward (sudden northward and northward without a sharp turn) or a westward TC turn, but only the northward turn was previously simulated in a barotropic model. To understand what controls TC track types in MGs, idealized numerical experiments are performed using the full-physics Weather Research and Forecasting (WRF) Model. These experiments indicate that TCs initially located in the eastern semicircle of MGs can generally take three types of tracks: a sudden northward track, a westward track, and a northward track without a sharp turn. The track types depend upon the TC movement relative to the MG center. In agreement with barotropic simulations, the WRF simulation confirms that approaching and being collo- cated with the MG center is crucial to the occurrence of sudden northward TC track changes and that sudden northward track changes can be generally accounted for by changes in the steering flow. TCs that take westward tracks and northward tracks without a sharp turn do not experience such a coalescence process. Westward TCs move faster than MGs and are then located to the west of the MG center, while TCs move more slowly than MGs and then take a northward track without a sharp turn. This study reveals that the specific TC track in the eastern semicircle of an MG is sensitive to the initial wind profiles of both MGs and TCs, suggesting that improvement in the observation of TC and MG structures is very important for predicting TC track types in MGs. 1. Introduction Wu and Kurihara 1996; Wu and Wang 2001a,b). Wu and Wang (2000) related TC movement to PV tendency Early studies indicated that tropical cyclone (TC) (PVT). In their dynamic framework, the TC is treated as movement results mainly from the advection of TC a positive PV anomaly relative to surrounding flows and relative vorticity by the environmental flow (environ- tends to move toward the area of the maximum of the mental steering) and the beta drift due to the interaction azimuthal wavenumber-1 PVT. The PVT theory has been between the TC circulation and the planetary vorticity applied to understanding contributions of various physi- (Holland 1983; Chan and Williams 1987; Fiorino and cal processes to the observed TC movement (Chan et al. Elsberry 1989; Carr and Elsberry 1990). Since the 1990s, 2002; Wang et al. 2012; Wu et al. 2012; Hsu et al. 2013; the influences of environmental vertical wind shear and Choi et al. 2013). Additionally, Lander and Holland diabatic heating on TC movement were investigated in (1993) and Ritchie and Holland (1993) noted the role of terms of potential vorticity (PV) (Shapiro 1992; Wu and vortices in mesoscale convective systems embedded in Emanuel 1993, 1995a,b; Wang and Holland 1996a,b,c; tropical cyclones as forcing track changes through early studies of binary vortices. However, Wu et al. (2013a) * Earth System Modeling Center Contribution Number 028. recently found that sudden northward track changes of TCs in the western North Pacific (WNP) is still a major challenge in operational TC forecasting, since the track Corresponding author address: Dr. Liguang Wu, Pacific Typhoon forecast error around the turning time is much larger than Research Center, Key Laboratory of Meteorological Disaster, Ministry of Education, Nanjing University of Information Science the average forecast error. and Technology, Nanjing 210044, China. TCs over the WNP are usually embedded in the large- E-mail: [email protected] scale summer monsoon circulation (e.g., Lau and Lau DOI: 10.1175/JAS-D-13-0393.1 Ó 2015 American Meteorological Society Unauthenticated | Downloaded 10/07/21 10:18 AM UTC 1308 JOURNAL OF THE ATMOSPHERIC SCIENCES VOLUME 72 1990, 1992; Chang et al. 1996; Straub and Kiladis 2003; Ko and Hsu 2006, 2009). Sometimes the low-level summer monsoon circulation evolves into a specific pattern named the monsoon gyre (MG), which can be identified as a low-frequency, nearly circular cyclonic vortex in the low troposphere with a diameter of about 2500 km (Lander 1994; Harr et al. 1996; Wu et al. 2013b). Carr and Elsberry (1995) first suggested that the in- teraction between an MG and a TC led to sudden northward track changes of TCs in the WNP, which are characterized by the rapid slowing of the westward movement and then a substantial northward accelera- 21 tion within a few hours. FIG. 1. Initial radial profiles of tangential wind speed (m s ) for the MG (solid) and the TC (dashed). Using a barotropic model, Carr and Elsberry (1995) revealed that sudden northward track changes usually occur when a TC that is initially in the eastern semicircle observed when TCs are in the eastern semicircle of of an MG approaches toward and is collocated with the MGs. This observational study suggests that it is neces- MG center. They called such a process the coalescence of sary to further investigate the sudden track change. the TC with the MG. They suggested that the b-induced The main objective of this study is to examine the key Rossby wave energy dispersion is enhanced during the factors that affect TC track types in MGs through a se- coalescence, leading to strong ridging in the southeast- ries of idealized numerical experiments. In this study, ern periphery of the coalesced system. The enhanced the full-physics Weather Research and Forecasting southwesterly flows across the TC lead to a sudden (WRF) Model is used to understand the occurrence of northward-turning track. the different track types. The WRF Model has been Liang et al. (2011) numerically simulated two sudden widely used in the study of TC activity and has proven to northward changes in the track of Typhoon Morakot be one of the best models for studies of TCs. More im- (2009) when the typhoon was in the vicinity of Taiwan portantly, as a state-of-the-art atmospheric simulation Island. They found that the sudden track changes were system, the WRF Model can simulate more realistic TC associated with two cyclonic gyres on the quasi-biweekly circulation and its interaction with MGs than a baro- oscillation and Madden–Julian oscillation time scales, tropic model, which may be important for understanding respectively. The observational analysis of real typhoons of the different track types in the observation. by Wu et al. (2011a,b) showed that sudden northward track changes that occurred near centers of MGs were 2. Experimental design associated with the coalescence with the large-scale low-frequency MGs and the enhanced synoptic-scale Numerical experiments in this study are conducted southwesterly flows on the southeastern side of TCs. with the Advanced Research version of WRF (ARW), While these studies generally agree with Carr and Elsberry version 2.2.1, with three two-way interactive domains (1995), Wu et al. (2013a) revealed that both northward- with horizontal resolutions of 27, 9, and 3 km. The out- turning and westward-turning TC tracks can be ermost domain centered at 208N and middle domain TABLE 1. Description of idealized numerical experiments. Experiment Description EXP1 The TC is initially located 400 km east of the MG center on an f plane. EXP2 As in EXP1, but on a spherical surface and without the MG. CTRL The TC is initially located 400 km east of the MG center on a spherical surface. MG-P As in CTRL, but the Gaussian vortex in Mallen et al. (2005) is used to construct the initial MG. 2 MG-intensity As in CTRL, but for MGs with initial maximum tangential wind speeds of 5 and 15 m s 1. MG-RMW As in CTRL, but for MGs with initial radii of maximum tangential wind speeds of 405 and 810 km. TC-location As in CTRL, but TCs are initially located 200, 600, 800, and 1000 km east of the MG center. 2 TC-intensity As in CTRL, but for TCs with initial maximum tangential wind speeds of 20 and 40 m s 1. TC-size As in CTRL, but for TCs with initial sizes of 600 and 1400 km in diameter. TS-S As in CTRL, but the TC has stronger outer strength. TS-W As in CTRL, but the TC has weaker outer strength. Unauthenticated | Downloaded 10/07/21 10:18 AM UTC APRIL 2015 L I A N G A N D W U 1309 FIG. 2. Simulated TC tracks in an MG on the f plane (red) and the spherical surface (black), with closed dots indicating the 12-h positions. The black cross indicates the initial center of the MG. include 335 3 335 grids points (9018 km 3 9018 km) and 703 3 703 grids points (6318 km 3 6318 km), which are sufficiently large to cover the interaction between a TC and an MG and to reduce the lateral boundary influence. The innermost domain with 301 3 301 grids points (900 km 3 900 km) is designed to move with a TC. The model has 41 levels in the vertical from the surface to 50 hPa. To reduce artificial wave reflection into the model interior, open lateral boundary conditions are used in the simulation.
Recommended publications
  • Tropical Weather Discussion
    TROPICAL WEATHER DISCUSSION • Purpose The Tropical Weather Discussion describes major synoptic weather features and significant areas of disturbed weather in the tropics. The product is intended to provide current weather information for those who need to know the current state of the atmosphere and expected trends to assist them in their decision making. The product gives significant weather features, areas of disturbed weather, expected trends, the meteorological reasoning behind the forecast, model performance, and in some cases a degree of confidence. • Content The Tropical Weather Discussion is a narrative explaining the current weather conditions across the tropics and the expected short-term changes. The product is divided into four different sections as outline below: 1. SPECIAL FEATURES (event-driven) The special features section includes descriptions of hurricanes, tropical storms, tropical depressions, subtropical cyclones, and any other feature of significance that may develop into a tropical or subtropical cyclone. For active tropical cyclones, this section provides the latest advisory data on the system. Associated middle and upper level interactions as well as significant clouds and convection are discussed with each system. This section is omitted if none of these features is present. 2. TROPICAL WAVES (event-driven) This section provides a description of the strength, position, and movement of all tropical waves analyzed on the surface analysis, from east to west. A brief reason for a wave’s position is usually given, citing surface observations, upper air time sections, satellite imagery, etc. The associated convection is discussed with each tropical wave as well as any potential impacts to landmasses or marine interests.
    [Show full text]
  • The Asian Monsoon in the Superparameterized CCSM and Its Relationship to Tropical Wave Activity
    5134 JOURNAL OF CLIMATE VOLUME 24 The Asian Monsoon in the Superparameterized CCSM and Its Relationship to Tropical Wave Activity CHARLOTTE A. DEMOTT Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado CRISTIANA STAN Center for Ocean–Land–Atmosphere Studies, Calverton, Maryland DAVID A. RANDALL Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado JAMES L. KINTER III Center for Ocean–Land–Atmosphere Studies, Calverton, Maryland, and Department of Atmospheric, Oceanic and Earth Sciences, George Mason University, Fairfax, Virginia MARAT KHAIROUTDINOV School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, New York (Manuscript received 15 November 2010, in final form 7 March 2011) ABSTRACT Three general circulation models (GCMs) are used to analyze the impacts of air–sea coupling and super- parameterized (SP) convection on the Asian summer monsoon: Community Climate System Model (CCSM) (coupled, conventional convection), SP Community Atmosphere Model (SP-CAM) (uncoupled, SP con- vection), and SP-CCSM (coupled, SP). In SP-CCSM, coupling improves the basic-state climate relative to SP- CAM and reduces excessive tropical variability in SP-CAM. Adding SP improves tropical variability, the simulation of easterly zonal shear over the Indian and western Pacific Oceans, and increases negative sea surface temperature (SST) biases in that region. SP-CCSM is the only model to reasonably simulate the eastward-, westward-, and northward-propagating components of the Asian monsoon. CCSM and SP-CCSM mimic the observed phasing of northward- propagating intraseasonal oscillation (NPISO), SST, precipitation, and surface stress anomalies, while SP-CAM is limited in this regard. SP-CCSM produces a variety of tropical waves with spectral characteristics similar to those in observations.
    [Show full text]
  • ESSENTIALS of METEOROLOGY (7Th Ed.) GLOSSARY
    ESSENTIALS OF METEOROLOGY (7th ed.) GLOSSARY Chapter 1 Aerosols Tiny suspended solid particles (dust, smoke, etc.) or liquid droplets that enter the atmosphere from either natural or human (anthropogenic) sources, such as the burning of fossil fuels. Sulfur-containing fossil fuels, such as coal, produce sulfate aerosols. Air density The ratio of the mass of a substance to the volume occupied by it. Air density is usually expressed as g/cm3 or kg/m3. Also See Density. Air pressure The pressure exerted by the mass of air above a given point, usually expressed in millibars (mb), inches of (atmospheric mercury (Hg) or in hectopascals (hPa). pressure) Atmosphere The envelope of gases that surround a planet and are held to it by the planet's gravitational attraction. The earth's atmosphere is mainly nitrogen and oxygen. Carbon dioxide (CO2) A colorless, odorless gas whose concentration is about 0.039 percent (390 ppm) in a volume of air near sea level. It is a selective absorber of infrared radiation and, consequently, it is important in the earth's atmospheric greenhouse effect. Solid CO2 is called dry ice. Climate The accumulation of daily and seasonal weather events over a long period of time. Front The transition zone between two distinct air masses. Hurricane A tropical cyclone having winds in excess of 64 knots (74 mi/hr). Ionosphere An electrified region of the upper atmosphere where fairly large concentrations of ions and free electrons exist. Lapse rate The rate at which an atmospheric variable (usually temperature) decreases with height. (See Environmental lapse rate.) Mesosphere The atmospheric layer between the stratosphere and the thermosphere.
    [Show full text]
  • Hurricanes for Dummies!
    Hurricanes for Dummies! Hurricanes form mostly from June through November (hurricane season). The birth of a hurricane requires at least four conditions: 1. The ocean waters must be warm enough (80 degrees F) at the surface to put enough heat and moisture into the atmosphere to provide the energy a hurricane needs. 2. Atmospheric moisture from sea water evaporation must combine with that heat and energy to form the powerful engine needed to propel a hurricane. 3. A wind pattern must be near the ocean surface to spirals air inward. Bands of thunderstorms form, allowing the air to warm further and rise higher into the atmosphere. If the winds at these higher levels are relatively light, this structure can remain intact and grow stronger: the beginnings of a hurricane! A hurricane goes through many stages as it develops: 1. It starts as a tropical wave, a westward-moving area of low air pressure. 2. As the warm, moist air over the ocean rises in the low air pressure area, cold air from above replaces it. This produces strong gusty winds, heavy rain and thunderclouds that is called a tropical disturbance. 3. As the air pressure drops and there are sustained winds up to 38 miles per hour, it is called a tropical depression. 4. When the cyclonic winds have sustained speeds from 39 to 73 miles per hour, it is called a tropical storm (storms are given names when they begin to have winds of this speed). 5. The storm becomes a hurricane when there are sustained winds of over 73 miles per hour.
    [Show full text]
  • Downloaded 10/01/21 10:08 PM UTC MAY 1998 PASCH ET AL
    1106 MONTHLY WEATHER REVIEW VOLUME 126 Atlantic Tropical Systems of 1994 and 1995: A Comparison of a Quiet Season to a Near-Record-Breaking One RICHARD J. PASCH,LIXION A. AVILA, AND JIANN-GWO JIING National Hurricane Center, Tropical Prediction Center, NWS/NOAA, Miami, Florida (Manuscript received 20 September 1996, in ®nal form 13 February 1997) ABSTRACT Totals of 70 and 63 tropical waves (also known as African or easterly waves) were counted in the Atlantic basin during the 1994 and 1995 hurricane seasons. These waves led to the formation of 9 of the 12 total number of tropical cyclones in 1994 and 19 of the 21 total number of tropical cyclones in 1995. Tropical waves contributed to the formation of 75% of the eastern Paci®c tropical cyclones in 1994 and 73% in 1995. Upper- and lower- level prevailing wind patterns observed during the below-normal season of 1994 and the very active one of 1995 are discussed. Tropical wave characteristics between the two years are compared. 1. Introduction ject (GARP) Atlantic Tropical Experiment (GATE) The importance of westward-propagating distur- (e.g., Thompson et al. 1979; Burpee and Reed 1982). bances, referred to as tropical waves (also called African Furthermore, there have been some attempts to analyze or easterly waves), has been recognized for more than and forecast tropical waves using global models (e.g., half a century (Dunn 1940). These disturbances, which Reed et al. 1988). are usually traced back to Africa, can lead to the for- This article is primarily concerned with operational mation of tropical cyclones over the Atlantic and eastern analysis of tropical waves.
    [Show full text]
  • Tropical Cyclones: Formation, Maintenance, and Intensification
    ESCI 344 – Tropical Meteorology Lesson 11 – Tropical Cyclones: Formation, Maintenance, and Intensification References: A Global View of Tropical Cyclones, Elsberry (ed.) Global Perspectives on Tropical Cylones: From Science to Mitigation, Chan and Kepert (ed.) The Hurricane, Pielke Tropical Cyclones: Their evolution, structure, and effects, Anthes Forecasters’ Guide to Tropical Meteorology, Atkinsson Forecasters Guide to Tropical Meteorology (updated), Ramage ‘Tropical cyclogenesis in a tropical wave critical layer: easterly waves’, Dunkerton, Montgomery, and Wang Atmos. Chem. and Phys. 2009. Global Guide to Tropical Cyclone Forecasting, Holland (ed.), online at http://www.bom.gov.au/bmrc/pubs/tcguide/globa_guide_intro.htm Reading: An Introduction to the Meteorology and Climate of the Tropics, Chapter 9 A Global View of Tropical Cyclones, Chapter 3, Frank Hurricane, Chapter 2, Pielke GENERAL CONSIDERATIONS Tropical convection acts as a heat engine, taking warm moist air from the surface and converting the latent heat into kinetic energy in the updraft, which is then exhausted into the upper troposphere. If the circulation can overcome the dissipating effects of friction it can become self-sustaining. In order for a convective cloud cluster to result in pressure falls at the surface, there must be a net removal of mass from the air column (net vertically integrated divergence). Since there is compensating subsidence nearby, outside of a typical convective cloud, there really isn’t much integrated mass divergence. Pressure really won’t fall unless there is a mechanism to remove the mass that is exhausted well away from the convection. Compensating subsidence near the convection also serves to decrease the buoyancy within the clouds, because the subsiding air will also warm.
    [Show full text]
  • On the Difference of Storm Rainfall of Hurricanes Isidore and Lili. Part I
    FEBRUARY 2008 JIANGETAL. 29 On the Differences in Storm Rainfall from Hurricanes Isidore and Lili. PartI: Satellite Observations and Rain Potential HAIYAN JIANG AND JEFFREY B. HALVERSON Joint Center for Earth Systems Technology, University of Maryland, Baltimore County, Baltimore, and Meososcale Atmospheric Processes Branch, NASA Goddard Space Flight Center, Greenbelt, Maryland JOANNE SIMPSON Laboratory for Atmospheres, NASA Goddard Space Flight Center, Greenbelt, Maryland (Manuscript received 28 September 2005, in final form 16 May 2007) ABSTRACT It has been well known for years that the heavy rain and flooding of tropical cyclones over land bear a weak relationship to the maximum wind intensity. The rainfall accumulation history and rainfall potential history of two North Atlantic hurricanes during 2002 (Isidore and Lili) are examined using a multisatellite algorithm developed for use with the Tropical Rainfall Measuring Mission (TRMM) dataset. This algorithm uses many channel microwave data sources together with high-resolution infrared data from geosynchro- nous satellites and is called the real-time Multisatellite Precipitation Analysis (MPA-RT). MPA-RT rainfall estimates during the landfalls of these two storms are compared with the combined U.S. Next-Generation Doppler Radar (NEXRAD) and gauge dataset: the National Centers for Environmental Prediction (NCEP) hourly stage IV multisensor precipitation estimate analysis. Isidore produced a much larger storm total volumetric rainfall as a greatly weakened tropical storm than did category 1 Hurricane Lili during landfall over the same area. However, Isidore had a history of producing a large amount of volumetric rain over the open gulf. Average rainfall potential during the 4 days before landfall for Isidore was over a factor of 2.5 higher than that for Lili.
    [Show full text]
  • Climate Variability and Weather Highlights
    THE “YEAR” OF TROPICAL CONVECTION (MAY 2008–APRIL 2010) Climate Variability and Weather Highlights BY DUANE E. WALISER, MITCHELL W. MONCRIEFF, DAVID BURRIDGE, ANDREAS H. FINK, DAVE GOCHIS, B. N. GOSWAMI, BIN GUAN, PATRICK HARR, JULIAN HEMING, HUANG-HSUING HSU, CHRISTIAN JAKOB, MATT JANIGA, RICHARD JOHNSON, SARAH JONES, PETER KNIppERTZ, JOSE MARENGO, HANH NGUYEN, MICK POPE, YOLANDE SERRA, CHRIS THORNCROFT, MATTHEW WHEELER, ROBERT WOOD, AND SANDRA YUTER May 2008–April 2010 provided a diverse array of scientifically interesting and socially important weather and climate events that emphasizes the impact and reach of tropical convection over the globe. he realistic representation of tropical convection Oscillation (ENSO), monsoons and their active/break in our global atmospheric models is a long- periods, the Madden–Julian oscillation (MJO), east- T standing grand challenge for numerical weather erly waves and tropical cyclones, subtropical stratus forecasts and global climate predictions [see com- decks, and even the diurnal cycle. Furthermore, panion article Moncrieff et al. (2012), hereafter M12]. tropical climate and weather disturbances strongly Our lack of fundamental knowledge and practical influence stratospheric–tropospheric exchange capabilities in this area leaves us disadvantaged in and the extratropics. To address this challenge, the simulating and/or predicting prominent phenom- World Climate Research Programme (WCRP) and ena of the tropical atmosphere, such as the inter- The Observing System Research and Predictability tropical
    [Show full text]
  • The Tropical Rainfall Potential (Trap) Technique. Part I: Description and Examples Ϩ STANLEY Q
    456 WEATHER AND FORECASTING VOLUME 20 The Tropical Rainfall Potential (TRaP) Technique. Part I: Description and Examples ϩ STANLEY Q. KIDDER,* SHELDON J. KUSSELSON, JOHN A. KNAFF,* RALPH R. FERRARO,#,@ ϩ ROBERT J. KULIGOWSKI,# AND MICHAEL TURK *Cooperative Institute for Research in the Atmosphere, Colorado State University, Fort Collins, Colorado ϩNOAA/NESDIS/OSDPD/Satellite Services Division, Camp Springs, Maryland #NOAA/NESDIS/Center for Satellite Applications and Research, Camp Springs, Maryland @Cooperative Institute for Climate Studies, University of Maryland, College Park, College Park, Maryland (Manuscript received 16 February 2004, in final form 9 August 2004) ABSTRACT Inland flooding caused by heavy rainfall from landfalling tropical cyclones is a significant threat to life and property. The tropical rainfall potential (TRaP) technique, which couples satellite estimates of rain rate in tropical cyclones with track forecasts to produce a forecast of 24-h rainfall from a storm, was developed to better estimate the magnitude of this threat. This paper outlines the history of the TRaP technique, details its current algorithms, and offers examples of its use in forecasting. Part II of this paper covers verification of the technique. 1. Introduction accurate rainfall forecasts can be made is beyond the state of the art. Radar observations of storm rain rate For centuries, the wind and waves caused by tropical and rain area are valuable, particularly for short-term cyclones have menaced mariners and coastal dwellers. (ϳ1 h) forecasting of urban flash flooding and land- Enormous resources have been invested in observing slides, but only when the storm is within radar range of and forecasting these killers.
    [Show full text]
  • Cyclogenesis and Tropical Transition in Frontal Zones Michelle L
    Florida State University Libraries Electronic Theses, Treatises and Dissertations The Graduate School 2007 Cyclogenesis and Tropical Transition in Frontal Zones Michelle L. Stewart Follow this and additional works at the FSU Digital Library. For more information, please contact [email protected] THE FLORIDA STATE UNIVERSITY COLLEGE OF ARTS AND SCIENCES CYCLOGENESIS AND TROPICAL TRANSITION IN FRONTAL ZONES By MICHELLE L. STEWART A Thesis submitted to the Department of Meteorology in partial fulfillment of the requirements for the degree of Masters of Science Degree Awarded: Summer Semester, 2007 Copyright © 2007 Michelle L. Stewart All Rights Reserved The members of the Committee approve the thesis of Michelle L. Stewart defended on Monday 21 May, 2007: ___________________________________ Mark Bourassa Professor Directing Thesis ___________________________________ Robert Hart Committee Member ___________________________________ Phillip Cunningham Committee Member The Office of Graduate Studies has verified and approved the above named committee members. ii ACKNOWLEDGEMENTS I would like to thank all my committee members for their input, and specifically Dr. Hart for advice in running the MM5 and suggestions on displaying the model output. Dr. Bourassa has been very patient with me while I explored avenues in this work that occasionally did not bring meaningful results, and for that leeway I am grateful. Kelly McBeth donated her QuikSCAT read code, allowing me to easily find the maximum values used in this study. Joe Sienkiewicz provided the OPC surface analysis charts, as well as insightful discussions about this work. As I began my graduate studies, Steve Guimond and Ryan Maue were always willing to patiently answer my most elementary questions about the atmosphere.
    [Show full text]
  • Tropical Weather Systems
    ESCI 344 – Tropical Meteorology Lesson 8 – Tropical Weather Systems References: Tropical Climatology (2nd Ed.), McGregor and Nieuwolt Climate and Weather in the Tropics, Riehl Climate Dynamics of the Tropics, Hastenrath Forecaster’s Guide to Tropical Meteorology (AWS TR 240 Updated), Ramage “Conceptual Models of Tropical Waves,” Burton and Burton (online MetEd module), https://www.meted.ucar.edu/meteoforum/tropwaves/ African Easter Waves, (online MetEd module), https://www.meted.ucar.edu/tropical/synoptic/Afr_E_Waves “The origin and structure of easterly waves in the lower troposphere of North Africa,” Burpee, J. Atmos. Sci., 29, 77-90, 1972 “Three dimensional structure and dynamics of the African easterly waves, Part II: Dynamical models,” Hall et al., J. Atmos. Sci., 63, 2231-2245, 2006 “African easterly wave variability and its relationship to Atlantic tropical cyclone activity,” Thorncroft and Hodges, J. of Climate, 14, 1166-1179, 2001 Reading: Introduction to the Meteorology and Climate of the Tropics, Chapter 10 “African easterly wave variability and its relationship to Atlantic tropical cyclone activity,” Thorncroft and Hodges “Conceptual Models of Tropical Waves,” Burton and Burton (online MetEd module), https://www.meted.ucar.edu/meteoforum/tropwaves/ African Easter Waves, (online MetEd module), https://www.meted.ucar.edu/tropical/synoptic/Afr_E_Waves GENERAL • Deep convection in Tropics tied generally to where there is upper-level divergence and outflow, not so much on static stability. • Tropical weather systems are typically divided into three categories: o Waves o Vortexes o Linear disturbances • Observational studies of tropical weather systems find that often the lowest observed relative humidities are actually located in the region of highest precipitation! o This is due to the fact that even in the areas of greatest precipitation and convection, compensating subsidence occupies most of the area, and so statistically the observations will be taken in subsiding (dry) regions.
    [Show full text]
  • Introduction to TAFB: Duties, Forecasts, and Products (Hugh Cobb)
    Introduction to TAFB: Duties, Forecasts, and Products Hugh Cobb, Chief TAFB 28 February 2016 Tropical Analysis and Forecast Branch (TAFB) • Year round (24/7/365) products • Marine forecasts (Gridded, Graphical and Text) and discussions (MIM) • Surface analyses and discussions (TWD) • Aviation forecasts and warnings (backup responsibilities) *** • Satellite-derived rainfall estimates • Hurricane Season • Tropical cyclone intensity estimates using Dvorak technique • Media support to NHC (English, Spanish, French) • Radar tracking of tropical cyclones • Forecast support to Hurricane Specialists (Marine) TAFB produces 55 graphic products & 56 text products each day. TAFB Forecast Duties EAST PACIFIC DESK Gridded/Text Marine Forecast Products Northeast Pacific High Seas Forecast (FZPN03 KNHC) Southeast Pacific High Seas Forecast (FZPN04 KNHC) Tropical Cyclone Wave Height Estimates Meteorological Discussion East Pacific Tropical Weather Discussion (AXPZ20 KNHC) Graphical Products Satellite Products Dvorak Tropical Cyclone Satellite Sea State Analysis Intensity Estimates Wind & Wave Forecasts Wave Period Forecasts Microwave Satellite Position Estimates High Wind Graphic Satellite Rainfall Estimates TC Danger Area Graphic TAFB Forecast Duties Gridded/Text Marine Forecast Products Graphical Products Atlantic High Seas Forecast Sea State Analysis (FZNT02 KNHC) Wind & Wave Forecasts Gulf of Mexico Offshore Wave Period Forecasts Waters Forecast (FZNT24 KNHC) Meteorological Discussion Caribbean/Atlantic Offshore Waters Forecast (FZNT23 KNHC) Marine Weather Discussion (AGXX40 KNHC) NAVTEX Forecasts (3) (FZNT25 KNHC, FZNT26 KNHC, & FZNT27 KNHC) ATLANTIC DESK VOBRA Forecasts (2) (FZNT25 KNHC, FZNT26 KNHC, & FZNT27 KNHC) TAFB Forecast Duties ATLANTIC/EAST PACIFIC Surface Analysis ANALYSIS DESK 6-hourly for area from 20S to 30N between 10E and 140W 3-hourly mainly for Gulf of Mexico, Florida, Mexico Pan-American Temperature/Precipitation Table Meteorological Discussion Graphical Forecast Products Atlantic Tropical Weather Discussion Surface Prog.
    [Show full text]