Effect of Disturbance on Sandhills Coleoptera

Total Page:16

File Type:pdf, Size:1020Kb

Effect of Disturbance on Sandhills Coleoptera THE EFFECTS OF SUCCESSION AND DISTURBANCE ON COLEOPTERAN ABUNDANCE AND DIVERSITY IN THE CENTENNIAL SANDHILLS by Ross Cameron Winton A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Entomology MONTANA STATE UNIVERSITY Bozeman, Montana May 2010 ©COPYRIGHT by Ross Cameron Winton 2010 All Rights Reserved ii APPROVAL of a thesis submitted by Ross Cameron Winton This thesis has been read by each member of the thesis committee and has been found to be satisfactory regarding content, English usage, format, citation, bibliographic style, and consistency, and is ready for submission to the Division of Graduate Education. Dr. Michael A. Ivie Approved for the Department of Plant Sciences and Plant Pathology Dr. John E. Sherwood Approved for the Division of Graduate Education Dr. Carl A. Fox iii STATEMENT OF PERMISSION TO USE In presenting this thesis in partial fulfillment of the requirements for a master’s degree at Montana State University, I agree that the Library shall make it available to borrowers under rules of the Library. If I have indicated my intention to copyright this thesis by including a copyright notice page, copying is allowable only for scholarly purposes, consistent with “fair use” as prescribed in the U.S. Copyright Law. Requests for permission for extended quotation from or reproduction of this thesis in whole or in parts may be granted only by the copyright holder. Ross Cameron Winton May 2010 iv DEDICATION This thesis is dedicated to the memory of my grandmother, Joanne Hall Winton, who first showed me the beauty of the natural world and all of its “far out” creatures. Deus est regit qui omnia. v ACKNOWLEDGEMENTS I would like to thank my advisor Dr. Michael Ivie for all the support and guidance that he has given me. I want to thank my other committee members, Dr. Robert Peterson, Dr. Kevin O’Neill, who have been invaluable resources throughout my graduate studies. I would like to thank my wife, Danielle Winton, for her loving support and not least for being very patient & flexible with the demands associated with graduate work. My parents, Cameron and Jackie Winton, and extended family have been an inexhaustible source of support, advice, and encouragement. I would also like to thank Larry Ashbacher, who encouraged me to pursue my dreams from an early age. Many thanks to Chaz Hart for the many brews we shared and for his assistance in the field, Jerome Schleier for his constant encouragement and assistance with the statistical aspects of this project, Crystal Maier for her assistance in the field and collaboration on projects around the lab. I thank Nathan Korb and Brad Bauer of The Nature Conservancy for their generous funding of two seasons of field studies and for their collaborative assistance on many aspects of this project. vi TABLE OF CONTENTS 1. INTRODUCTION ......................................................................................................... 1 Vegetation Succession in Sand-Dominated Ecosystems ............................................... 1 Sandhill Dynamics and the Reversal of Succession ...................................................... 4 Insect Responses to Human-Implemented Methods of Succession Reversal ................ 7 2. EFFECTS OF DISTURBANCE ON COLEOPTERAN DIVERSITY IN THE CENTENNIAL SANDHILLS ..................................................................................... 10 Abstract ........................................................................................................................ 10 Introduction .................................................................................................................. 11 Study Area ................................................................................................................ 11 Previous Research and Faunal Surveys .................................................................... 15 in the Centennial Sandhills Ecosystem ..................................................................... 15 Materials and Methods ................................................................................................. 17 Treatment Methods ................................................................................................... 17 Plot Design ................................................................................................................ 20 Sampling Design ....................................................................................................... 22 Constraints ................................................................................................................ 26 Sample Processing and Data Handling ..................................................................... 26 Data Analysis ............................................................................................................ 28 Results .......................................................................................................................... 32 Environmental Variables .......................................................................................... 32 Coleopteran Abundance, Richness, and Similarity ................................................... 32 Individual Species Associations and Treatment Effects ........................................... 33 Discussion ................................................................................................................... 41 3. DISTRIBUTION AND HABITAT ASSOCIATIONS OF CENTENNIAL SANDHILL TIGER BEETLE POPULATIONS ......................................................... 44 Abstract ........................................................................................................................ 44 Introduction .................................................................................................................. 44 Materials and Methods ................................................................................................. 48 Results .......................................................................................................................... 48 Tiger Beetle Species Observed ................................................................................. 48 Descriptions and Associations of Centennial Sandhills Tiger Beetles ..................... 49 Cicindela formosa Dejean, The Big Sand Tiger Beetle ........................................ 49 Cicindela decemnotata Say, Badlands Tiger Beetle. ............................................ 52 Cicindela tranquebarica Herbst, Oblique-lined Tiger Beetle .............................. 54 Cicindela purpurea Olivier, Cow Path Tiger Beetle ............................................ 56 Cicindela nebraskana Casey, Prairie Long-lipped Tiger Beetle .......................... 58 Cicindela punctulata Olivier, Punctured Tiger Beetle ......................................... 60 Cicindela arenicola Rumpp, St. Anthony Dune Tiger Beetle .............................. 62 Discussion .................................................................................................................... 63 vii TABLE OF CONTENTS - CONTINUED REFERENCES CITED ..................................................................................................... 66 APPENDICES .................................................................................................................. 78 APPENDIX A: Family and Species List ...................................................................... 79 APPENDIX B: Site Descriptions ................................................................................. 85 APPENDIX C: Environmental Data ............................................................................ 88 APPENDIX D: Abundance and Associations of Species to Treatment ....................... 91 APPENDIX E: Abundance and Associations of Species to Sere ................................ 95 APPENDIX F: Abundance and Association of Species to Microhabitat ................... 100 APPENDIX G: Notes on Species of Special Interest ................................................. 106 APPENDIX H: Raw Data .......................................................................................... 109 viii LIST OF TABLES Table Page 1. Pitfall Trap Periods in the Centennial Sandhills ........................................................... 25 2. Covariates and Respective Definitions. ........................................................................ 31 3. Within Year Species Richness and Diversity ............................................................... 34 4. Within Treatment Species Richness and Diversity ....................................................... 34 5. Trophic levels of 10 species and their significance. ..................................................... 36 ix LIST OF FIGURES Figure Page 1. Map of the Eastern Centennial Valley and the Centennial Sandhills ........................... 12 2. Map of the Centennial Sandhills Land Management areas. ......................................... 15 3. Map of the burn treatment area. .................................................................................... 19 4. Satellite imagery of treatment and control areas.. ......................................................... 19 5. Map of the 21 selected plots included in the study. ...................................................... 21 6. Anatomy of a sand dune ..............................................................................................
Recommended publications
  • Northeastern Beach Tiger Beetle (Cicindela Dorsalis Dorsalis)
    Northeastern Beach Tiger Beetle (Cicindela dorsalis dorsalis) 5-Year Review: Summary and Evaluation u.s. Fish and Wildlife Service Virginia Field Office Gloucester, Virginia February 2009 5-YEAR REVIEW Species reviewed: Northeastern beach tiger beetle (Cicindela dorsalis dorsalis) TABLE OF CONTENTS 1.0 GENERAL INFORMATION ...................................................................................................... 1 1.1 Reviewers........................................................................................................................ 1 1.2 Methodology .................................................................................................................. 1 1.3 Background ..................................................................................................................... 1 2.0 REVIEW ANALYSIS 2.1 Application of 1996 Distinct Population Segment (DPS) Policy ................................... 2 2.2 Recovery Criteria ............................................................................................................ 2 2.3 Updated Information and Current Species Status ........................................................... 5 2.3.1 Biology and habitat .............................................................................................. 5 2.3.2 Five-factor analysis .............................................................................................. 10 2.4 Synthesis .........................................................................................................................13
    [Show full text]
  • Beetle Appreciation Diversity and Classification of Common Beetle Families Christopher E
    Beetle Appreciation Diversity and Classification of Common Beetle Families Christopher E. Carlton Louisiana State Arthropod Museum Coleoptera Families Everyone Should Know (Checklist) Suborder Adephaga Suborder Polyphaga, cont. •Carabidae Superfamily Scarabaeoidea •Dytiscidae •Lucanidae •Gyrinidae •Passalidae Suborder Polyphaga •Scarabaeidae Superfamily Staphylinoidea Superfamily Buprestoidea •Ptiliidae •Buprestidae •Silphidae Superfamily Byrroidea •Staphylinidae •Heteroceridae Superfamily Hydrophiloidea •Dryopidae •Hydrophilidae •Elmidae •Histeridae Superfamily Elateroidea •Elateridae Coleoptera Families Everyone Should Know (Checklist, cont.) Suborder Polyphaga, cont. Suborder Polyphaga, cont. Superfamily Cantharoidea Superfamily Cucujoidea •Lycidae •Nitidulidae •Cantharidae •Silvanidae •Lampyridae •Cucujidae Superfamily Bostrichoidea •Erotylidae •Dermestidae •Coccinellidae Bostrichidae Superfamily Tenebrionoidea •Anobiidae •Tenebrionidae Superfamily Cleroidea •Mordellidae •Cleridae •Meloidae •Anthicidae Coleoptera Families Everyone Should Know (Checklist, cont.) Suborder Polyphaga, cont. Superfamily Chrysomeloidea •Chrysomelidae •Cerambycidae Superfamily Curculionoidea •Brentidae •Curculionidae Total: 35 families of 131 in the U.S. Suborder Adephaga Family Carabidae “Ground and Tiger Beetles” Terrestrial predators or herbivores (few). 2600 N. A. spp. Suborder Adephaga Family Dytiscidae “Predacious diving beetles” Adults and larvae aquatic predators. 500 N. A. spp. Suborder Adephaga Family Gyrindae “Whirligig beetles” Aquatic, on water
    [Show full text]
  • Assessment of Forest Insect Conditions at Opax Mountain Silviculture Trial
    Assessment of Forest Insect Conditions at Opax Mountain Silviculture Trial DAN MILLER AND LORRAINE MACLAUCHLAN SITUATION OVERVIEW Forest management in British Columbia requires that all resource values are considered along with a variety of appropriate management practices. For the past 100 years, partial-cutting practices were the method of choice when harvesting in Interior Douglas-fir (IDF) zone ecosystems. Along with a high- ly effective fire suppression program and minimal stand tending, these practices have created new and distinct stand structures. These range from low-density stands of uniform height to variable-density, multi-layered stands with patchy distributions of tree clumps and canopy gaps. However, some management practices in IDF ecosystems have created ideal conditions for epidemics of insects and diseases, which are detrimental to both stand and landscape values. The Douglas-fir beetle (Dendroctonus pseudotsugue) is the principal bark beetle attacking mature Douglas-firs (Furniss and Carolin 1980). Timber losses attributed to the Douglas-fir mor- tality caused by this beetle were estimated at 2.4 million m3 from 1956 to 1994. These losses occurred primarily in the province’s Southern Interior (Humphreys 1995). Visual quality values associated with stands and land- scapes can be strongly affected by the removal of the principal cover species, whether by clearcut activities or widespread tree mortality. By eliminating the mature component of Douglas-fir trees within a stand, bark beetles can ultimately affect mule deer by removing their winter cover and browse. The risk of attack by the Douglas-fir beetle is determined by such stand at- tributes as age, species composition, size, and growth rate (B.C.
    [Show full text]
  • Ants As Prey for the Endemic and Endangered Spanish Tiger Beetle Cephalota Dulcinea (Coleoptera: Carabidae) Carlo Polidori A*, Paula C
    Annales de la Société entomologique de France (N.S.), 2020 https://doi.org/10.1080/00379271.2020.1791252 Ants as prey for the endemic and endangered Spanish tiger beetle Cephalota dulcinea (Coleoptera: Carabidae) Carlo Polidori a*, Paula C. Rodríguez-Flores b,c & Mario García-París b aInstituto de Ciencias Ambientales (ICAM), Universidad de Castilla-La Mancha, Avenida Carlos III, S/n, 45071, Toledo, Spain; bDepartamento de Biodiversidad y Biología Evolutiva, Museo Nacional de Ciencias Naturales (MNCN-CSIC), Madrid, 28006, Spain; cCentre d’Estudis Avançats de Blanes (CEAB-CSIC), C. d’Accés Cala Sant Francesc, 14, 17300, Blanes, Spain (Accepté le 29 juin 2020) Summary. Among the insects inhabiting endorheic, temporary and highly saline small lakes of central Spain during dry periods, tiger beetles (Coleoptera: Carabidae: Cicindelinae) form particularly rich assemblages including unique endemic species. Cephalota dulcinea López, De la Rosa & Baena, 2006 is an endemic, regionally protected species that occurs only in saline marshes in Castilla-La Mancha (Central Spain). Here, we report that C. dulcinea suffers potential risks associated with counter-attacks by ants (Hymenoptera: Formicidae), while using them as prey at one of these marshes. Through mark–recapture methods, we estimated the population size of C. dulcinea at the study marsh as of 1352 individuals, with a sex ratio slightly biased towards males. Evident signs of ant defensive attack by the seed-harvesting ant Messor barbarus (Forel, 1905) were detected in 14% of marked individuals, sometimes with cut ant heads still grasped with their mandibles to the beetle body parts. Ant injuries have been more frequently recorded at the end of adult C.
    [Show full text]
  • The Beetle Fauna of Dominica, Lesser Antilles (Insecta: Coleoptera): Diversity and Distribution
    INSECTA MUNDI, Vol. 20, No. 3-4, September-December, 2006 165 The beetle fauna of Dominica, Lesser Antilles (Insecta: Coleoptera): Diversity and distribution Stewart B. Peck Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada stewart_peck@carleton. ca Abstract. The beetle fauna of the island of Dominica is summarized. It is presently known to contain 269 genera, and 361 species (in 42 families), of which 347 are named at a species level. Of these, 62 species are endemic to the island. The other naturally occurring species number 262, and another 23 species are of such wide distribution that they have probably been accidentally introduced and distributed, at least in part, by human activities. Undoubtedly, the actual numbers of species on Dominica are many times higher than now reported. This highlights the poor level of knowledge of the beetles of Dominica and the Lesser Antilles in general. Of the species known to occur elsewhere, the largest numbers are shared with neighboring Guadeloupe (201), and then with South America (126), Puerto Rico (113), Cuba (107), and Mexico-Central America (108). The Antillean island chain probably represents the main avenue of natural overwater dispersal via intermediate stepping-stone islands. The distributional patterns of the species shared with Dominica and elsewhere in the Caribbean suggest stages in a dynamic taxon cycle of species origin, range expansion, distribution contraction, and re-speciation. Introduction windward (eastern) side (with an average of 250 mm of rain annually). Rainfall is heavy and varies season- The islands of the West Indies are increasingly ally, with the dry season from mid-January to mid- recognized as a hotspot for species biodiversity June and the rainy season from mid-June to mid- (Myers et al.
    [Show full text]
  • The Evolution and Genomic Basis of Beetle Diversity
    The evolution and genomic basis of beetle diversity Duane D. McKennaa,b,1,2, Seunggwan Shina,b,2, Dirk Ahrensc, Michael Balked, Cristian Beza-Bezaa,b, Dave J. Clarkea,b, Alexander Donathe, Hermes E. Escalonae,f,g, Frank Friedrichh, Harald Letschi, Shanlin Liuj, David Maddisonk, Christoph Mayere, Bernhard Misofe, Peyton J. Murina, Oliver Niehuisg, Ralph S. Petersc, Lars Podsiadlowskie, l m l,n o f l Hans Pohl , Erin D. Scully , Evgeny V. Yan , Xin Zhou , Adam Slipinski , and Rolf G. Beutel aDepartment of Biological Sciences, University of Memphis, Memphis, TN 38152; bCenter for Biodiversity Research, University of Memphis, Memphis, TN 38152; cCenter for Taxonomy and Evolutionary Research, Arthropoda Department, Zoologisches Forschungsmuseum Alexander Koenig, 53113 Bonn, Germany; dBavarian State Collection of Zoology, Bavarian Natural History Collections, 81247 Munich, Germany; eCenter for Molecular Biodiversity Research, Zoological Research Museum Alexander Koenig, 53113 Bonn, Germany; fAustralian National Insect Collection, Commonwealth Scientific and Industrial Research Organisation, Canberra, ACT 2601, Australia; gDepartment of Evolutionary Biology and Ecology, Institute for Biology I (Zoology), University of Freiburg, 79104 Freiburg, Germany; hInstitute of Zoology, University of Hamburg, D-20146 Hamburg, Germany; iDepartment of Botany and Biodiversity Research, University of Wien, Wien 1030, Austria; jChina National GeneBank, BGI-Shenzhen, 518083 Guangdong, People’s Republic of China; kDepartment of Integrative Biology, Oregon State
    [Show full text]
  • Boreal Ground-Beetle (Coleoptera: Carabidae) Assemblages of the Mainland and Islands in Lac La Ronge, Saskatchewan, Canada
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/316781970 Boreal ground-beetle (Coleoptera: Carabidae) assemblages of the mainland and islands in Lac la Ronge, Saskatchewan, Canada Article in The Canadian Entomologist · May 2017 DOI: 10.4039/tce.2017.12 CITATIONS READS 2 164 4 authors, including: Aaron J. Bell Iain David Phillips University of Saskatchewan Saskatchewan Water Security Agency 18 PUBLICATIONS 23 CITATIONS 57 PUBLICATIONS 333 CITATIONS SEE PROFILE SEE PROFILE Scott Nielsen University of Alberta 188 PUBLICATIONS 6,015 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: Grizzly bear response to disturbance View project Grizzly bear population dynamics in a changing world View project All content following this page was uploaded by Aaron J. Bell on 07 November 2017. The user has requested enhancement of the downloaded file. 1 Boreal ground-beetle (Coleoptera: Carabidae) assemblages of the mainland and islands in Lac la Ronge, Saskatchewan, Canada Aaron J. Bell,1 Iain D. Phillips, Scott E. Nielsen, John R. Spence Abstract—We tested the applicability of the “passive sampling” hypothesis and theory of island biogeography (TIB) for explaining the diversity of forest-dwelling carabid assemblages (Carabidae: Coleoptera) on 30 forested islands (0.2–980.7 ha) in Lac la Ronge and the adjacent mainland in Saskatchewan, Canada. Species richness per unit area increased with distance to mainland with diversity being highest on the most isolated islands. We detected neither a positive species-area relationship, nor significant differences in species richness among island size classes, or between islands and the mainland.
    [Show full text]
  • Insect Remains from Various Sites in Southwark: Draft for Consultation
    Insect remains from various sites in Southwark: Draft for consultation H. K. Kenward Environmental Archaeology Unit, University of York, York YO1 5DD. [NB: This report was reformatted from a Runoff file on 18th March 2008. The only changes have been to preserve internal consistency and to correct typographical errors. HK. The original was an archive report deposited in the former Environmental Archaeology Unit, York, and the Ancient Monuments Laboratory, and allocated post hoc as Reports from the Environmental Archaeology Unit, York 90/10.] Introduction This report is an account of insect remains from a large number of samples from several sites in Southwark. The material was provided in processed form. The majority of the assemblages were dry in plastic tubes, and the remainder in IMS in glass vials. In some cases, material in both forms was available for a sample. Almost all the groups of insects were, by comparison with the material normally used for interpretation, very small, often only one to a few fragments. In a few cases some twenty or so individuals of beetles and bugs were represented by the remains; the largest group was perhaps twice this size, still less than half the number of individuals generally taken as a reasonable working minimum for interpretation of a mixed assemblage (Kenward 1978). The dry material appeared to be biassed in favour of large taxa, and presented considerable difficulty in handling because of the effect of static attraction between fossils and the plastic vials. Many fossils were damaged while attempting to remove them, and others sprang away as a result of static repulsion as soon as they were taken from the tubes.
    [Show full text]
  • Influence of Plant Parameters on Occurrence and Abundance Of
    HORTICULTURAL ENTOMOLOGY Influence of Plant Parameters on Occurrence and Abundance of Arthropods in Residential Turfgrass 1 S. V. JOSEPH AND S. K. BRAMAN Department of Entomology, College of Agricultural and Environmental Sciences, University of Georgia, 1109 Experiment Street, GrifÞn, GA 30223-1797 J. Econ. Entomol. 102(3): 1116Ð1122 (2009) ABSTRACT The effect of taxa [common Bermuda grass, Cynodon dactylon (L.); centipedegrass, Eremochloa ophiuroides Munro Hack; St. Augustinegrass, Stenotaphrum secundatum [Walt.] Kuntze; and zoysiagrass, Zoysia spp.], density, height, and weed density on abundance of natural enemies, and their potential prey were evaluated in residential turf. Total predatory Heteroptera were most abundant in St. Augustinegrass and zoysiagrass and included Anthocoridae, Lasiochilidae, Geocoridae, and Miridae. Anthocoridae and Lasiochilidae were most common in St. Augustinegrass, and their abundance correlated positively with species of Blissidae and Delphacidae. Chinch bugs were present in all turf taxa, but were 23Ð47 times more abundant in St. Augustinegrass. Anthocorids/lasiochilids were more numerous on taller grasses, as were Blissidae, Delphacidae, Cicadellidae, and Cercopidae. Geocoridae and Miridae were most common in zoysiagrass and were collected in higher numbers with increasing weed density. However, no predatory Heteroptera were affected by grass density. Other beneÞcial insects such as staphylinids and parasitic Hymenoptera were captured most often in St. Augustinegrass and zoysiagrass. These differences in abundance could be in response to primary or alternate prey, or reßect the inßuence of turf microenvironmental characteristics. In this study, SimpsonÕs diversity index for predatory Heteroptera showed the greatest diversity and evenness in centipedegrass, whereas the herbivores and detritivores were most diverse in St. Augustinegrass lawns. These results demonstrate the complex role of plant taxa in structuring arthropod communities in turf.
    [Show full text]
  • Relative and Seasonal Abundance of Beneficial Arthropods in Centipedegrass As Influenced by Management Practices
    HORTICULTURAL ENTOMOLOGY Relative and Seasonal Abundance of Beneficial Arthropods in Centipedegrass as Influenced by Management Practices S. KRISTINE BRAMAN AND ANDREW F. PENDLEY Department of Entomology, University of Georgia, College of Agriculture Experiment Stations, Georgia Station, Griffin, GA 30223 J. Econ. Entomol. 86(2): 494-504 (1993) ABSTRACT Pitfall traps were used to monitor the seasonal activity of arthropod preda­ tors, parasitoids, and decomposers in replicated plots of centipedegrass turf for 3 yr (1989-1991) at two locations. During 1990 and 1991, the influence of single or combined herbicide, insecticide, and fertilizer applications on these beneficials was assessed. In total, 21 species of carabids in 13 genera and 17 species of staphylinids in 14 genera were represented in pitfall-trap collections. Nonsminthurid collembolans, ants, spiders, and parasitic Hymenoptera were adversely affected in the short term by insecticide applica­ tions targeting the twolined spittlebug, Prosapia bicincta (Say). Other taxa, notably orib­ atid Acari, increased over time in response to pesticide or fertilizer applications. Although various taxa were reduced by pesticide application during three of four sample intervals, a lack ofoverall differences in season totals suggests that the disruptive influence ofcertain chemical management practices may be less severe than expected in the landscape. KEY WORDS Arthropoda, centipedegrass, nontarget effects CENTIPEDEGRASS, Eremochloa ophiuroides Potter 1983, Arnold & Potter 1987, Potter et al. (Munro) Hack, a native of China and Southeast 1990b, Vavrek & Niemczyk 1990). Asia introduced into the United States in 1916, Studies characterizing the beneficial arthropod has become widely grown from South Carolina community and assessing effects of management to Florida and westward along the Gulf Coast practices on those invertebrates are especially states to Texas (DubIe 1989).
    [Show full text]
  • Coleoptera: Carabidae) Diversity
    VEGETATIVE COMMUNITIES AS INDICATORS OF GROUND BEETLE (COLEOPTERA: CARABIDAE) DIVERSITY BY ALAN D. YANAHAN THESIS Submitted in partial fulfillment of the requirements for the degree of Master of Science in Entomology in the Graduate College of the University of Illinois at Urbana-Champaign, 2013 Urbana, Illinois Master’s Committee: Dr. Steven J. Taylor, Chair, Director of Research Adjunct Assistant Professor Sam W. Heads Associate Professor Andrew V. Suarez ABSTRACT Formally assessing biodiversity can be a daunting if not impossible task. Subsequently, specific taxa are often chosen as indicators of patterns of diversity as a whole. Mapping the locations of indicator taxa can inform conservation planning by identifying land units for management strategies. For this approach to be successful, though, land units must be effective spatial representations of the species assemblages present on the landscape. In this study, I determined whether land units classified by vegetative communities predicted the community structure of a diverse group of invertebrates—the ground beetles (Coleoptera: Carabidae). Specifically, that (1) land units of the same classification contained similar carabid species assemblages and that (2) differences in species structure were correlated with variation in land unit characteristics, including canopy and ground cover, vegetation structure, tree density, leaf litter depth, and soil moisture. The study site, the Braidwood Dunes and Savanna Nature Preserve in Will County, Illinois is a mosaic of differing land units. Beetles were sampled continuously via pitfall trapping across an entire active season from 2011–2012. Land unit characteristics were measured in July 2012. Nonmetric multidimensional scaling (NMDS) ordinated the land units by their carabid assemblages into five ecologically meaningful clusters: disturbed, marsh, prairie, restoration, and savanna.
    [Show full text]
  • B a N I S T E R I A
    B A N I S T E R I A A JOURNAL DEVOTED TO THE NATURAL HISTORY OF VIRGINIA ISSN 1066-0712 Published by the Virginia Natural History Society The Virginia Natural History Society (VNHS) is a nonprofit organization dedicated to the dissemination of scientific information on all aspects of natural history in the Commonwealth of Virginia, including botany, zoology, ecology, archaeology, anthropology, paleontology, geology, geography, and climatology. The society’s periodical Banisteria is a peer-reviewed, open access, online-only journal. Submitted manuscripts are published individually immediately after acceptance. A single volume is compiled at the end of each year and published online. The Editor will consider manuscripts on any aspect of natural history in Virginia or neighboring states if the information concerns a species native to Virginia or if the topic is directly related to regional natural history (as defined above). Biographies and historical accounts of relevance to natural history in Virginia also are suitable for publication in Banisteria. Membership dues and inquiries about back issues should be directed to the Co-Treasurers, and correspondence regarding Banisteria to the Editor. For additional information regarding the VNHS, including other membership categories, annual meetings, field events, pdf copies of papers from past issues of Banisteria, and instructions for prospective authors visit http://virginianaturalhistorysociety.com/ Editorial Staff: Banisteria Editor Todd Fredericksen, Ferrum College 215 Ferrum Mountain Road Ferrum, Virginia 24088 Associate Editors Philip Coulling, Nature Camp Incorporated Clyde Kessler, Virginia Tech Nancy Moncrief, Virginia Museum of Natural History Karen Powers, Radford University Stephen Powers, Roanoke College C. L. Staines, Smithsonian Environmental Research Center Copy Editor Kal Ivanov, Virginia Museum of Natural History Copyright held by the author(s).
    [Show full text]