Western Spruce Budworm

Total Page:16

File Type:pdf, Size:1020Kb

Western Spruce Budworm Utah State University DigitalCommons@USU Quinney Natural Resources Research Library, The Bark Beetles, Fuels, and Fire Bibliography S.J. and Jessie E. 1987 Western Spruce Budworm M. H. Brooks J. J. Colbert R. G. Mitchell R. W. Stark Follow this and additional works at: https://digitalcommons.usu.edu/barkbeetles Part of the Entomology Commons Recommended Citation Brookes, M.H., Colbert, J.J., Mitchell, R.G., Stark, R.W., 1987.Western spruce budworm. USDA For. Serv. Tech. Bull. 1694, p.108 This Bulletin is brought to you for free and open access by the Quinney Natural Resources Research Library, S.J. and Jessie E. at DigitalCommons@USU. It has been accepted for inclusion in The Bark Beetles, Fuels, and Fire Bibliography by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. Utah State University DigitalCommons@USU Quinney Natural Resources Research Library, S.J. The aB rk Beetles, Fuels, and Fire Bibliography and Jessie E. 1987 Western spruce budworm M. H. Brooks J. J. Colbert R. G. Mitchell R. W. Stark Follow this and additional works at: https://digitalcommons.usu.edu/barkbeetles Part of the Entomology Commons Recommended Citation Brookes, M.H., Colbert, J.J., Mitchell, R.G., Stark, R.W., 1987.Western spruce budworm. USDA For. Serv. Tech. Bull. 1694, p.108 This Bulletin is brought to you for free and open access by the Quinney Natural Resources Research Library, S.J. and Jessie E. at DigitalCommons@USU. It has been accepted for inclusion in The aB rk Beetles, Fuels, and Fire Bibliography by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. / 1 e^\ tes Department of Agriculture Western Spruce Forest Service Cooperative State Budworm Research Service Technical Bulletin No. 1694 S86397 In 1977, the United States Department of Agriculture and the Canadian Department of the Environment agreed to cooperate in an expanded and accelerated research and development effort, the Canada/United States Spruce Budworms Program (CANUSA), aimed at the spruce budworm in the East and the western spruce budworm in the West. The objective of CANUSA was to design and evaluate strategies for controlling the spruce budworms and managing budworm-susceptible forests to help forest managers attain their objectives in an economically and environmentally acceptable manner. This manual is one in a series on the western spruce budworm. Canada United States Spruce Budworms Program May 1987 Canada/United States Spruce Budworms Program-West Western Spruce Budworm Forest Service Martha H. Brookes, Robert W. Campbell, J. J. Colbert, Russel G. Mitchell, and R. W. Stark, Technical Cooperative State Research Service Coordinators^ Technical Bulletin No. 1694 United States Department of Agriculture Washington, DC ,_, Indexing Bpanoli. 'Martha H. Brookes is Information Coordinator for CANUSA-West in Corvallis, OR. Robert W. Campbell was a research scientist at the USDA Forest Service, Pacific Northwest Forest and Range Experiment Station in Corvallis, OR, and is now a consulting entomologist in Syracuse, NY. J. J. Colbert and Russel G. Mitchell are Program Manager and Applications Coordinator, respectively, of CANUSA- West in Portland, OR. R. W. Stark was formerly Program Manager of CANUSA-West and is now at the University of Idaho, Moscow. Preface Despite extensive aerial spraying, outbreaks of the So that the information would be in forms most useful spruce budworm in the East and the western spruce to forest managers, administrators in the western budworm in the West have caused considerable segment of the program (CANUSA-West) appointed a damage to susceptible forests and show no signs of working group (see appendix 1) to plan the abating. As many as 900 million acres (365 million ha) distribution of research results to all appropriate have been infested in 1 year in the eastern part of the audiences. Meeting annually, the group identified the continent. About 5 million acres (2 million ha) are major audiences and developed a framework for infested annually in the West, and about 247 million reaching them. A major part of the effort is a series of acres (100 million ha) of western forests are three books. This book is a synthesis of current considered susceptible. A new approach to budworm knowledge about the insect and its hosts. It problems was clearly needed—one that could include summarizes most of the known information on the direct suppression but would emphasize forest western spruce budworm and provides background management to reduce susceptibility. for the recommendations contained in two management books: Manag in f^ Trees and Stands In 1977, the United States Department of Agriculture Susceptible to Western Spruce Budworm, and and the Canadian Department of the Environment Western Spruce Budworm and Forest-Management agreed to pool the expertise and facilities of both Planning. These management books are intended to countries; together they embarked on a 6-year stand alone to provide easy access to just the research and development program in 1978. information needed by their specialized Objectives were to design and evaluate economical audiences—forest managers and planners—to support and environmentally acceptable strategies to suppress decisions related to budworm. When detailed the budworms and to manage forests susceptible to information is sought, the user can consult the them. Part of the planning was to assure that new comprehensive index in this volume. The many information and technology would be available for citations provide a key to the technical and scientific application by forest managers as soon as possible. literature. For convenience, ''budworm" or "western budworm'' in this book means the western spruce budworm, Chorist one ur a occidentalis Freeman. The spruce budworm, C. fumiferana (Clemens), is called ''eastern budworm." Contents Chapter 1 Chapter 3 History 1 Life History and Behavior 29 1.1 Introduction 2 V. M. Carolin Lawrence E. Stipe 3.1 Life Stages and Description 30 1.2 Outbreak Chronology 2 3.1.1 Egg 30 1.2.1 1922 to 1946 2 3.1.2 Larva 31 1.2.2 1947 to 1982 3 3.1.3 Pupa 32 1.3 Research 5 3.1.4 Adult 32 V. M. Carolin 3.1.5 Color Variation 33 1.3.1 Early Work 5 3.2 Life Cycle 34 1.3.2 Centralized Planning 6 3.2.1 Seasonal Behavior 34 1.3.3 CANUSA Program—A Coordinated Approach 7 3.2.2 Feeding Habits 36 1.4 Budworm Management 8 3.2.3 Stability of Life Stages for Sampling 38 Lawrence E. Stipe 3.3 Distribution on Trees 39 1.4.1 Rationale and Objectives 8 3.3.1 Egg Masses 39 1.4.2 Chemical Insecticides 8 3.3.2 Larvae in Hibernacula 40 1.4.3 Biological Agents 12 3.3.3 Fourth Instars in Buds 40 David G. Fellin 3.3.4 Pupae 41 1.4.4 Silvicultural Practices 16 3.4 Defoliation Patterns 41 Chapter 2 Chapter 4 Taxonomy of Spruce Budworms and Description of Host Species 43 Recognition of Associates 17 Richard K. Hermann 2.1 Budworm Taxonomy 18 4.1 Introduction 44 V. M. Carolin, J. A. Powell, G. E. Daterman, 4.2 Geographic Distribution 45 and M. W. Stock 4.2.1 Latitudinal and Longitudinal Range 45 2.1.1 Historical Review 18 4.2.2 Elevational Range 45 2.1.2 Taxonomic Problem and Research Approach . 19 4.2.3 Genetic Variation 45 2.1.3 Nomenclature 19 4.2.4 Stand Composition 48 2.1.4 Interrelations oí Choristoneura and 4.2.5 Ecological Relations 50 Host Species 20 4.2.6 Phenology of Reproduction 51 2.1.5 Sex Pheromones 21 4.2.7 Cone Crops and Seed Production 52 2.1.6 Genetic Variation 23 4.2.8 Phenology of Vegetative Growth 53 2.2 Recognition of Associated Lepidoptera 24 4.2.9 Growth 54 V. M. Carolin, R. E. Stevens, and G. P. Markin 2.2.1 Background 24 2.2.2 Field Keys for the West 24 2.2.3 Common and Occasional Associates 24 2.2.4 Ecological Significance of Associates 27 ni Chapter 5 Host Responses 57 6.6 Survival of Late Larvae and Early Pupae 79 G. A. Van Sickle 6.6.1 Density Versus Survival of Late Larvae 5.1 Introduction 58 and Early Pupae 79 5.2 Physiological Changes 58 6.6.2 Role of Parasites 79 5.2.1 Tree Energy Reserves 58 6.6.3 Role of Birds and Ants 80 5.2.2 Growth Responses 58 6.6.4 Habitat Requirements of Avian Predators — 82 5.2.3 Changes in Foliage Chemistry 59 Edward O. Garton 5.2.4 Stress and Predisposition to Other Pests 59 6.6.5 Other Mortality-Causing Factors 85 5.3 Physical Changes 60 Robert W. Campbell 5.3.1 Height Growth 60 6.6.6 Foliage Quality 86 5.3.2 Radial Growth 61 6.7 Observed Eggs Per Female 86 5.3.3 Volume Growth 64 6.7.1 Fecundity 86 5.3.4 Top-Kill 65 6.7.2 Index of Adult Dispersal 87 5.3.5 Tree Mortality 67 6.7.3 Density of Adult Females Versus Egg Density 88 5.3.6 Root Growth 67 5.3.7 Cone and Seed Production 67 Chapter 7 5.4 Effects of DefoUation on Stands 68 5.4.1 Stand Structure and Composition 68 Site and Stand Characteristics 89 5.4.2 Regeneration 69 N. William Wulf and Rex G. Cates 5.4.3 Long-Term Effects on Volume 69 7.1 Introduction 90 7.2 Susceptibility and Vulnerability 90 Chapter 6 7.3 Site Characteristics 92 7.4 Stand Characteristics 96 Population Dynamics 71 7.4.1 Tree Species 96 6.1 Introduction 72 7.4.2 Stand Composition 99 Robert W.
Recommended publications
  • Some Environmental Factors Influencing Rearing of the Spruce
    S AN ABSTRACT OF THE THESIS OF Gary Boyd Pitman for the M. S. in ENTOMOLOGY (Degree) (Major) Date thesis is presented y Title SOME ENVIRONMENTAL FACTORS INFLUENCING REARING OF THE SPRUCE BUDWORM, Choristoneura fumiferana (Clem.) (LEPIDOPTERA: TORTRICIDAE) UNDER LABORATORY CONDITIONS. Abstract approved , (Major Professor) The purpose of this study was to determine the effects of controlled environmental factors upon the development of the spruce budworm (Choristoneura fumiferana Clem.) and to utilize the information for im- proving mass rearing procedures. A standard and a green form of the bud - worm occurring in the Pacific Northwest were compared morphologically and as to their suitability for mass rearing. " An exploratory study demonstrated that both forms of the budworm could be reared in quantity in the laboratory under conditions outlined by Stehr, but that greater survival and efficiency of production would be needed for mass rearing purposes. Further experimentation revealed that, by manipulating environmental factors during the rearing process, the number of budworm generations could be increased from one that occurs normally to nearly three per year. For the standard form of the budworm, procedures were developed for in- creasing laboratory stock twelvefold per generation. Productivity of the green form was much less, indicating that the standard form may be better suited for laboratory rearing in quantity. Recommended rearing procedures consist of the following steps. Egg masses should be incubated at temperatures between 70 and 75 °F and a relative humidity near 77 percent. Under these conditions, embryo matur- ation and hibernacula site selection require approximately 8 to 9 days. The larvae should be left at incubation conditions for no longer than three weeks.
    [Show full text]
  • Lepidoptera of North America 5
    Lepidoptera of North America 5. Contributions to the Knowledge of Southern West Virginia Lepidoptera Contributions of the C.P. Gillette Museum of Arthropod Diversity Colorado State University Lepidoptera of North America 5. Contributions to the Knowledge of Southern West Virginia Lepidoptera by Valerio Albu, 1411 E. Sweetbriar Drive Fresno, CA 93720 and Eric Metzler, 1241 Kildale Square North Columbus, OH 43229 April 30, 2004 Contributions of the C.P. Gillette Museum of Arthropod Diversity Colorado State University Cover illustration: Blueberry Sphinx (Paonias astylus (Drury)], an eastern endemic. Photo by Valeriu Albu. ISBN 1084-8819 This publication and others in the series may be ordered from the C.P. Gillette Museum of Arthropod Diversity, Department of Bioagricultural Sciences and Pest Management Colorado State University, Fort Collins, CO 80523 Abstract A list of 1531 species ofLepidoptera is presented, collected over 15 years (1988 to 2002), in eleven southern West Virginia counties. A variety of collecting methods was used, including netting, light attracting, light trapping and pheromone trapping. The specimens were identified by the currently available pictorial sources and determination keys. Many were also sent to specialists for confirmation or identification. The majority of the data was from Kanawha County, reflecting the area of more intensive sampling effort by the senior author. This imbalance of data between Kanawha County and other counties should even out with further sampling of the area. Key Words: Appalachian Mountains,
    [Show full text]
  • Forest Insect and Disease Conditions in the Southwestern Region, 2008
    United States Department of Forest Insect and Agriculture Forest Disease Conditions in Service Southwestern the Southwestern Region Forestry and Forest Health Region, 2008 July 2009 PR-R3-16-5 The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or part of an individual’s income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720- 2600 (voice and TTY). To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, SW, Washington, DC 20250-9410 or call (800) 795-3272 (voice) or (202) 720-6382 (TTY). USDA is an equal opportunity provider and employer. Cover photo: Pandora moth caterpillar collected on the North Kaibab Ranger District, Kaibab National Forest. Forest Insect and Disease Conditions in the Southwestern Region, 2008 Southwestern Region Forestry and Forest Health Regional Office Salomon Ramirez, Director Allen White, Pesticide Specialist Forest Health Zones Offices Arizona Zone John Anhold, Zone Leader Mary Lou Fairweather, Pathologist Roberta Fitzgibbon, Entomologist Joel McMillin, Entomologist
    [Show full text]
  • Revista De Şi Silvicultură Cinegetică Anul XXIII | Nr
    Revista de şi Silvicultură Cinegetică Anul XXIII | Nr. 43 | 2018 PROTECȚIA PĂDURILOR GENETICĂ FORESTIERĂ FOREST PROTECTION FOREST GENETICS SILVICULTURĂ MICOLOGIE SILVOTECHNICS MYCOLOGY BIOMETRIE SPAȚII VERZI BIOMETRY GREEN AREAS (foto Gabriel Lazăr) ECOLOGIE AMENAJAREA PĂDURILOR ECOLOGY FOREST MANAGEMENT PLANNING FAUNĂ PRODUSE ACCESORII WILDLIFE MANAGEMENT NON-WOOD FOREST PRODUCTS BOTANICĂ BOTANY Făget din Munții Bucegi Societatea Progresul Silvic www.progresulsilvic.ro PAG. CUPRINS AUTOR ADRESE 1.Kastamonu University, Faculty of Forestry Biological control of forest pests by using predator and (Entomology & Protection Dept.), TURKEY, parasitoid insects in Turkey [email protected] 5 Combaterea biologică a dăunătorilor forestieri cu ajutorul insectelor 2.Bolu Abant İzzet Baysal University, Faculty of Arts prădătoare și parazite and Science, TURKEY, [email protected] 1.Sabri Ünal *corresponding author 2.Mustafa Yaman* 1.Bolu Abant İzzet Baysal University, Faculty of Arts and Science, Dept. of Biology / Karadeniz Tech. Univ., Faculty of Science, TURKEY, muyaman@ Isolation of pathogenic bacteria of the predator beetle hotmail.com Calosoma sycophanta 2.Karadeniz Technical Univ., Faculty of Science, 9 TURKEY Izolarea de bacterii patogene ale gândacului prădător Calosoma 1.Mustafa Yaman 3.Karadeniz Tech. Univ., Fac of Science, TURKEY sycophanta 2.Ömür Ayar 4.Ordu University, Faculty of Arts and Science, Dept of 3.Beyza Gonca Güner Molecular Biology, TURKEY 4.Ömer Ertürk 5.Karadeniz Tech. Univ., Faculty of Forestry, Trabzon 5.Mahmut
    [Show full text]
  • Kansas Insect Newsletter
    Kansas Insect Newsletter For Agribusinesses, Applicators, Consultants and Extension Personnel Department of Entomology 123 West Waters Hall K‐State Research and Extension Manhattan, Kansas 66506 785‐532‐5891 http://www.entomology.ksu.edu/extension __________________________________________________________________________________________________ September 10, 2010 No. 25 Impact of Pesticides on Natural Enemies: Secondary Pest Outbreak and Target Pest Resurgence Have you ever wondered or considered what happens to the ‘ecosystem’ after applying pesticides (in this case, insecticides and miticides) to deal with insect and mite pests of ornamental plants in landscapes including herbaceous annuals and perennials, and trees and shrubs (ok…may be not, but as an entomologist I tend to do this sort of “stuff,” which tends to enhance my limited social life). Well, two situations can occur as a result of relying on pesticides to regulate insect or mite pest populations that involve directly or indirectly killing natural enemies (e.g., parasitoids or predators). These are secondary pest outbreak and target pest resurgence. Secondary pest outbreak or pest replacement occurs when a major insect or mite pest is regulated downward and continues to be regulated downward by a particular pest management strategy, such as the use of pesticides, but is replaced in importance by another insect or mite pest that was previously of minor importance. Let me provide an example of secondary pest outbreak. In general, the twospotted spider mite (Tetranychus urticae) is considered a secondary pest (although many people may not agree with this generalization), that is induced by the extensive use of pesticides. Both carbaryl (Sevin) and cyfluthrin (Tempo) are both effective in regulating the adult stage of many beetle pests such as the Japanese beetle (Popilla japonica); however, both pesticides have a broad- spectrum of activity and extensive use of either or both of these products will result in the direct killing many types of insect or mite pests.
    [Show full text]
  • Do Offspring of Insects Feeding on Defoliation-Resistant Trees Have Better Biological Performance When Exposed to Nutritionally-Imbalanced Food?
    Insects 2015, 6, 112-121; doi:10.3390/insects6010112 OPEN ACCESS insects ISSN 2075-4450 www.mdpi.com/journal/insects/ Article Do Offspring of Insects Feeding on Defoliation-Resistant Trees Have Better Biological Performance When Exposed to Nutritionally-Imbalanced Food? Roberto Quezada-Garcia 1,*, Alvaro Fuentealba 1,2, Ngoc Nguyen 3 and Éric Bauce 1 1 Département des sciences du bois et de la forêt, Faculté de foresterie, de géographie et de Géomatique Université Laval, Québec, QC G1V 0A6, Canada; E-Mails: [email protected] (A.F.); [email protected] (E.B.) 2 Department of Biology, Concordia University, 7141 Sherbrooke W., Montreal, QC H4B 1R6, Canada 3 Direction de l’aménagement et de l’environnement forestiers Ministère des Forêts, de la Faune et des Parcs, 5700, 4e Av. Ouest, Québec, QC G1V 0A6, Canada; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +1-418-656-2131 (ext. 4063). Academic Editor: Brian T. Forschler Received: 3 October 2014 / Accepted: 7 January 2015 / Published: 12 January 2015 Abstract: White spruce (Picea glauca (Moench) Voss) trees that are resistant or susceptible to spruce budworm (Choristoneura fumiferana (Clem.)) attack were identified in a southern Quebec plantation. Due to high mortality-induced selective pressures imposed by resistant trees on spruce budworm larvae, insects that survive on resistant trees exhibited greater biological performance than those on susceptible trees. We tested the hypothesis that this better biological performance is maintained across generations when progeny were subjected to nutritional stress.
    [Show full text]
  • Recent Literature on Lepidoptera
    1965 Joumal of the Lepidopterists' Society 245 RECENT LITERATURE ON LEPIDOPTERA Under this heading are ineluded abstracts of papers and books of interest to lepidopterists. The world's literature is searched systematically, and it is intended that every work on Lepidoptera published after 1946 will be noticed here. Papers of only local interest and papers from this Joumal are listed without abstract. Read­ ers, not in North America, interested in assisting with the abstracting, are invited to write Dr. P. F . Bellinger (Department of Biological Sciences, San Fernando Valley State College, Northridge, California, U.S.A.). Abstractor's initials are as follows: [P.B.] - P. F. BELLINGER [W.H.] - W. HACKMAN [N.O.] - N. S. OBRAZTSOV [I.C.] - I. F. B. COMMON [T.I.] - TARO IWASE [C.R.] - C. L. REMINGTON [W.c.] - W. C. COOK [T.L.] - T. W. LA NGER [J.T.] - J. W. TILDEN [A.D.] - A. DIAKO NOFF [J.M.] - J. MOUCHA [P.V.] - P. E. L. VIETTE [J.D.] - JULIAN DO NAHUE [E.M.] - E. G. MUNROE B. SYSTEMATICS AND NOMENCLATURE Niculescu, Eugen, "Papilionidae" [in Rumanian]. Fauna Republicii Populare Ro­ mine, vol. XI, fasc. 5, 103 pp., 8 pIs., 32 figs. Academy of Sciences, Bucuresti. 1961. [price 6,40 Lei]. In the introductory part the author describes the taxonomy of all genera of Roumanian Papilionidae with remarks on the exotic species also. In the taxonomic part (pp.41-103 ) all spp. which occur in Rou­ mania are described. In this country occur: Papilw machaon, Iphiclides podalirius, Zerynthia polyxena, Z. cerisyi, Pamassius mnemosyne, & P. apollo. [J.
    [Show full text]
  • The Forestry Commission's Contingency Plan
    Western Spruce Budworm (Choristoneura freemani), Eastern Spruce Budworm (Choristoneura fumiferana) Black-Headed Budworm (Acleris gloverana and Acleris variana) – Contingency Plan Combined Budworm: Draft contingency plan INTRODUCTION 1. Serious or significant pests require strategic-level plans developed at a national level describing the overall aim and high-level objectives to be achieved, and setting out the response strategy for eradicating or containing outbreaks. 2. The UK Plant Health Risk Group (PHRG) has commissioned, following identification by the UK Plant Health Risk Register, pest-specific contingency plans for those pests which pose the greatest risk and require stakeholder consultation. 3. The purpose of these pest-specific contingency plans is to ensure a rapid and effective response to outbreaks of the pests or diseases described. They are designed to help government agencies anticipate, assess, prepare for, prevent, respond to and recover from pest and disease outbreaks. 4. Contingency planning starts with the anticipation and assessment of potential threats, includes preparation and response, and finishes with recovery. Anticipate 5. Gathering information and intelligence about the pest, including surveillance and horizon scanning. Assess 6. Identifying concerns and preparing plans. 7. Setting outbreak management objectives Prepare 8. Ensuring staff and stakeholders are familiar with the pest. Response 9. Identifying the requirements for either containing or eradicating the pest or disease, including work to determine success. 10. The Defra Contingency Plan for Plant Health in England (in draft) gives details of the teams and organisations involved in pest and disease response in England, and their responsibilities and governance. It also 2 | Combined budworm contingency plan | Dafni Nianiaka | 24/01/2017 Combined Budworm: Draft contingency plan describes how these teams and organisations will work together in the event of an outbreak of a plant health pest.
    [Show full text]
  • Lepidoptera: Tortricidae: Tortricinae) and Evolutionary Correlates of Novel Secondary Sexual Structures
    Zootaxa 3729 (1): 001–062 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Monograph ZOOTAXA Copyright © 2013 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3729.1.1 http://zoobank.org/urn:lsid:zoobank.org:pub:CA0C1355-FF3E-4C67-8F48-544B2166AF2A ZOOTAXA 3729 Phylogeny of the tribe Archipini (Lepidoptera: Tortricidae: Tortricinae) and evolutionary correlates of novel secondary sexual structures JASON J. DOMBROSKIE1,2,3 & FELIX A. H. SPERLING2 1Cornell University, Comstock Hall, Department of Entomology, Ithaca, NY, USA, 14853-2601. E-mail: [email protected] 2Department of Biological Sciences, University of Alberta, Edmonton, Canada, T6G 2E9 3Corresponding author Magnolia Press Auckland, New Zealand Accepted by J. Brown: 2 Sept. 2013; published: 25 Oct. 2013 Licensed under a Creative Commons Attribution License http://creativecommons.org/licenses/by/3.0 JASON J. DOMBROSKIE & FELIX A. H. SPERLING Phylogeny of the tribe Archipini (Lepidoptera: Tortricidae: Tortricinae) and evolutionary correlates of novel secondary sexual structures (Zootaxa 3729) 62 pp.; 30 cm. 25 Oct. 2013 ISBN 978-1-77557-288-6 (paperback) ISBN 978-1-77557-289-3 (Online edition) FIRST PUBLISHED IN 2013 BY Magnolia Press P.O. Box 41-383 Auckland 1346 New Zealand e-mail: [email protected] http://www.mapress.com/zootaxa/ © 2013 Magnolia Press 2 · Zootaxa 3729 (1) © 2013 Magnolia Press DOMBROSKIE & SPERLING Table of contents Abstract . 3 Material and methods . 6 Results . 18 Discussion . 23 Conclusions . 33 Acknowledgements . 33 Literature cited . 34 APPENDIX 1. 38 APPENDIX 2. 44 Additional References for Appendices 1 & 2 . 49 APPENDIX 3. 51 APPENDIX 4. 52 APPENDIX 5.
    [Show full text]
  • MOTHS and BUTTERFLIES LEPIDOPTERA DISTRIBUTION DATA SOURCES (LEPIDOPTERA) * Detailed Distributional Information Has Been J.D
    MOTHS AND BUTTERFLIES LEPIDOPTERA DISTRIBUTION DATA SOURCES (LEPIDOPTERA) * Detailed distributional information has been J.D. Lafontaine published for only a few groups of Lepidoptera in western Biological Resources Program, Agriculture and Agri-food Canada. Scott (1986) gives good distribution maps for Canada butterflies in North America but these are generalized shade Central Experimental Farm Ottawa, Ontario K1A 0C6 maps that give no detail within the Montane Cordillera Ecozone. A series of memoirs on the Inchworms (family and Geometridae) of Canada by McGuffin (1967, 1972, 1977, 1981, 1987) and Bolte (1990) cover about 3/4 of the Canadian J.T. Troubridge fauna and include dot maps for most species. A long term project on the “Forest Lepidoptera of Canada” resulted in a Pacific Agri-Food Research Centre (Agassiz) four volume series on Lepidoptera that feed on trees in Agriculture and Agri-Food Canada Canada and these also give dot maps for most species Box 1000, Agassiz, B.C. V0M 1A0 (McGugan, 1958; Prentice, 1962, 1963, 1965). Dot maps for three groups of Cutworm Moths (Family Noctuidae): the subfamily Plusiinae (Lafontaine and Poole, 1991), the subfamilies Cuculliinae and Psaphidinae (Poole, 1995), and ABSTRACT the tribe Noctuini (subfamily Noctuinae) (Lafontaine, 1998) have also been published. Most fascicles in The Moths of The Montane Cordillera Ecozone of British Columbia America North of Mexico series (e.g. Ferguson, 1971-72, and southwestern Alberta supports a diverse fauna with over 1978; Franclemont, 1973; Hodges, 1971, 1986; Lafontaine, 2,000 species of butterflies and moths (Order Lepidoptera) 1987; Munroe, 1972-74, 1976; Neunzig, 1986, 1990, 1997) recorded to date.
    [Show full text]
  • Diptera: Tachinidae: Exoristinae)
    Two tribes hidden in one genus: the case of Agaedioxenis Villeneuve (Diptera: Tachinidae: Exoristinae) Pierfilippo Cerretti, James E. O’Hara, Isaac S. Winkler, Giuseppe Lo Giudice & John O. Stireman Organisms Diversity & Evolution ISSN 1439-6092 Org Divers Evol DOI 10.1007/s13127-015-0211-0 1 23 Your article is protected by copyright and all rights are held exclusively by Gesellschaft für Biologische Systematik. This e-offprint is for personal use only and shall not be self- archived in electronic repositories. If you wish to self-archive your article, please use the accepted manuscript version for posting on your own website. You may further deposit the accepted manuscript version in any repository, provided it is only made publicly available 12 months after official publication or later and provided acknowledgement is given to the original source of publication and a link is inserted to the published article on Springer's website. The link must be accompanied by the following text: "The final publication is available at link.springer.com”. 1 23 Author's personal copy Org Divers Evol DOI 10.1007/s13127-015-0211-0 ORIGINAL ARTICLE Two tribes hidden in one genus: the case of Agaedioxenis Villeneuve (Diptera: Tachinidae: Exoristinae) Pierfilippo Cerretti1,2 & James E. O’Hara3 & Isaac S. Winkler4 & Giuseppe Lo Giudice2 & John O. Stireman III4 Received: 18 December 2014 /Accepted: 9 March 2015 # Gesellschaft für Biologische Systematik 2015 Abstract The Afrotropical tachinid “genus” Agaedioxenis two names. Eugaedioxenis gen. nov. is recognized based on Villeneuve is taken here as an example of the challenges faced two species, Eugaedioxenis haematodes (Villeneuve), type by dipterists in classifying one of the most diverse and species species and comb.
    [Show full text]
  • Insects and Related Arthropods Associated with of Agriculture
    USDA United States Department Insects and Related Arthropods Associated with of Agriculture Forest Service Greenleaf Manzanita in Montane Chaparral Pacific Southwest Communities of Northeastern California Research Station General Technical Report Michael A. Valenti George T. Ferrell Alan A. Berryman PSW-GTR- 167 Publisher: Pacific Southwest Research Station Albany, California Forest Service Mailing address: U.S. Department of Agriculture PO Box 245, Berkeley CA 9470 1 -0245 Abstract Valenti, Michael A.; Ferrell, George T.; Berryman, Alan A. 1997. Insects and related arthropods associated with greenleaf manzanita in montane chaparral communities of northeastern California. Gen. Tech. Rep. PSW-GTR-167. Albany, CA: Pacific Southwest Research Station, Forest Service, U.S. Dept. Agriculture; 26 p. September 1997 Specimens representing 19 orders and 169 arthropod families (mostly insects) were collected from greenleaf manzanita brushfields in northeastern California and identified to species whenever possible. More than500 taxa below the family level wereinventoried, and each listing includes relative frequency of encounter, life stages collected, and dominant role in the greenleaf manzanita community. Specific host relationships are included for some predators and parasitoids. Herbivores, predators, and parasitoids comprised the majority (80 percent) of identified insects and related taxa. Retrieval Terms: Arctostaphylos patula, arthropods, California, insects, manzanita The Authors Michael A. Valenti is Forest Health Specialist, Delaware Department of Agriculture, 2320 S. DuPont Hwy, Dover, DE 19901-5515. George T. Ferrell is a retired Research Entomologist, Pacific Southwest Research Station, 2400 Washington Ave., Redding, CA 96001. Alan A. Berryman is Professor of Entomology, Washington State University, Pullman, WA 99164-6382. All photographs were taken by Michael A. Valenti, except for Figure 2, which was taken by Amy H.
    [Show full text]