Syntheses of N-Ethyl-Nor-Tropinone, N-Ethyl-Nor-Ψ-Tropine and N
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Iodine(V) Reagents in Organic Synthesis. Part 4. O-Iodoxybenzoic Acid As a Chemospecific Tool for Single Electron Transfer-Based Oxidation Processes K
Published on Web 02/16/2002 Iodine(V) Reagents in Organic Synthesis. Part 4. o-Iodoxybenzoic Acid as a Chemospecific Tool for Single Electron Transfer-Based Oxidation Processes K. C. Nicolaou,* T. Montagnon, P. S. Baran, and Y.-L. Zhong Contribution from the Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, and Department of Chemistry and Biochemistry, UniVersity of California, San Diego, 9500 Gilman DriVe, La Jolla, California 92093 Received September 4, 2001 Abstract: o-Iodoxybenzoic acid (IBX), a readily available hypervalent iodine(V) reagent, was found to be highly effective in carrying out oxidations adjacent to carbonyl functionalities (to form R,â-unsaturated carbonyl compounds) and at benzylic and related carbon centers (to form conjugated aromatic carbonyl systems). Mechanistic investigations led to the conclusion that these new reactions are initiated by single electron transfer (SET) from the substrate to IBX to form a radical cation which reacts further to give the final products. Fine-tuning of the reaction conditions allowed remarkably selective transformations within multifunctional substrates, elevating the status of this reagent to that of a highly useful and chemoselective oxidant. Introduction In the preceding three papers,1-3 we have presented an array of useful transformations mediated by the iodine(V)-based reagents Dess-Martin periodinane (DMP), o-iodoxybenzoic acid (IBX), and Ac-IBX (see Figure 1). In the current paper, we expand on this theme with a description of a powerful new methodology which employs IBX for the facile and selective oxidation adjacent to carbonyl and aromatic moieties. -
Prof. J. Masson Gulland, F.R.S
702 NATURE November 22, 1947 Vol. 160 The general discussion was opened by Dr. W. K. Slater. He emphasized that the additional production OBITUARIES of food from sources in Great Britain means increased supplies of materials, for example, for additional Prof. J. Masson Gulland, F.R.S. factories and plant for extracting sugar-beet and for IT was with a sense of severe personal loss that housing poultry. The training of the human element his many friends learned of the untimely death of in more efficient methods of cultivation and of Prof. J. M. Gulland, who was a victim of the railway management of stock is likely to be a formidable accident at Goswick on October 26. He was a leading task. He asked whether a true appreciation of the figure in the chemical world, a pioneer worker in immediate future position in Great Britain is rather several important fields of organic chemistry and that the number of calories per person and the biochemistry, and a man of outstanding personal nutritional value of the average diet generally are charm. much more likely to fall than to rise ; and how far John Masson Gulland was born in Edinburgh in this fall could go without acute sequelre. 1898 and was the only son of the late Prof. G. Lovell Dr. N. C. Wright considered that a matter of Gulland, professor of medicine in the University of immediate importance is the prevention of wastage, Edinburgh. Gulland was much devoted to his native from whatever cause, of food already produced. We land, and above all to his native city, which ho must find out, for example, exactly what happens to frequently visited. -
Process for Producing Optically Active Tropinone Monocarboxylic Acid Derivative
Europäisches Patentamt *EP001118674A1* (19) European Patent Office Office européen des brevets (11) EP 1 118 674 A1 (12) EUROPEAN PATENT APPLICATION published in accordance with Art. 158(3) EPC (43) Date of publication: (51) Int Cl.7: C12P 17/10 25.07.2001 Bulletin 2001/30 (86) International application number: (21) Application number: 99929794.8 PCT/JP99/03754 (22) Date of filing: 12.07.1999 (87) International publication number: WO 00/18946 (06.04.2000 Gazette 2000/14) (84) Designated Contracting States: • NAKAMURA, Soichi, Nihon Medi-physics K. K. AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU Sodegaura-shi, Chiba 299-0241 (JP) MC NL PT SE • NAKAMURA, Daisaku Ichihara-shi, Chiba 299-0115 (JP) (30) Priority: 30.09.1998 JP 27786898 (74) Representative: Keen, Celia Mary (71) Applicant: Nihon Medi-Physics Co., Ltd. J.A. Kemp & Co. Nishinomiya-shi, Hyogo 662-0918 (JP) 14 South Square Gray’s Inn (72) Inventors: London WC1R 5JJ (GB) • NODE, Manabu Hirakata-shi, Osaka 573-1118 (JP) (54) PROCESS FOR PRODUCING OPTICALLY ACTIVE TROPINONE MONOCARBOXYLIC ACID DERIVATIVE (57) An optically active tropinonemonocarboxylic tained from natural cocaine, it was proved that the ob- acid ester derivative useful as an intermediate for syn- tained optically active tropinonemonocarboxylic acid es- thesis of optically active tropane derivatives was ob- ter derivative had the same absolute configuration as tained by reacting succindialdehyde with an organic that of natural cocaine. The yield of the optically active amine and acetonedicarboxylic acid ester to obtain a tropinonemonocarboxylic acid ester derivative from the tropinonedicarboxylic acid ester derivative, and then asymmetric dealkoxycarbonylation was 30 to 50 mol%, subjecting this derivative to enzyme-catalyzed asym- and its optical purity was 70 to 97%ee. -
Tropinone Synthesis Via an Atypical Polyketide Synthase and P450-Mediated Cyclization
ARTICLE DOI: 10.1038/s41467-018-07671-3 OPEN Tropinone synthesis via an atypical polyketide synthase and P450-mediated cyclization Matthew A. Bedewitz 1, A. Daniel Jones 2,3, John C. D’Auria 4 & Cornelius S. Barry 1 Tropinone is the first intermediate in the biosynthesis of the pharmacologically important tropane alkaloids that possesses the 8-azabicyclo[3.2.1]octane core bicyclic structure that defines this alkaloid class. Chemical synthesis of tropinone was achieved in 1901 but the 1234567890():,; mechanism of tropinone biosynthesis has remained elusive. In this study, we identify a root- expressed type III polyketide synthase from Atropa belladonna (AbPYKS) that catalyzes the formation of 4-(1-methyl-2-pyrrolidinyl)-3-oxobutanoic acid. This catalysis proceeds through a non-canonical mechanism that directly utilizes an unconjugated N-methyl-Δ1-pyrrolinium cation as the starter substrate for two rounds of malonyl-Coenzyme A mediated decarbox- ylative condensation. Subsequent formation of tropinone from 4-(1-methyl-2-pyrrolidinyl)-3- oxobutanoic acid is achieved through cytochrome P450-mediated catalysis by AbCYP82M3. Silencing of AbPYKS and AbCYP82M3 reduces tropane levels in A. belladonna. This study reveals the mechanism of tropinone biosynthesis, explains the in planta co-occurrence of pyrrolidines and tropanes, and demonstrates the feasibility of tropane engineering in a non- tropane producing plant. 1 Department of Horticulture, Michigan State University, East Lansing, MI 48824, USA. 2 Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA. 3 Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA. 4 Department of Chemistry & Biochemistry, Texas Tech University, Lubbock, TX 79409, USA. -
December Cume
Organic Cumulative Exam December 1, 2001 The Chemistry of Professor Eric Sorenson (PLEASE WRITE ALL ANSWERS ON THE FRONT PAGE OF THE EXAM) Professor Sorenson often derives ideas for his synthetic approaches by speculating on the reactions that are involved in the biosynthesis of the target molecule. That is, his synthetic approaches are "biomimetic". Sorenson also noted that this is not a new approach in organic synthesis. He cited Sir Robert Robinson's synthesis of tropinone. Long, long ago, Robinson took heed of the suggestion that enzymatic Mannich reactions might be involved in the biosynthesis of some alkaloids and used a Mannich reaction to prepare tropinone. (J. Chem. Soc. 1917, 762) 1. Give the structure of tropinone and show a detailed mechanism for the reaction: Hint: Remember that intramolecular reactions are faster than analogous intermolecular reactions. O O H+ H + CH3NH2 + H O Tropinone Hint: formula C8H13NO 2. Some questions regarding Professor Sorenson's synthesis of (-)-hispidospermidin (shown below): J. Am. Chem. Soc. 2000, 122, 9556. Reagents and conditions: (a) 2,4,6-triisopropylbenzenesulfonyl hydrazide, HCl (1.2 equiv), CH3CN, room temperature, 75%. (b) n-BuLi (2.05 equiv), Et2O/THF, -78 to -20 C; then MgBr2·OEt2, -78 C; then 7, -78 C to room temperature, 55% from 8. (c) SEMCl, n-Bu4NI, i-Pr2NEt, CH2Cl2, 50 C, ca. 100%. (d) Dibal-H, toluene, -78 C, 93%. (e) (COCl)2, DMSO, CH2Cl2, -78 C; then i-Pr2NEt, -78 C to room temperature, ca. 100%. (f) AcOH, room temperature, 2 d, 83% or AcOH, 80 C, 3 h, 87%. (g) (COCl)2, DMSO, CH2Cl2, -78 C; then i-Pr2NEt, -78 C to room temperature, ca. -
Hexafluorophosphate Salts with Tropine-Type Cations in The
RSC Advances PAPER View Article Online View Journal | View Issue Hexafluorophosphate salts with tropine-type cations in the extraction of alkaloids with the same Cite this: RSC Adv.,2018,8,262 nucleus from radix physochlainae† Bing Dong, Jie Tang, Alula Yonannes and Shun Yao * Ionic liquids (ILs) have been widely used in the field of extraction of natural bioactive compounds because of their advantages compared to traditional organic solvents. In this study, the new ‘like dissolves like’ mode was designed and seven types of tropine-based ionic liquids were used to extract tropane alkaloids from radix physochlainae, and then the relationship between their performance and structures together with À1 the effects of main extraction conditions were explored. It was found that 0.05 mol L [C3tr][PF6] aqueous solution had the ideal selectivity and high extraction efficiency of 95.1% at 75 C when the extraction time was 55 min and the solid–liquid ratio was 1 : 35, which was superior to that of 85% ethanol–water and 0.1% hydrochloric acid–water. There was no decomposition and racemization of Creative Commons Attribution-NonCommercial 3.0 Unported Licence. products occurring in the mixture solution when above extraction solvent was applied. In addition, the extraction behavior and mechanism using an ionic liquid aqueous solution was tentatively studied through thermodynamics experiments, near-infrared/infrared spectroscopy (NIR/IR), scanning electron Received 22nd November 2017 microscopy (SEM), and thermogravimetric analysis (TG), and subsequent back-extraction could be Accepted 14th December 2017 efficiently used to further separate alkaloids and ILs. In the developed ‘like dissolves like’ mode, the DOI: 10.1039/c7ra12687e extraction process of target alkaloids was found to be endothermic and spontaneous through the rsc.li/rsc-advances specific interaction between them and the solvent molecules with the same nucleus. -
Tropane and Granatane Alkaloid Biosynthesis: a Systematic Analysis
Office of Biotechnology Publications Office of Biotechnology 11-11-2016 Tropane and Granatane Alkaloid Biosynthesis: A Systematic Analysis Neill Kim Texas Tech University Olga Estrada Texas Tech University Benjamin Chavez Texas Tech University Charles Stewart Jr. Iowa State University, [email protected] John C. D’Auria Texas Tech University Follow this and additional works at: https://lib.dr.iastate.edu/biotech_pubs Part of the Biochemical and Biomolecular Engineering Commons, and the Biotechnology Commons Recommended Citation Kim, Neill; Estrada, Olga; Chavez, Benjamin; Stewart, Charles Jr.; and D’Auria, John C., "Tropane and Granatane Alkaloid Biosynthesis: A Systematic Analysis" (2016). Office of Biotechnology Publications. 11. https://lib.dr.iastate.edu/biotech_pubs/11 This Article is brought to you for free and open access by the Office of Biotechnology at Iowa State University Digital Repository. It has been accepted for inclusion in Office of Biotechnology Publicationsy b an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Tropane and Granatane Alkaloid Biosynthesis: A Systematic Analysis Abstract The tropane and granatane alkaloids belong to the larger pyrroline and piperidine classes of plant alkaloids, respectively. Their core structures share common moieties and their scattered distribution among angiosperms suggest that their biosynthesis may share common ancestry in some orders, while they may be independently derived in others. Tropane and granatane alkaloid diversity arises from the myriad modifications occurring ot their core ring structures. Throughout much of human history, humans have cultivated tropane- and granatane-producing plants for their medicinal properties. This manuscript will discuss the diversity of their biological and ecological roles as well as what is known about the structural genes and enzymes responsible for their biosynthesis. -
Cocaine: Pharmacology, Effects, and Treatment of Abuse
Cocaine: Pharmacology, Effects, and Treatment of Abuse U. S. DEPARTMENT OF HEALTH AND HUMAN SERVICES • Public Health Service • Alcohol, Drug Abuse, and Mental Health Administration Cocaine: Pharmacology, Effects, and Treatment of Abuse Editor: John Grabowski, Ph.D. Division of Clinical Research National Institute on Drug Abuse NIDA Research Monograph 50 1984 DEPARTMENT OF HEALTH AND HUMAN SERVICES Public Health Service Alcohol, Drug Abuse, and Mental Health Administration National Institute on Drug Abuse 5600 Fishers Lane Rockville, Maryland 20857 For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402 NIDA Research Monographs are prepared by the research divisions of the National Institute on Drug Abuse and published by its Office of Science The primary objective of the series is to provide critical reviews of research problem areas and techniques, the content of state-of-the-art conferences, and integrative research reviews. Its dual publication emphasis is rapid and targeted dissemination to the scientific and professional community. Editorial Advisors MARTIN W. ADLER, Ph.D. SIDNEY, COHEN M.D. Temple University School of Medicine LosAngeles, California Philadelphia, Pennsylvania SYDNEY ARCHER, Ph.D. MARY L. JACOBSON Rensselaer Polytechnic Institute National Federation of Parents for Troy, New York Drug Free Youth RICHARD BELLEVILLE, Ph.D. Omaha, Nebraska NB Associates, Health Sciences Rockville, Maryland REESE T. JONES, M.D. KARST J. BESTMAN Langley Porter Neuropsychiatric Institute San Francisco, California Alcohol and Drug Problems Association of North America Washington, D.C. DENISE KANDEL, Ph.D. GILBERT J. BOVTIN, Ph.D. College of Physicians and Surgeons of Cornell University Medical College Columbia University New York, New York New York, New York JOSEPH V. -
List of Narcotic Drugs Under International Control
International Narcotics Control Board Yellow List Annex to Forms A, B and C 59th edition, July 2020 LIST OF NARCOTIC DRUGS UNDER INTERNATIONAL CONTROL Prepared by the INTERNATIONAL NARCOTICS CONTROL BOARD* Vienna International Centre P.O. Box 500 A-1400 Vienna, Austria Internet address: http://www.incb.org/ in accordance with the Single Convention on Narcotic Drugs, 1961** Protocol of 25 March 1972 amending the Single Convention on Narcotic Drugs, 1961 * On 2 March 1968, this organ took over the functions of the Permanent Central Narcotics Board and the Drug Supervisory Body, r etaining the same secretariat and offices. ** Subsequently referred to as “1961 Convention”. V.20-03697 (E) *2003697* Purpose The Yellow List contains the current list of narcotic drugs under international control and additional relevant information. It has been prepared by the International Narcotics Control Board to assist Governments in completing the annual statistical reports on narcotic drugs (Form C), the quarterly statistics of imports and exports of narcotic drugs (Form A) and the estimates of annual requirements for narcotic drugs (Form B) as well as related questionnaires. The Yellow List is divided into four parts: Part 1 provides a list of narcotic drugs under international control in the form of tables and is subdivided into three sections: (1) the first section includes the narcotic drugs listed in Schedule I of the 1961 Convention as well as intermediate opiate raw materials; (2) the second section includes the narcotic drugs listed in Schedule II of the 1961 Convention; and (3) the third section includes the narcotic drugs listed in Schedule IV of the 1961 Convention. -
Recommended Methods for the Identification and Analysis of Cocaine in Seized Materials
Recommended methods for the Identification and Analysis of Cocaine in Seized Materials MANUAL FOR USE BY NATIONAL DRUG ANALYSIS LABORATORIES Photo credits: UNODC Photo Library; UNODC/Ioulia Kondratovitch; Alessandro Scotti. Laboratory and Scientific Section UNITED NATIONS OFFICE ON DRUGS AND CRIME Vienna Recommended Methods for the Identification and Analysis of Cocaine in Seized Materials (Revised and updated) MANUAL FOR USE BY NATIONAL DRUG ANALYSIS LABORATORIES UNITED NATIONS New York, 2012 Note Operating and experimental conditions are reproduced from the original reference materials, including unpublished methods, validated and used in selected national laboratories as per the list of references. A number of alternative conditions and substitution of named commercial products may provide comparable results in many cases, but any modification has to be validated before it is integrated into laboratory routines. Mention of names of firms and commercial products does not imply the endorse- ment of the United Nations. ST/NAR/7/REV.1 Original language: English © United Nations, March 2012. All rights reserved. The designations employed and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of the Secretariat of the United Nations concerning the legal status of any country, territory, city or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. This publication has not been formally edited. Publishing production: English, Publishing and Library Section, United Nations Office at Vienna. ii Contents Page 1. Introduction ................................................. 1 1.1 Background .............................................. 1 1.2 Purpose and use of the manual .............................. 1 2. Physical appearance and chemical characteristics of coca leaf and illicit materials containing cocaine ................................ -
Fate and Removal of Emerging Contaminants in Water and Wastewater Treatment Plants
FATE AND REMOVAL OF EMERGING CONTAMINANTS IN WATER AND WASTEWATER TREATMENT PLANTS Faculty of Industrial Engineering Department of Civil, Constructional and Environmental Engineering Ph.D. School of Civil Engineering and Architecture Ph.D. Course in Environmental and Hydraulic Engineering - XXXII Cycle Ph.D. student Ing. Camilla Di Marcantonio Supervisor Co-Supervisor Prof. Agostina Chiavola Prof. Maria Rosaria Boni Abstract Abstract Organic MicroPollutants (OMPs) – also called Emerging Contaminants or Contaminants of Emerging Concern – include a wide number of chemicals belonging to different classes, e.g. pharmaceuticals and personal care products (PPCPs), drugs of abuse and their metabolites, steroids and hormones, endocrine- disrupting compounds, surfactants, perfluorinated compounds, phosphoric ester flame retardants, industrial additives and agents, siloxanes, artificial sweeteners, and gasoline additives (Barbosa et al., 2016; Bletsou et al., 2015; Chiavola et al., 2019). In the last two decades, increasing attention has been dedicated to OMPs, as a matter of high risk for public health and environment. (Naidu et al., 2016; Rodriguez-Narvaez et al., 2017; Thomaidi et al., 2016; Vilardi et al., 2017). OMPs are characterized by low environmental concentrations (about ng/L or µg/L), high toxicity, very low biodegradability and resistance to degradation and to conventional treatments. Consequently, they tend to be bioaccumulated in aquatic environments, and to enter the food chain through agriculture products and drinking water (Clarke and Smith, 2011). Measurement of OMPs in the aquatic medium became possible only in the last 20 years, thanks to the improvement of sensitivity and accuracy of the analytical methods; among the different methods, liquid chromatography coupled with high-resolution tandem mass spectrometry (LC-HRMS/MS) is increasingly applied for the analysis of some known and unknown emerging contaminants in water. -
Tropine Dehydrogenase: Purification, Some Properties and an Evaluation of Its Role in the Bacterial Metabolism of Tropine Barbara A
Biochem. J. (1995) 307, 603-608 (Printed in Great Britain) 603 Tropine dehydrogenase: purification, some properties and an evaluation of its role in the bacterial metabolism of tropine Barbara A. BARTHOLOMEW, Michael J. SMITH, Marianne T. LONG, Paul J. DARCY, Peter W. TRUDGILL and David J. HOPPER* Institute of Biological Sciences, University of Wales, Aberystwyth, Dyfed SY23 3DD, Wales, U.K. Tropine dehydrogenase was induced by growth of Pseudomonas number of related compounds. The apparent Kms were 6.06 ,uM AT3 on atropine, tropine or tropinone. It was NADP+-dependent for tropine and 73.4,M for nortropine with the specificity and gave no activity with NADI. The enzyme was very unstable constant (Vmax/Km) for tropine 7.8 times that for pseudotropine. but a rapid purification procedure using affinity chromatography The apparent Km for NADP+ was 48 ,uM. The deuterium of [3- that gave highly purified enzyme was developed. The enzyme 2H]tropine and [3-2H]pseudotropine was retained when these gave a single band on isoelectric focusing with an isoelectric compounds were converted into 6-hydroxycyclohepta- 1 ,4-dione, point at approximately pH 4. The native enzyme had an Mr of an intermediate in tropine catabolism, showing that the tropine 58000 by gel filtration and 28000 by SDS/PAGE and therefore dehydrogenase, although induced by growth on tropine, is not consists of two subunits of equal size. The enzyme displayed a involved in the catabolic pathway for this compound. 6-Hydroxy- narrow range of specificity and was active with tropine and cyclohepta-1,4-dione was also implicated as an intermediate in nortropine but not with pseudotropine, pseudonortropine, or a the pathways for pseudotropine and tropinone catabolism.