Divergent Dysregulation of Gene Expression in Murine Models of Fragile X Syndrome and Tuberous Sclerosis

Total Page:16

File Type:pdf, Size:1020Kb

Divergent Dysregulation of Gene Expression in Murine Models of Fragile X Syndrome and Tuberous Sclerosis Divergent dysregulation of gene expression in murine models of fragile X syndrome and tuberous sclerosis The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Kong, Sek, Mustafa Sahin, Christin D Collins, Mary H Wertz, Malcolm G Campbell, Jarrett D Leech, Dilja Krueger, Mark F Bear, Louis M Kunkel, and Isaac S Kohane. “Divergent Dysregulation of Gene Expression in Murine Models of Fragile X Syndrome and Tuberous Sclerosis.” Mol Autism 5, no. 1 (2014): 16. As Published http://dx.doi.org/10.1186/2040-2392-5-16 Publisher Biomed Central Ltd. Version Final published version Citable link http://hdl.handle.net/1721.1/102332 Terms of Use Creative Commons Attribution Detailed Terms http://creativecommons.org/licenses/by/2.0/ Kong et al. Molecular Autism 2014, 5:16 http://www.molecularautism.com/content/5/1/16 RESEARCH Open Access Divergent dysregulation of gene expression in murine models of fragile X syndrome and tuberous sclerosis Sek Won Kong1,5†, Mustafa Sahin2†, Christin D Collins3, Mary H Wertz2, Malcolm G Campbell5, Jarrett D Leech2, Dilja Krueger4, Mark F Bear4, Louis M Kunkel3 and Isaac S Kohane1,5* Abstract Background: Fragile X syndrome and tuberous sclerosis are genetic syndromes that both have a high rate of comorbidity with autism spectrum disorder (ASD). Several lines of evidence suggest that these two monogenic disorders may converge at a molecular level through the dysfunction of activity-dependent synaptic plasticity. Methods: To explore the characteristics of transcriptomic changes in these monogenic disorders, we profiled genome-wide gene expression levels in cerebellum and blood from murine models of fragile X syndrome and tuberous sclerosis. Results: Differentially expressed genes and enriched pathways were distinct for the two murine models examined, with the exception of immune response-related pathways. In the cerebellum of the Fmr1 knockout (Fmr1-KO) model, the neuroactive ligand receptor interaction pathway and gene sets associated with synaptic plasticity such as long-term potentiation, gap junction, and axon guidance were the most significantly perturbed pathways. The phosphatidylinositol signaling pathway was significantly dysregulated in both cerebellum and blood of Fmr1-KO mice. In Tsc2 heterozygous (+/−) mice, immune system-related pathways, genes encoding ribosomal proteins, and glycolipid metabolism pathways were significantly changed in both tissues. Conclusions: Our data suggest that distinct molecular pathways may be involved in ASD with known but different genetic causes and that blood gene expression profiles of Fmr1-KO and Tsc2+/− mice mirror some, but not all, of the perturbed molecular pathways in the brain. Keywords: Fragile X syndrome, Tuberous sclerosis, Autism, Cerebellum, Blood, Gene expression, Murine model Background etiologies implicated in ASD may converge on a few com- Autism spectrum disorder (ASD) manifests significant mon pathways. Further research on single gene disorders heterogeneity in part because of the interaction of under- associated with ASD such as tuberous sclerosis complex lying genetic [1-3], neurobiological, and environmental (TSC) and fragile X syndrome (FXS) may lead to an un- factors [4,5] during early brain development. This hetero- derstanding of common dysfunction at the cellular or cir- geneity presents one of the main obstacles to the develop- cuit level for a majority of ASD. In a recent survey of over ment of effective treatments for ASD. The complex 14,000 individuals under age 35 with ASD in a Boston genetics of ASD suggest that it is a large set of related area hospital, Kohane and colleagues reported that the disorders with diverse mechanisms; however, many of the prevalence of genetic disorders of FXS and TSC in indi- viduals with ASD were 0.5% and 0.8% [6]. Conversely, 30% and 50-61% of patients with FXS and TSC present * Correspondence: [email protected] † ASD core symptoms, respectively [7,8]. If such shared Equal contributors pathophysiology exists, then treatments developed for a 1Informatics Program, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA target in one disorder might be applicable to others. Mouse 5Center for Biomedical Informatics, Harvard Medical School, Boston, MA, USA models for ASD serve an increasingly important role in Full list of author information is available at the end of the article © 2014 Kong et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. Kong et al. Molecular Autism 2014, 5:16 Page 2 of 11 http://www.molecularautism.com/content/5/1/16 providing a pre-clinical test of promising pharmacological Methods therapeutics [9,10]. Inactivating mutation in Tsc2 (Tsc2+/− Murine models of fragile X syndrome and tuberous mice) showed defects in axon guidance [11] and cognitive sclerosis deficits such as impaired water maze performance [12], To identify molecular signatures of each mouse model and mice with Fmr1-knockout(KO)presentedimpair- of ASD, we performed gene expression profiling on cere- ments in long-term depression, hyperactivity, anxiety-like, bellum and peripheral blood collected from two mouse and unusual social behaviors [13]. Therefore, deter- models and compared to wild-type (WT) controls. We mining the degree to which there are shared molecular used cerebellum where the most consistent abnormalities mechanisms in these models will inform clinical trials, were reported in the patients with ASD [14]. Post-mortem particularly those that address populations with genetically studies have shown a reduced number of Purkinje cells heterogeneous causes of ASD. (PC), and several neuroimaging studies reported enlarged Although several cellular mechanisms may be impli- cerebella in ASD [29,30]. The cerebellum is also impli- cated (reviewed in Fatemi et al. [14]), accumulating data cated in social interaction [31], and the loss of Tsc1 from support a role for the PI3K-mTOR signaling cascade in cerebellar PC was associated with autistic-like behaviors several genetic causes of ASD. Evidence for the PI3K- [32]. Additionally, we profiled whole blood from the same mTOR pathway first emerged from TSC [15,16] and individual mouse to compare with the gene expression mutations in the PTEN gene associated with ASD and changes in cerebellum. macrocephaly [17-19]. Later, investigation of copy num- All male C57BL/6 congenic Fmr1-KO mice and ber variants (CNV) in autistic individuals identified that Tsc2+/− mice with mixed 129/SvJae-C57BL/6 J back- PI3K-mTOR pathway-related genes were located in ground have been previously described [33,34]. We pro- CNV hotspots [20]. These findings have led to the hy- filed Tsc2+/− mice since homozygous Tsc2 KO was pothesis that overactivation of the mTOR pathway could embryonic lethal. The mice were killed at 8–10 weeks lead to abnormal synaptic function owing to an excess of age following the institutional animal care and use of protein synthesis at the synapse [21]. Genetic evi- committee (IACUC) euthanasia criteria (the Boston dence that directly implicates a translation initiating Children’s Hospital IACUC animal protocol no. 12-07- factor, EIF4E, which is a downstream target of mTOR, 2227R). For the Fmr1-KO model, 5 KO and 5 WT mice in ASD has provided further support for this hypothesis were profiled, and for the Tsc2+/− model 3 transgenic and [22]. Interestingly, exposure to teratogens such as val- 3 WT mice were profiled. Paired blood and cerebellum proate in utero can lead to ASD in children [23], and samples were prepared for gene expression profiling. valproate can also modulate this signaling pathway [24], suggesting that environmental factors associated Genome-wide gene expression profiling using with ASD can also play a role in PI3K-mTOR pathway microarrays regulation [25]. More recently, studies have found that A total of 250 ng RNA was processed using established PI3K-mTOR signaling is upregulated in mouse models Affymetrix protocols for the generation of biotin-labeled of FXS, one of the most common genetic causes of cRNA, and the hybridization, staining, and scanning of ASD [26-28]. arrays were performed. Briefly, total RNA was converted Together, the aforementioned findings suggest that an to double-stranded cDNA using a T7 primer and biotin- upregulated PI3K-mTOR signaling cascade might be a labeled cRNA was then generated from the cDNA by common mechanism in ASD and therefore would po- in vitro transcription. The cRNA was quantified (using tentially be a promising drug target. Indeed, clinical A260) and fragmented. Fragmented cRNA was hybrid- trials using inhibitors of mTOR are already in progress ized to the Affymetrix Mouse Gene ST 1.0 array and in patients with TSC. We hypothesized that if the PI3K- scanned on an Affymetrix GeneChip scanner 3000 at mTOR signaling pathway is dysregulated in various 2.5 μm resolution [35]. Microarray data are available at causes of ASD, then these disorders should present with the Gene Expression Omnibus database (GSE40630). a similar gene expression profile signature. We chose to analyze TSC and FXS, two Mendelian disorders highly Validation of gene expression changes using quantitative associated with ASD. Better understanding of similarities RT-PCR and differences of the cellular and molecular defects Total RNA was extracted using TRIzol according to the leading to abnormal neurological function in these two manufacturer’s instruction. The RNA amount was mea- disorders is essential to the development of new therap- sured using the Nanodrop (Thermo Scientific); 100 ng ies for ASD. Here, we used mouse models available for of total RNA was reversed transcribed using a cDNA both genetic disorders to investigate the similarities and reverse transcription kit with random primers (Applied differences between gene expression profiles in the brain Biosystems). SyBr Green PCR Master Mix (Applied Bio- and blood cells. systems) was used to amplify and detect signals from Kong et al.
Recommended publications
  • Old Data and Friends Improve with Age: Advancements with the Updated Tools of Genenetwork
    bioRxiv preprint doi: https://doi.org/10.1101/2021.05.24.445383; this version posted May 25, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Old data and friends improve with age: Advancements with the updated tools of GeneNetwork Alisha Chunduri1, David G. Ashbrook2 1Department of Biotechnology, Chaitanya Bharathi Institute of Technology, Hyderabad 500075, India 2Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN 38163, USA Abstract Understanding gene-by-environment interactions is important across biology, particularly behaviour. Families of isogenic strains are excellently placed, as the same genome can be tested in multiple environments. The BXD’s recent expansion to 140 strains makes them the largest family of murine isogenic genomes, and therefore give great power to detect QTL. Indefinite reproducible genometypes can be leveraged; old data can be reanalysed with emerging tools to produce novel biological insights. To highlight the importance of reanalyses, we obtained drug- and behavioural-phenotypes from Philip et al. 2010, and reanalysed their data with new genotypes from sequencing, and new models (GEMMA and R/qtl2). We discover QTL on chromosomes 3, 5, 9, 11, and 14, not found in the original study. We narrowed down the candidate genes based on their ability to alter gene expression and/or protein function, using cis-eQTL analysis, and variants predicted to be deleterious. Co-expression analysis (‘gene friends’) and human PheWAS were used to further narrow candidates.
    [Show full text]
  • Replace This with the Actual Title Using All Caps
    UNDERSTANDING THE GENETICS UNDERLYING MASTITIS USING A MULTI-PRONGED APPROACH A Dissertation Presented to the Faculty of the Graduate School of Cornell University In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy by Asha Marie Miles December 2019 © 2019 Asha Marie Miles UNDERSTANDING THE GENETICS UNDERLYING MASTITIS USING A MULTI-PRONGED APPROACH Asha Marie Miles, Ph. D. Cornell University 2019 This dissertation addresses deficiencies in the existing genetic characterization of mastitis due to granddaughter study designs and selection strategies based primarily on lactation average somatic cell score (SCS). Composite milk samples were collected across 6 sampling periods representing key lactation stages: 0-1 day in milk (DIM), 3- 5 DIM, 10-14 DIM, 50-60 DIM, 90-110 DIM, and 210-230 DIM. Cows were scored for front and rear teat length, width, end shape, and placement, fore udder attachment, udder cleft, udder depth, rear udder height, and rear udder width. Independent multivariable logistic regression models were used to generate odds ratios for elevated SCC (≥ 200,000 cells/ml) and farm-diagnosed clinical mastitis. Within our study cohort, loose fore udder attachment, flat teat ends, low rear udder height, and wide rear teats were associated with increased odds of mastitis. Principal component analysis was performed on these traits to create a single new phenotype describing mastitis susceptibility based on these high-risk phenotypes. Cows (N = 471) were genotyped on the Illumina BovineHD 777K SNP chip and considering all 14 traits of interest, a total of 56 genome-wide associations (GWA) were performed and 28 significantly associated quantitative trait loci (QTL) were identified.
    [Show full text]
  • A Common X-Linked Inborn Error of Carnitine Biosynthesis May Be a Risk Factor for Nondysmorphic Autism
    A common X-linked inborn error of carnitine biosynthesis may be a risk factor for nondysmorphic autism Patrícia B. S. Celestino-Sopera,1, Sara Violanteb,c,1, Emily L. Crawfordd, Rui Luoe, Anath C. Lionelf, Elsa Delabyg, Guiqing Caih, Bekim Sadikovica, Kwanghyuk Leea, Charlene Loa, Kun Gaoe, Richard E. Persona, Timothy J. Mossa, Jennifer R. Germana, Ni Huangi, Marwan Shinawia,j,2, Diane Treadwell-Deeringj,k, Peter Szatmaril, Wendy Robertsm, Bridget Fernandezn, Richard J. Schroero, Roger E. Stevensono, Joseph D. Buxbaumh, Catalina Betancurg, Stephen W. Schererf,m, Stephan J. Sandersp, Daniel H. Geschwinde, James S. Sutcliffed, Matthew E. Hurlesi, Ronald J. A. Wandersb, Chad A. Shawa, Suzanne M. Leala, Edwin H. Cook, Jr.q, Robin P. Goin-Kochela,j,r, Frédéric M. Vazb,1, and Arthur L. Beaudeta,j,r,1,3 Departments of aMolecular and Human Genetics, kPsychiatry, and rPediatrics, Baylor College of Medicine, Houston, TX 77030; jTexas Children’s Hospital, Houston, TX 77030; bLaboratory Genetic Metabolic Disease, Departments of Clinical Chemistry and Pediatrics, Academic Medical Center, University of Amsterdam, 1105 AZ, Amsterdam, The Netherlands; cMetabolism and Genetics Group, Research Institute for Medicines and Pharmaceutical Sciences (iMed.UL), Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisbon, Portugal; dDepartment of Molecular Physiology and Biophysics, Center for Molecular Neuroscience, Vanderbilt University, Nashville, TN 37232; eDepartment of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles,
    [Show full text]
  • Leukaemia Section
    Atlas of Genetics and Cytogenetics in Oncology and Haematology OPEN ACCESS JOURNAL AT INIST-CNRS Leukaemia Section Short Communication t(4;9)(q21.22;p24) SEC31A/JAK2 Julie Sanford Biggerstaff Idaho Cytogenetics Diagnostic Laboratory, Boise, ID 83706, USA; [email protected] Published in Atlas Database: April 2017 Online updated version : http://AtlasGeneticsOncology.org/Anomalies/t0409q21p24ID1682.html Printable original version : http://documents.irevues.inist.fr/bitstream/handle/2042/68905/04-2017-t0409q21p24ID1682.pdf DOI: 10.4267/2042/68905 This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 2.0 France Licence. © 2018 Atlas of Genetics and Cytogenetics in Oncology and Haematology Abstract Cytogenetics Review on t(4;9)(q21.22;p24) SEC31A/JAK2, with data on clinics, and the genes involved. Cytogenetics morphological KEYWORDS JAK2 breakapart (commonly available). Chromosome 4; chromosome 9; translocation; SEC31A; JAK2; Hodgkin Lymphoma Genes involved and Clinics and pathology proteins SEC31A (SEC31 homolog A, COPII Disease coat complex component) Hodgkin Lymphoma Location Phenotype/cell stem origin 4q21.22 Hodgkin and Reed-Sternberg cells, which derive DNA/RNA from pre-apoptotic crippled germinal center (GC) B- gene is 72,606 bp with 25 exons; transcribed from cells, are positive for CD30, CD15, CD40 and the - strand; coding region is 62,863 bp with 24 IRF4/MUM1 exons Epidemiology Protein Hodgkin lymphoma itself is common, but this 1166 amnio acids. Protein transport protein SEC31A particular translocation may be rare within the is ubiquitously expressed and forms part of the coat disorder. However, it is not often assayed for; found protein complex II (COPII) which is comprised of at in 2/131 cHL cases examined: a M/31 with nodular least four other proteins in addition to SEC31A this sclerosis cHL, alive 60 mths after diagnosis; and a complex is involved in formation of transport M/83 with lymphocyte-depleted cHL who died at vesicles from the ER to Golgi.
    [Show full text]
  • The Capacity of Long-Term in Vitro Proliferation of Acute Myeloid
    The Capacity of Long-Term in Vitro Proliferation of Acute Myeloid Leukemia Cells Supported Only by Exogenous Cytokines Is Associated with a Patient Subset with Adverse Outcome Annette K. Brenner, Elise Aasebø, Maria Hernandez-Valladares, Frode Selheim, Frode Berven, Ida-Sofie Grønningsæter, Sushma Bartaula-Brevik and Øystein Bruserud Supplementary Material S2 of S31 Table S1. Detailed information about the 68 AML patients included in the study. # of blasts Viability Proliferation Cytokine Viable cells Change in ID Gender Age Etiology FAB Cytogenetics Mutations CD34 Colonies (109/L) (%) 48 h (cpm) secretion (106) 5 weeks phenotype 1 M 42 de novo 241 M2 normal Flt3 pos 31.0 3848 low 0.24 7 yes 2 M 82 MF 12.4 M2 t(9;22) wt pos 81.6 74,686 low 1.43 969 yes 3 F 49 CML/relapse 149 M2 complex n.d. pos 26.2 3472 low 0.08 n.d. no 4 M 33 de novo 62.0 M2 normal wt pos 67.5 6206 low 0.08 6.5 no 5 M 71 relapse 91.0 M4 normal NPM1 pos 63.5 21,331 low 0.17 n.d. yes 6 M 83 de novo 109 M1 n.d. wt pos 19.1 8764 low 1.65 693 no 7 F 77 MDS 26.4 M1 normal wt pos 89.4 53,799 high 3.43 2746 no 8 M 46 de novo 26.9 M1 normal NPM1 n.d. n.d. 3472 low 1.56 n.d. no 9 M 68 MF 50.8 M4 normal D835 pos 69.4 1640 low 0.08 n.d.
    [Show full text]
  • 1 Supporting Information for a Microrna Network Regulates
    Supporting Information for A microRNA Network Regulates Expression and Biosynthesis of CFTR and CFTR-ΔF508 Shyam Ramachandrana,b, Philip H. Karpc, Peng Jiangc, Lynda S. Ostedgaardc, Amy E. Walza, John T. Fishere, Shaf Keshavjeeh, Kim A. Lennoxi, Ashley M. Jacobii, Scott D. Rosei, Mark A. Behlkei, Michael J. Welshb,c,d,g, Yi Xingb,c,f, Paul B. McCray Jr.a,b,c Author Affiliations: Department of Pediatricsa, Interdisciplinary Program in Geneticsb, Departments of Internal Medicinec, Molecular Physiology and Biophysicsd, Anatomy and Cell Biologye, Biomedical Engineeringf, Howard Hughes Medical Instituteg, Carver College of Medicine, University of Iowa, Iowa City, IA-52242 Division of Thoracic Surgeryh, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Canada-M5G 2C4 Integrated DNA Technologiesi, Coralville, IA-52241 To whom correspondence should be addressed: Email: [email protected] (M.J.W.); yi- [email protected] (Y.X.); Email: [email protected] (P.B.M.) This PDF file includes: Materials and Methods References Fig. S1. miR-138 regulates SIN3A in a dose-dependent and site-specific manner. Fig. S2. miR-138 regulates endogenous SIN3A protein expression. Fig. S3. miR-138 regulates endogenous CFTR protein expression in Calu-3 cells. Fig. S4. miR-138 regulates endogenous CFTR protein expression in primary human airway epithelia. Fig. S5. miR-138 regulates CFTR expression in HeLa cells. Fig. S6. miR-138 regulates CFTR expression in HEK293T cells. Fig. S7. HeLa cells exhibit CFTR channel activity. Fig. S8. miR-138 improves CFTR processing. Fig. S9. miR-138 improves CFTR-ΔF508 processing. Fig. S10. SIN3A inhibition yields partial rescue of Cl- transport in CF epithelia.
    [Show full text]
  • Effects and Mechanisms of Eps8 on the Biological Behaviour of Malignant Tumours (Review)
    824 ONCOLOGY REPORTS 45: 824-834, 2021 Effects and mechanisms of Eps8 on the biological behaviour of malignant tumours (Review) KAILI LUO1, LEI ZHANG2, YUAN LIAO1, HONGYU ZHOU1, HONGYING YANG2, MIN LUO1 and CHEN QING1 1School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan 650500; 2Department of Gynecology, Yunnan Tumor Hospital and The Third Affiliated Hospital of Kunming Medical University; Kunming, Yunnan 650118, P.R. China Received August 29, 2020; Accepted December 9, 2020 DOI: 10.3892/or.2021.7927 Abstract. Epidermal growth factor receptor pathway substrate 8 1. Introduction (Eps8) was initially identified as the substrate for the kinase activity of EGFR, improving the responsiveness of EGF, which Malignant tumours are uncontrolled cell proliferation diseases is involved in cell mitosis, differentiation and other physiological caused by oncogenes and ultimately lead to organ and body functions. Numerous studies over the last decade have demon- dysfunction (1). In recent decades, great progress has been strated that Eps8 is overexpressed in most ubiquitous malignant made in the study of genes and signalling pathways in tumours and subsequently binds with its receptor to activate tumorigenesis. Eps8 was identified by Fazioli et al in NIH-3T3 multiple signalling pathways. Eps8 not only participates in the murine fibroblasts via an approach that allows direct cloning regulation of malignant phenotypes, such as tumour proliferation, of intracellular substrates for receptor tyrosine kinases (RTKs) invasion, metastasis and drug resistance, but is also related to that was designed to study the EGFR signalling pathway. Eps8 the clinicopathological characteristics and prognosis of patients.
    [Show full text]
  • Cytogenetically Complex SEC31A-ALK Fusions Are Recurrent
    Letters to the Editor A 1.5 30 Takashi Uchiyama from the Deptartment of Hematology/Oncology, ETV6-ABL1 WBC Kyoto University Hospital, Japan for following the patient in Japan, Tony Deblasio for collecting and storing the samples, and Emily 1.0 20 Dolezal for generating the database that facilitated our analysis. ETV6-ABL1 WBC (fold-change in (x109/ L) Correspondence: Stephen D. Nimer, MD, Memorial Sloan transcript level) μ Kettering Cancer Center, 1275 York Avenue, New York, NY 0.5 10 10065, USA. Phone: international +1.646.8883040. Fax: international +1.646.4220246. E-mail: [email protected] Key words: myeloproliferative, neoplasm, imatinib, molecular 0.0 0 response. 2.7.06 5.9.06 1.25.05 9.13.05 5.20.08 4.28.09 Citation: Perna F, Abdel-Wahab O, Levine RL, Jhanwar SC, 08.09.05 11.01.05 Imada K, and Nimer SD. ETV6-ABL1-positive “chronic myeloid 1.5 leukemia”: clinical and molecular response to tyrosine kinase inhibi- B c-myc tion with imatinib. Haematologica 2011; 96(02):342-343. BCL-XL doi:10.3324/haematol.2010.036673 ld1 1.0 NuP98 Fold-change (relative to References HPRT1) 0.5 1. Andreasson P, Johansson B, Carlsson M, Jarlsfelt I, Fioretos T, Mitelman F, et al. BCR/ABL-negative chronic myeloid leukemia with ETV6/ABL fusion. Genes Chromosomes Cancer. 1997;20(3): 0.0 299-304. 2. Barbouti A, Ahlgren T, Johansson B, Hoglund M, Lassen C, 2.7.06 5.9.06 1.25.05 9.13.05 Turesson I, et al. Clinical and genetic studies of ETV6/ABL1-posi- 08.09.05 11.01.05 tive chronic myeloid leukaemia in blast crisis treated with imatinib mesylate.
    [Show full text]
  • Human Induced Pluripotent Stem Cell–Derived Podocytes Mature Into Vascularized Glomeruli Upon Experimental Transplantation
    BASIC RESEARCH www.jasn.org Human Induced Pluripotent Stem Cell–Derived Podocytes Mature into Vascularized Glomeruli upon Experimental Transplantation † Sazia Sharmin,* Atsuhiro Taguchi,* Yusuke Kaku,* Yasuhiro Yoshimura,* Tomoko Ohmori,* ‡ † ‡ Tetsushi Sakuma, Masashi Mukoyama, Takashi Yamamoto, Hidetake Kurihara,§ and | Ryuichi Nishinakamura* *Department of Kidney Development, Institute of Molecular Embryology and Genetics, and †Department of Nephrology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan; ‡Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Hiroshima, Japan; §Division of Anatomy, Juntendo University School of Medicine, Tokyo, Japan; and |Japan Science and Technology Agency, CREST, Kumamoto, Japan ABSTRACT Glomerular podocytes express proteins, such as nephrin, that constitute the slit diaphragm, thereby contributing to the filtration process in the kidney. Glomerular development has been analyzed mainly in mice, whereas analysis of human kidney development has been minimal because of limited access to embryonic kidneys. We previously reported the induction of three-dimensional primordial glomeruli from human induced pluripotent stem (iPS) cells. Here, using transcription activator–like effector nuclease-mediated homologous recombination, we generated human iPS cell lines that express green fluorescent protein (GFP) in the NPHS1 locus, which encodes nephrin, and we show that GFP expression facilitated accurate visualization of nephrin-positive podocyte formation in
    [Show full text]
  • 1 the TRAPP Complex Mediates Secretion Arrest Induced by Stress Granule Assembly Francesca Zappa1, Cathal Wilson1, Giusepp
    bioRxiv preprint doi: https://doi.org/10.1101/528380; this version posted February 5, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. The TRAPP complex mediates secretion arrest induced by stress granule assembly Francesca Zappa1, Cathal Wilson1, Giuseppe Di Tullio1, Michele Santoro1, Piero Pucci2, Maria Monti2, Davide D’Amico1, Sandra Pisonero Vaquero1, Rossella De Cegli1, Alessia Romano1, Moin A. Saleem3, Elena Polishchuk1, Mario Failli1, Laura Giaquinto1, Maria Antonietta De Matteis1, 2 1 Telethon Institute of Genetics and Medicine, Pozzuoli (Naples), Italy 2 Federico II University, Naples, Italy 3 Bristol Renal, Bristol Medical School, University of Bristol, UK Correspondence to: [email protected], [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/528380; this version posted February 5, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. The TRAnsport-Protein-Particle (TRAPP) complex controls multiple membrane trafficking steps and is thus strategically positioned to mediate cell adaptation to diverse environmental conditions, including acute stress. We have identified TRAPP as a key component of a branch of the integrated stress response that impinges on the early secretory pathway. TRAPP associates with and drives the recruitment of the COPII coat to stress granules (SGs) leading to vesiculation of the Golgi complex and an arrest of ER export.
    [Show full text]
  • Downloaded from the App Store and Nucleobase, Nucleotide and Nucleic Acid Metabolism 7 Google Play
    Hoytema van Konijnenburg et al. Orphanet J Rare Dis (2021) 16:170 https://doi.org/10.1186/s13023-021-01727-2 REVIEW Open Access Treatable inherited metabolic disorders causing intellectual disability: 2021 review and digital app Eva M. M. Hoytema van Konijnenburg1†, Saskia B. Wortmann2,3,4†, Marina J. Koelewijn2, Laura A. Tseng1,4, Roderick Houben6, Sylvia Stöckler‑Ipsiroglu5, Carlos R. Ferreira7 and Clara D. M. van Karnebeek1,2,4,8* Abstract Background: The Treatable ID App was created in 2012 as digital tool to improve early recognition and intervention for treatable inherited metabolic disorders (IMDs) presenting with global developmental delay and intellectual disabil‑ ity (collectively ‘treatable IDs’). Our aim is to update the 2012 review on treatable IDs and App to capture the advances made in the identifcation of new IMDs along with increased pathophysiological insights catalyzing therapeutic development and implementation. Methods: Two independent reviewers queried PubMed, OMIM and Orphanet databases to reassess all previously included disorders and therapies and to identify all reports on Treatable IDs published between 2012 and 2021. These were included if listed in the International Classifcation of IMDs (ICIMD) and presenting with ID as a major feature, and if published evidence for a therapeutic intervention improving ID primary and/or secondary outcomes is avail‑ able. Data on clinical symptoms, diagnostic testing, treatment strategies, efects on outcomes, and evidence levels were extracted and evaluated by the reviewers and external experts. The generated knowledge was translated into a diagnostic algorithm and updated version of the App with novel features. Results: Our review identifed 116 treatable IDs (139 genes), of which 44 newly identifed, belonging to 17 ICIMD categories.
    [Show full text]
  • EPS8L1 293T Cell Transient Overexpression Lysate(Denatured)
    Produktinformation Diagnostik & molekulare Diagnostik Laborgeräte & Service Zellkultur & Verbrauchsmaterial Forschungsprodukte & Biochemikalien Weitere Information auf den folgenden Seiten! See the following pages for more information! Lieferung & Zahlungsart Lieferung: frei Haus Bestellung auf Rechnung SZABO-SCANDIC Lieferung: € 10,- HandelsgmbH & Co KG Erstbestellung Vorauskassa Quellenstraße 110, A-1100 Wien T. +43(0)1 489 3961-0 Zuschläge F. +43(0)1 489 3961-7 [email protected] • Mindermengenzuschlag www.szabo-scandic.com • Trockeneiszuschlag • Gefahrgutzuschlag linkedin.com/company/szaboscandic • Expressversand facebook.com/szaboscandic EPS8L1 293T Cell Transient Overexpression Lysate(Denatured) Catalog # : H00054869-T01 規格 : [ 100 uL ] List All Specification Application Image Transfected 293T Western Blot Cell Line: Plasmid: pCMV-EPS8L1 full-length Host: Human Theoretical MW 60.72 (kDa): Quality Control Transient overexpression cell lysate was tested with Anti-EPS8L1 Testing: antibody (H00054869-B01) by Western Blots. SDS-PAGE Gel EPS8L1 transfected lysate. Western Blot Lane 1: EPS8L1 transfected lysate ( 60.72 KDa) Lane 2: Non-transfected lysate. Storage Buffer: 1X Sample Buffer (50 mM Tris-HCl, 2% SDS, 10% glycerol, 300 mM 2- mercaptoethanol, 0.01% Bromophenol blue) Storage Store at -80°C. Aliquot to avoid repeated freezing and thawing. Instruction: MSDS: Download Applications Page 1 of 2 2016/5/23 Western Blot Gene Information Entrez GeneID: 54869 GeneBank NM_139204.1 Accession#: Protein NP_631943.1 Accession#: Gene Name: EPS8L1 Gene Alias: DRC3,EPS8R1,FLJ20258,MGC23164,MGC4642,PP10566 Gene EPS8-like 1 Description: Gene Ontology: Hyperlink Gene Summary: This gene encodes a protein that is related to epidermal growth factor receptor pathway substrate 8 (EPS8), a substrate for the epidermal growth factor receptor. The function of this protein is unknown.
    [Show full text]