WG1, State of the Art Syllabus: Overview of Existing Cybersecurity
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
650 Series ANSI DNP3 Communication Protocol Manual
Relion® Protection and Control 650 series ANSI DNP3 Communication Protocol Manual Document ID: 1MRK 511 257-UUS Issued: June 2012 Revision: A Product version: 1.2 © Copyright 2012 ABB. All rights reserved Copyright This document and parts thereof must not be reproduced or copied without written permission from ABB, and the contents thereof must not be imparted to a third party, nor used for any unauthorized purpose. The software and hardware described in this document is furnished under a license and may be used or disclosed only in accordance with the terms of such license. Trademarks ABB and Relion are registered trademarks of the ABB Group. All other brand or product names mentioned in this document may be trademarks or registered trademarks of their respective holders. Warranty Please inquire about the terms of warranty from your nearest ABB representative. ABB Inc. 1021 Main Campus Drive Raleigh, NC 27606, USA Toll Free: 1-800-HELP-365, menu option #8 ABB Inc. 3450 Harvester Road Burlington, ON L7N 3W5, Canada Toll Free: 1-800-HELP-365, menu option #8 ABB Mexico S.A. de C.V. Paseo de las Americas No. 31 Lomas Verdes 3a secc. 53125, Naucalpan, Estado De Mexico, MEXICO Phone: (+1) 440-585-7804, menu option #8 Disclaimer The data, examples and diagrams in this manual are included solely for the concept or product description and are not to be deemed as a statement of guaranteed properties. All persons responsible for applying the equipment addressed in this manual must satisfy themselves that each intended application is suitable and acceptable, including that any applicable safety or other operational requirements are complied with. -
Multi-Processor Digital Control System NDC/P39814
Multi-Processor Digital Control System NDC/P39814 Our digital control system enables success in modern reactive power compensation. The ultimate parallel processing power of the system tops even the most demanding requirements. In the heart of SVC control or Series Capacitor protection, there is no room for errors. Instant response of the system is always based on accurate data measurement and reliable real-time calculations. NDC supports a high order of redundancy with a hot-swapable secondary system. Both systems, primary and secondary, are always up to date with the latest system events and measurements. They are also both synchronised with a common system time with TrueTime GPS. High reliability and performance of our control system ensures maximum availability for your investment. Technical data • Up to four parallel CPUs, 2310 MIPS/CPU • CPU card: MVME5500 • MPC7455 PowerPC® processor 1GHz • 512MB 133 MHz SDRAM • 32MB and 8MB Flash memory • Dual independent 64-bit 66 MHz PCI buses and PMC sites • VME bus • Gigabit Ethernet interface • 10/100BaseTX Ethernet interface • GPS Clock Synchronisation • Fast I/O: - Programmable digital inputs and outputs - AD: 64 x 16 bit @ 10 kHz - DA: 8 x 16 bit @ 10 kHz • Parallel HMI PC units • Data Concentrator / SCADA Gateway • Device Protocols • NDC SW Tool Chain: - INTERBUS - Compiler - EtherCAT - Configurator - IRIG-B - Simulator - IEC-60870-5-101 - System Debugger - IEC-60870-5-104 - Runtime - DNP3.0 - HMI RAD Tool Competence at your service Competence Map • Project Management • Electrical Engineering -
PREVENT DER CHAOS: a Guide to Selecting the Right Communications Protocols for DER Management
PREVENT DER CHAOS: A Guide to Selecting the Right Communications Protocols for DER Management Published January 2020 DISCLAIMERS Why QualityLogic’s Recommendations QualityLogic occupies a unique role in the development and implementation of communications protocols for DER management by vendors and utilities. Developing and supporting test tools for DER protocols provides an unparalleled knowledge of both the technologies and eco-systems working with the technologies. We have the privilege of advising utilities, vendors, alliances, research labs and regulators on the capabilities and implementation of specific DER protocol standards. We are constantly asked for both training and recommendations for the selection of a standard for specific applications. The increasing interest in the monitoring and management of DER resources begs for the type of analysis and guidance QualityLogic provides in this Guide. These Recommendations are a Starting Point The recommendations contained in this guide are those of QualityLogic and do not represent any other organization, alliance, company or government entity. The Recommendations should be viewed as a starting point and are based on models for use cases and deployment strategies. For specific applications an independent analysis should be conducted which may yield different results. The Recommendations also use a “snapshot” of the current state and adoption of protocols which is subject to change over time and may lead to different results than included here. To find out more about how recommendations were developed, or how to conduct an analyis for your situation contact us at [email protected]. ACKNOWLEDGEMENT QualityLogic would like to thank our long-time associate, Mark T. Osborn, for his major contribution to this white paper. -
IEEE-SA STANDARDS BOARD (SASB) MEETING MINUTES 07 November 2019 IEEE Operations Center, Piscataway, New Jersey, USA 9:00 A.M
IEEE-SA STANDARDS BOARD (SASB) MEETING MINUTES 07 November 2019 IEEE Operations Center, Piscataway, New Jersey, USA 9:00 a.m. – 5:00 p.m. Attendees Chair: Gary Hoffman Vice Chair: Ted Burse Past Chair: Jean-Philippe Faure Secretary: Konstantinos Karachalios Members: Stephen Dukes, TAB Rep. Travis Griffith Guido Hiertz Christel Hunter Thomas Koshy John Kulick David Law Joseph Levy Xiaohui Liu Kevin Lu Daleep Mohla Andrew Myles Annette Reilly Dorothy Stanley Philip Winston Howard Wolfman Feng Wu Jingyi Zhou Members Absent: Masayuki Ariyoshi Howard Li Sha Wei Phil Wennblom Joe Koepfinger, Member Emeritus IEEE Staff: Julie Alessi Tina Alston Melissa Aranzamendez Christy Bahn Ian Barbour Adrien Barmaksiz Christina Bellottie Christina Boyce Kim Breitfelder Justin Caso Matthew Ceglia Ravindra Desai Karen Evangelista Josh Gay Jonathan Goldberg Jodi Haasz Mary Ellen Hanntz Yvette Ho Sang Karen Kenney Soo Kim Michael Kipness Vanessa Lalitte Juanita Lewis Greg Marchini Karen McCabe Patrick McCarren Ashley Moran Luigi Napoli Mary Lynne Nielsen Nikoi Nikoi Lauren Rava Dave Ringle, Recording Secretary Pat Roder Anasthasie Sainvilus Gil Santiago Rudi Schubert Sam Sciacca Alpesh Shah Tanya Steinhauser Tom Thompson Lisa Weisser Jonathan Wiggins Malia Zaman Meng Zhao IEEE Outside Legal Counsel: Claire Topp – Dorsey & Whitney LLP IEEE Government Engagement Program on Standards (GEPS) Representatives: Ramy Ahmed Fathy – Egypt, National Telecom Regulatory Authority (NTRA) Simon Hicks – United Kingdom, Department for Digital, Culture, Media & Sport (DCMS) -
THE KENYA GAZETTE Published by Authority of the Republic of Kenya (Registered As a Newspaper at the G.P.O.)
~ I v , THE KENYA GAZETTE Published by Authority of the Republic of Kenya (Registered as a Newspaper at the G.P.O.) Vol. CXX—No. 99 NAIROBI, 17th August, 2018 Price Sh. 60 CONTENTS GAZETTE NOTICES GAZETTE NOTICE5—(Contd.) PAGE PAGE The Human Resource Management Professionals Act- I The Insolvency Act-Winding up Order and Creditors' Appointment....................................................................... 2906 2954-2955 The National Council for Law Reporting Act- The Political Parties Act-Change of Party Officials........... 2955 Appointment....................................................................... 2906 County Government Notices ................................................... 2906-2907,2953 The Physical Planning Act-Completion of Pail Development Plans, etc .................................................... 2955-2956 The Land Registration Act-issue of Provisional Certificates, etc ................................................................... 2907-2915 Disposal of Uncollected Goods .............................................. 2956 The National Treasury-Statement of Actual Revenues and Lossof Policies .......................................... ................................ 2956-2962 Net Exchequer Issues as at 31st July, 2018 ...................... 2915-2918 Change of Names ............................................................ The Civil Aviation Act-Decisions of the Kenya Civil 2962-2963 Aviation Authority on Applications for Air Service Licences ............................................................................ -
A Survey on Vulnerabilities and Countermeasures in the Communications of the Smart Grid
electronics Review A Survey on Vulnerabilities and Countermeasures in the Communications of the Smart Grid Jesús Lázaro 1,* , Armando Astarloa 1, Mikel Rodríguez 2, Unai Bidarte 1 and Jaime Jiménez 1 1 UPV/EHU, 48015 Bilbao, Spain; [email protected] (A.A.); [email protected] (U.B.); [email protected] (J.J.) 2 System-on-Chip Engineering, 48950 Erandio, Spain; [email protected] * Correspondence: [email protected] Abstract: Since the 1990s, the digitalization process has transformed the communication infras- tructure within the electrical grid: proprietary infrastructures and protocols have been replaced by the IEC 61850 approach, which realizes interoperability among vendors. Furthermore, the latest networking solutions merge operational technologies (OTs) and informational technology (IT) traffics in the same media, such as time-sensitive networking (TSN)—standard, interoperable, deterministic, and Ethernet-based. It merges OT and IT worlds by defining three basic traffic types: scheduled, best-effort, and reserved traffic. However, TSN demands security against potential new cyberattacks, primarily, to protect real-time critical messages. Consequently, security in the smart grid has turned into a hot topic under regulation, standardization, and business. This survey collects vulnerabilities of the communication in the smart grid and reveals security mechanisms introduced by international electrotechnical commission (IEC) 62351-6 and how to apply them to time-sensitive networking. Citation: Lázaro, J.; Astarloa, A.; Keywords: IEC 62351-6; smart grid; time-sensitive networking; IEC 61950 Rodríguez, M.; Bidarte U.; Jiménez, J. A Survey on Vulnerabilities and Countermeasures in the Communications of the Smart Grid. 1. Introduction Electronics 2021, 10, 1881. -
Iot LSP Standard Framework Concepts 2015
AIOTI ALLIANCE FOR INTERNET OF THINGS INNOVATION IoT LSP Standard Framework Concepts Release 2.0 AIOTI WG03 – loT Standardisation 2015 AIOTI ALLIANCE FOR INTERNET OF THINGS INNOVATION Executive Summary This deliverable introduces IoT Standards Developing Organisation (SDO), Alliance and Open Source Software (OSS) landscapes to be used as input for the recommendations for Large Scale Pilots (LSPs) standard framework and gap analysis. The LSPs can play an important role in investigating and solving specific challenges for the IoT industry and promoting innovation that is related to specific activities such as 1) the applied standards framework, 2) deployments, 3) technological and business model validation and 4) acceptability. The main objective of this deliverable is to briefly present the global dynamics and landscapes of IoT SDO, Alliance and OSS initiatives, which can be used: 1) to leverage on existing IoT standardization, industry promotion and implementation of standards and protocols, 2) as input for LSP standards framework and gap analysis and 3) to provide a guideline for the proponents of future project proposals associated with future IoT related calls financed by the EC on the positioning of these initiatives within these landscapes. AIOTI – Restricted 2 AIOTI ALLIANCE FOR INTERNET OF THINGS INNOVATION Table of Contents 1. GOAL AND MOTIVATION............................................................................................................................. 4 2. IOT SDO AND ALLIANCE INITIATIVES LANDSCAPE.......................................................................... -
IEC 62351-7 ® Edition 1.0 2017-07
This is a preview - click here to buy the full publication IEC 62351-7 ® Edition 1.0 2017-07 INTERNATIONAL STANDARD colour inside Power systems management and associated information exchange – Data and communications security – Part 7: Network and System Management (NSM) data object models INTERNATIONAL ELECTROTECHNICAL COMMISSION ICS 33.200 ISBN 978-2-8322-4442-5 Warning! Make sure that you obtained this publication from an authorized distributor. ® Registered trademark of the International Electrotechnical Commission This is a preview - click here to buy the full publication – 2 – IEC 62351-7:2017 © IEC 2017 CONTENTS FOREWORD ........................................................................................................................... 8 1 Scope ............................................................................................................................ 10 2 Normative references .................................................................................................... 10 3 Terms and definitions .................................................................................................... 12 4 Abbreviated terms and acronyms ................................................................................... 13 5 Overview of Network and System Management (NSM) .................................................. 14 5.1 Objectives ............................................................................................................. 14 5.2 NSM concepts...................................................................................................... -
THE KENYA GAZETTE Published by Authority of the Republic of Kenya (Registered As a Newspaper at the G.P.O.)
THE KENYA GAZETTE Published by Authority of the Republic of Kenya (Registered as a Newspaper at the G.P.O.) Vol. CXX—No. 99 NAIROBI, 17th August, 2018 Price Sh. 60 CONTENTS GAZETTE NOTICES GAZETTE NOTICES—(Contd.) PAGE PAGE The Human Resource Management Professionals Act— The Insolvency Act—Winding up Order and Creditors’ Appointment ....................................................................... 2906 Meeting, etc ....................................................................... 2954–2955 The National Council for Law Reporting Act— Appointment ....................................................................... 2906 The Political Parties Act—Change of Party Officials ........... 2955 County Government Notices ................................................... 2906–2907, 2953 The Physical Planning Act—Completion of Part Development Plans, etc .................................................... 2955–2956 The Land Registration Act—Issue of Provisional Certificates, etc ................................................................... 2907–2915 Disposal of Uncollected Goods .............................................. 2956 The National Treasury–Statement of Actual Revenues and Loss of Policies.......................................................................... 2956–2962 Net Exchequer Issues as at 31st July, 2018 ...................... 2915–2918 Change of Names ............................................................ 2962–2963 The Civil Aviation Act—Decisions of the Kenya Civil Aviation Authority on Applications -
International Standard IEC 61970-301 Has Been Prepared by IEC Technical Committee 57: Power System Control and Associated Communications
This preview is downloaded from www.sis.se. Buy the entire standard via https://www.sis.se/std-566196 INTERNATIONAL IEC STANDARD 61970-301 First edition 2003-11 Energy management system application program interface (EMS-API) – Part 301: Common Information Model (CIM) Base Reference number IEC 61970-301:2003(E) Copyright © IEC, 2003, Geneva, Switzerland. All rights reserved. Sold by SIS under license from IEC and SEK. No part of this document may be copied, reproduced or distributed in any form without the prior written consent of the IEC. This preview is downloaded from www.sis.se. Buy the entire standard via https://www.sis.se/std-566196 Publication numbering As from 1 January 1997 all IEC publications are issued with a designation in the 60000 series. For example, IEC 34-1 is now referred to as IEC 60034-1. Consolidated editions The IEC is now publishing consolidated versions of its publications. For example, edition numbers 1.0, 1.1 and 1.2 refer, respectively, to the base publication, the base publication incorporating amendment 1 and the base publication incorporating amendments 1 and 2. Further information on IEC publications The technical content of IEC publications is kept under constant review by the IEC, thus ensuring that the content reflects current technology. Information relating to this publication, including its validity, is available in the IEC Catalogue of publications (see below) in addition to new editions, amendments and corrigenda. Information on the subjects under consideration and work in progress undertaken by the technical committee which has prepared this publication, as well as the list of publications issued, is also available from the following: • IEC Web Site (www.iec.ch) • Catalogue of IEC publications The on-line catalogue on the IEC web site (www.iec.ch/searchpub) enables you to search by a variety of criteria including text searches, technical committees and date of publication. -
Author Information Only
Cyber Security Practical considerations for implementing IEC 62351 Frank Hohlbaum, Markus Braendle, Fernando Alvarez ABB [email protected] Switzerland 1. Introduction Two trends are currently changing substation automation systems: IEC 61850 and the need for increased cyber security. IEC 61850 has gained global acceptance by both vendors as well as customers. Cyber security on the other hand has quickly become one of the most dominant topics for control systems in general and electrical utilities in particular. The combination of the two, securing IEC 61850 based communications, has been one of the goals of the recently published technical specification IEC 62351. In the authors‟ view IEC 62351 is overall a good starting point and will be the future standard to help secure IEC 61850 communication. However, there are some shortcomings of the current standard and some challenges that need to be addressed before IEC 62351 can be implemented and gain wide acceptance. This paper will highlight the challenge of addressing secure communication in the substation real-time environment, complying with the IEC 61850 real-time specifications. The major difficulties are to reach the performance defined in IEC 61850 for GOOSE and SV data with today‟s proposed technical specification defined for IEC 62351 part 6. In chapter 2, we will give a short overview about the structure of IEC 61850 as well as the detailed performance requirements for the various data types. Chapter 3 will present an introduction of the IEC 62351 standard including the used methods to secure the IEC 61850 communication. Chapter 4 will then show the major implementation issues of IEC 62351 part 6. -
57-61968-5-Ed1-FDIS
IEC 61968-5 ED1 © IEC:2020 – 1 – 1 CONTENTS 2 3 FOREWORD ........................................................................................................................... 4 4 INTRODUCTION ..................................................................................................................... 6 5 Scope ..................................................................................................................................... 8 6 Normative references .............................................................................................................. 9 7 Terms, definitions and abbreviated terms .............................................................................. 10 8 3.1 Terms and definitions............................................................................................ 10 9 3.3 Abbreviated terms ................................................................................................. 10 10 Conventions .......................................................................................................................... 11 11 DER enterprise integration use cases ................................................................................... 11 12 5.1 General ................................................................................................................. 11 13 5.2 DER Group Creation ............................................................................................. 14 14 5.3 Maintenance of DERGroups .................................................................................