A Redescription of Planctoteuthis Levimana (Lönnberg, 1896) (Mollusca: Cephalopoda), with a Brief Review of the Genus

Total Page:16

File Type:pdf, Size:1020Kb

A Redescription of Planctoteuthis Levimana (Lönnberg, 1896) (Mollusca: Cephalopoda), with a Brief Review of the Genus PROCEEDINGS OF THE BIOLOGICAL SOCIETY OF WASHINGTON 119(4):586–591. 2006. A redescription of Planctoteuthis levimana (Lo¨nnberg, 1896) (Mollusca: Cephalopoda), with a brief review of the genus Richard E. Young, Michael Vecchione*, Uwe Piatkowski, and Clyde F. E. Roper (REY) Department of Oceanography, University of Hawaii, Honolulu, Hawaii 96822, U.S.A., e-mail: [email protected]; (MV) Systematics Laboratory, National Marine Fisheries Service, National Museum of Natural History, Washington, D.C. 20013-7012, U.S.A., e-mail: [email protected]; (UP) Leibniz-Institut fu¨r Meereswissenschaften, IFM-GEOMAR, Kiel, Germany, e-mail: [email protected]; (CFER) Deptartment of Invertebrate Zoology, National Museum of Natural History, Washington, D.C. 20560-0153, U.S.A., e-mail: [email protected] Abstract.—We re-describe Planctoteuthis levimana (Lo¨nnberg, 1896), a poorly known species of oegopsid squid in the Chiroteuthidae, based on two specimens taken from near the type locality. We also designate a neotype for P. levimana. We demonstrate that P. levimana is a valid taxon through brief comparisons with other members of the genus, and we assess the importance of the funnel locking-apparatus as a species-level character in Planctoteuthis. Planctoteuthis levimana (Lo¨nnberg, around the head and eyes. Additional 1896) was originally described as Masti- information is available on the world- goteuthis levimana based on two speci- wide web at: http://tolweb.org/tree? mens, one of which was in fragments. It group5Planctoteuthis. was transferred to Valbyteuthis by Young (1972). Young (1991) subsequently placed Systematics the genus Valbyteuthis in the synonymy of Planctoteuthis which he considered a ge- Planctoteuthis Pfeffer, 1912 nus rather that a subgenus as originally Diagnosis.—Chiroteuthid without pho- described by Pfeffer (1912). Planctoteuthis tophores. Eyes project ventrally from levimana is now the oldest species as- head. Arms IV with relatively few suckers signed to this genus. In spite of the early aligned essentially in single series. Ten- description, this species, to our knowl- tacular clubs small, compact. Funnel edge, has not been reported since. We valve absent. Funnel locking-apparatus describe here two specimens, one of without tragus but with antitragus. which is in exceptionally good condition, although arm tips and tentacular clubs Planctoteuthis levimana (Lo¨nnberg, are missing. The other specimen is badly 1896) damaged but has a single tentacle with Figs. 1, 2d, e, k–o an intact club. Here we are able to add Material examined.—Specimen no. 1: additional details to the original de- Neotype (Bergen Museum cat. no. scription, including the previously un- ZMBN 77635), 60 mm ML, immature known thick, vesiculate, gelatinous lobes female taken on 1 Jul 2004 at 41u189N, 28u159W in a midwater trawl that fished * Corresponding author. from 0–2400 m. Specimen no. 2: (Bergen VOLUME 119, NUMBER 4 587 Fig. 1. Planctoteuthis levimana, specimen no. 1 (neotype), 70 mm ML, photographs of squid prior to fixation. (a) ventral view, (b) dorsal view, (c) side view. 588 PROCEEDINGS OF THE BIOLOGICAL SOCIETY OF WASHINGTON Fig. 2. (a–c) Planctoteuthis exopthalmica. (a) dorsal view, 25 mm ML, drawing from Chun, 1910, (b) frontal view of funnel locking-apparatus, drawing from Chun, 1910, (c) ventral view, drawing from Chun, 1910; (d–g, k–o) Planctoteuthis levimana. (d) frontal view of funnel locking-apparatus of specimen no. 2, (e) frontal view of funnel locking-apparatus of neotype, (f) frontal view of funnel locking-apparatus of type specimen, now lost; drawing by J. Schroeder, (g) ventral view of type specimen, drawing by J. Schroeder, (k) oral view of arm showing sucker dentition, (l) lateral view of mantle locking apparatus, (m) ventral-oblique view of head showing separation of gelatinous lobes between eyes, (n) oral-oblique view of tentacle showing lack of keel, (o) oral view of tentacle; (h) Planctoteuthis oligobessa. Frontal view of funnel locking-apparatus; (i) Planctoteuthis lippula. Frontal view of funnel locking-apparatus; (j) Planctoteuthis danae. Frontal view of funnel locking-apparatus. Museum cat. no. ZMBN 77636), 70 mm 1800 m. These two squid were captured in ML (estimate), sex undetermined, taken the north Atlantic Ocean north of the on 1 Jul 2004 at 41u319N, 29u559Win Azores within a few degrees of the type a midwater trawl that fished from 800– locality, 43uN, 24uW. VOLUME 119, NUMBER 4 589 Description.—Arm suckers in two, absent. Mantle thin, muscular, terminates closely packed series. Large arm suckers at midlevel on fins. Fins with anterior with ca. 12 broad, triangular teeth distally lobes, posterior lobes uncertain due to on inner rings, becoming low, blunt teeth damage. Tail unknown, missing on our proximally (Fig. 2k). Large suckers of specimens. Thick, triangular conus bro- lateral arms with outer rings 0.8 mm in ken off at posterior edge of fins. diameter, apertures 0.5 mm in diameter. Photophores absent. Pigmentation con- Arm I suckers smaller than lateral arm sists of large reddish-brown chromato- suckers. Arm IV suckers smallest, di- phores scattered over arms, head, funnel, ameter 0.4 mm (outer rings), 0.23 mm mantle and fins (Fig. 1). Digestive gland (apertures). Arms with low protective oriented oblique to body axis. membranes, often difficult to detect. Measurements.—Abbreviations: FL 5 Tentacles thick, muscular (Fig. 1a). fin length, FW 5 fin width, HL 5 head Club relatively small, slender, compact, length, ML 5 mantle length, MW 5 without aboral keel (Fig. 2n, o). Distal mantle width. Neotype (specimen no. 1, third of club with suckers in four series, immature female): ML – 60 mm, MW – decreasing to one sucker near tip. Suckers 13 mm, FW – 36 mm, FL – 17 mm , HL absent from club tip which forms short (nuchal cartilage to posterior end of cone covered with chromatophores. Prox- brachial pillar – 16.5 mm; Brachial Pillar imally suckers not as regularly arranged, width - 9 mm, Branchial Pillar depth – appear mostly in three series, decreasing 7 mm, Head width (across eyes) – 14, Neck to a single sucker at base and preceded width – 13.5 mm, Neck length (collar to proximally by a ‘‘carpus.’’ ‘‘Carpus’’ with posterior eye margin) – 8 mm, Eye width – 5 suckers in single zig-zag series; carpal 10 mm, Eye depth – 12.5 mm, Head depth suckers mostly larger than suckers of club (midline at posterior edge of eyes) – 12 mm, proper and with relatively larger aper- Lens diameter – 5 mm. Specimen no. 2 tures. Suckers of club proper with broad (sex undetermined): ML – 70 mm (esti- outer rings and narrow apertures, appar- mate), Club length – 11 mm, Club width – ently with smooth inner rings. Entire 2.2 mm, Diameter outer ring of large club, including ‘‘carpus,’’ bounded by suckersofclubproper–0.3mm,Aperture thick protective membranes which appear diameter – 0.06 – 0.08 mm. Large carpal to join distal to terminal sucker. suckers – 0.04 mm, Aperture – 0.14 mm. Head with large laterally compressed eyes with silvery rostra on ventral tips Discussion (Fig. 1a–c). Eyes bulge greatly from head laterally and ventrally, surrounded by The type specimens of P. levimana thick, gelatinous layers that extend to lacked tentacles, and some additional lateral sides of head (Figs. 1a–c, 2m). important systematic characters were not Short brachial pillar present. Broad, deep included in the original description. Our excavation present between funnel adduc- specimens, besides coming from the re- tor muscles. Bridles extend to mid-region gion of the type locality, have features of head, nearly to level of eye rostra. that generally agree with the type de- Olfactory organs posterolateral to eyes on scription, with a few exceptions. The long slender stalks. exceptions and missing details, however, Funnel locking-apparatus oval without cannot be checked as the types are tragus but with bilobed antitragus missing, according to a personal commu- (Fig. 2d, e); lateral lobe of antitragus nication from O. Israelsson at the Zool- broader; low channel between lobes ogiska Museet, Uppsala University where extends to edge of cartilage. Funnel valve the types are accessioned. Fortunately, 590 PROCEEDINGS OF THE BIOLOGICAL SOCIETY OF WASHINGTON illustrations of the more intact type were made by an artist at the United States National Museum of Natural History many years ago. These illustrations, which we have located (Fig. 2f, g), show a peculiar shape to the antitragus of the Pacific Pacific funnel-locking cartilage (Fig. 2f). We were immediately struck by its similarity to that of our specimens (Fig. 2g, e). To No North Atlantic, tropical Yes Atlantic, tropical determine the systematic value of the shape of the antitragus, we have exam- ined the antitragus of as many species of Planctoteuthis as are available to us. We presently recognize five species in the asymmetrical symmetrical genus (Table 1): P. danae (Joubin 1931), Short, Symmetrical No Tropical Pacific Symmetrical No Tropical Pacific Long, P. oligobessa (Young 1972), P. levimana ML) Symmetrical No South Indian (Lo¨nnberg, 1896), P. exopthalmica (Chun of ML) Club Shape Club Keel Distribution % % % 1908) and P. lippula (Chun 1908). Pfeffer % % % 36 (1912) included Chiroteuthis planctonica 5 40–45 in his subgenus Planctoteuthis.However, the absence of distinctly protruding eyes in his specimen, a 6.4 mm ML paralarva, suggests that his species belongs in Chiroteuthis. Of the species we recognize, the first three are known from subadults and the latter two from paralarvae. Planctoteuthis oligobessa has a distinct species. and simple antitragus of the form we previously thought to be typical of the broad genus (Fig. 2h). A subadult of P. lippula Single; slender 23–33 Single or slight double; low, Double; lobes unequal 40 that we examined from the western North Atlantic has a low antitragus with just Planctoteuthis a hint of division into two lobes (Fig. 2i). Planctoteuthis danae has a double anti- tragus rather similar to, but more pro- nounced than, that of our specimens (Fig.
Recommended publications
  • Aspects of the Natural History of Pelagic Cephalopods of the Hawaiian Mesopelagic-Boundary Region 1
    Pacific Science (1995), vol. 49, no. 2: 143-155 © 1995 by University of Hawai'i Press. All rights reserved Aspects of the Natural History of Pelagic Cephalopods of the Hawaiian Mesopelagic-Boundary Region 1 RICHARD EDWARD YOUNG 2 ABSTRACT: Pelagic cephalopods of the mesopelagic-boundary region in Hawai'i have proven difficult to sample but seem to occupy a variety ofhabitats within this zone. Abralia trigonura Berry inhabits the zone only as adults; A. astrosticta Berry may inhabit the inner boundary zone, and Pterygioteuthis giardi Fischer appears to be a facultative inhabitant. Three other mesopelagic species, Liocranchia reinhardti (Steenstrup), Chiroteuthis imperator Chun, and Iridoteuthis iris (Berry), are probable inhabitants; the latter two are suspected to be nonvertical migrants. The mesopelagic-boundary region also contains a variety of other pelagic cephalopods. Some are transients, common species of the mesopelagic zone in offshore waters such as Abraliopsis spp., neritic species such as Euprymna scolopes Berry, and oceanic epipelagic species such as Tremoctopus violaceus Chiaie and Argonauta argo Linnaeus. Others are appar­ ently permanent but either epipelagic (Onychoteuthis sp. C) or demersal (No­ totodarus hawaiiensis [Berry] and Haliphron atlanticus Steenstrup). Submersible observations show that Nototodarus hawaiiensis commonly "sits" on the bot­ tom and Haliphron atlanticus broods its young in the manner of some pelagic octopods. THE CONCEPT OF the mesopelagic-boundary over bottom depths of the same range. The region (m-b region) was first introduced by designation of an inner zone is based on Reid et al. (1991), although a general asso­ Reid'sfinding mesopelagic fishes resident there ciation of various mesopelagic animals with during both the day and night; mesopelagic land masses has been known for some time.
    [Show full text]
  • An Illustrated Key to the Families of the Order
    CLYDE F. E. ROP An Illustrated RICHARD E. YOl and GILBERT L. VC Key to the Families of the Order Teuthoidea Cephalopoda) SMITHSONIAN CONTRIBUTIONS TO ZOOLOGY • 1969 NUMBER 13 SMITHSONIAN CONTRIBUTIONS TO ZOOLOGY NUMBER 13 Clyde F. E. Roper, An Illustrated Key 5K?Z" to the Families of the Order Teuthoidea (Cephalopoda) SMITHSONIAN INSTITUTION PRESS CITY OF WASHINGTON 1969 SERIAL PUBLICATIONS OF THE SMITHSONIAN INSTITUTION The emphasis upon publications as a means of diffusing knowledge was expressed by the first Secretary of the Smithsonian Institution. In his formal plan for the Institution, Joseph Henry articulated a program that included the following statement: "It is proposed to publish a series of reports, giving an account of the new discoveries in science, and of the changes made from year to year in all branches of knowledge not strictly professional." This keynote of basic research has been adhered to over the years in the issuance of thousands of titles in serial publications under the Smithsonian imprint, commencing with Smithsonian Contributions to Knowledge in 1848 and continuing with the following active series: Smithsonian Annals of Flight Smithsonian Contributions to Anthropology Smithsonian Contributions to Astrophysics Smithsonian Contributions to Botany Smithsonian Contributions to the Earth Sciences Smithsonian Contributions to Paleobiology Smithsonian Contributions to Zoology Smithsonian Studies in History and Technology In these series, the Institution publishes original articles and monographs dealing with the research and collections of its several museums and offices and of professional colleagues at other institutions of learning. These papers report newly acquired facts, synoptic interpretations of data, or original theory in specialized fields.
    [Show full text]
  • A New Genus and Three New Species of Decapodiform Cephalopods (Mollusca: Cephalopoda)
    Rev Fish Biol Fisheries (2007) 17:353-365 DOI 10.1007/S11160-007-9044-Z .ORIGINAL PAPER A new genus and three new species of decapodiform cephalopods (Mollusca: Cephalopoda) R. E. Young • M. Vecchione • C. F, E, Roper Received: 10 February 2006 / Accepted: 19 December 2006 / Pubhshed online: 30 March 2007 © Springer Science+Business Media B.V. 2007 Abstract We describe here two new species of Introduction oegopsid squids. The first is an Asperoteuthis (Chiroteuthidae), and it is based on 18 specimens. We describe three new species of cephalopods This new species has sucker dentition and a from three different families in two different funnel-mantle locking apparatus that are unique orders that have little in common except they are within the genus. The second new species is a from unusual and poorly known groups. The Promachoteuthis (Promachoteuthidae), and is unique nature of these cephalopods has been based on a unique specimen. This new species known for over 30 years but they were not has tentacle ornamentation which is unique within described because (1) with two species we waited the genus. We also describe a new genus and a new for the collection of more or better material species of sepioid squid in the subfamily Hetero- which never materialized and (2) with one species teuthinae (Sepiolidae) and it is based on four the type material was misplaced, virtually forgot- specimens. This new genus and species exhibits ten and only recently rediscovered. The 2006 unique modifications of the arms in males. CIAC symposium was the stimulus to finally publish these species which should have been Keywords Amphorateuthis alveatus • published in the first CIAC symposium in 1985.
    [Show full text]
  • Defensive Behaviors of Deep-Sea Squids: Ink Release, Body Patterning, and Arm Autotomy
    Defensive Behaviors of Deep-sea Squids: Ink Release, Body Patterning, and Arm Autotomy by Stephanie Lynn Bush A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Integrative Biology in the Graduate Division of the University of California, Berkeley Committee in Charge: Professor Roy L. Caldwell, Chair Professor David R. Lindberg Professor George K. Roderick Dr. Bruce H. Robison Fall, 2009 Defensive Behaviors of Deep-sea Squids: Ink Release, Body Patterning, and Arm Autotomy © 2009 by Stephanie Lynn Bush ABSTRACT Defensive Behaviors of Deep-sea Squids: Ink Release, Body Patterning, and Arm Autotomy by Stephanie Lynn Bush Doctor of Philosophy in Integrative Biology University of California, Berkeley Professor Roy L. Caldwell, Chair The deep sea is the largest habitat on Earth and holds the majority of its’ animal biomass. Due to the limitations of observing, capturing and studying these diverse and numerous organisms, little is known about them. The majority of deep-sea species are known only from net-caught specimens, therefore behavioral ecology and functional morphology were assumed. The advent of human operated vehicles (HOVs) and remotely operated vehicles (ROVs) have allowed scientists to make one-of-a-kind observations and test hypotheses about deep-sea organismal biology. Cephalopods are large, soft-bodied molluscs whose defenses center on crypsis. Individuals can rapidly change coloration (for background matching, mimicry, and disruptive coloration), skin texture, body postures, locomotion, and release ink to avoid recognition as prey or escape when camouflage fails. Squids, octopuses, and cuttlefishes rely on these visual defenses in shallow-water environments, but deep-sea cephalopods were thought to perform only a limited number of these behaviors because of their extremely low light surroundings.
    [Show full text]
  • Cephalopoda: Chiroteuthidae) Paralarvae in the Gulf of California, Mexico
    Lat. Am. J. Aquat. Res., 46(2): 280-288, 2018 Planctoteuthis paralarvae in the Gulf of California 280 1 DOI: 10.3856/vol46-issue2-fulltext-4 Research Article First record and description of Planctoteuthis (Cephalopoda: Chiroteuthidae) paralarvae in the Gulf of California, Mexico Roxana De Silva-Dávila1, Raymundo Avendaño-Ibarra1, Richard E. Young2 Frederick G. Hochberg3 & Martín E. Hernández-Rivas1 1Instituto Politécnico Nacional, CICIMAR, La Paz, B.C.S., México 2Department of Oceanography, University of Hawaii, Honolulu, USA 3Department of Invertebrate Zoology, Santa Barbara Museum of Natural History Santa Barbara, CA, USA Corresponding author: Roxana De Silva-Dávila ([email protected]) ABSTRACT. We report for the first time the presence of doratopsis stages of Planctoteuthis sp. 1 (Cephalopoda: Chiroteuthidae) in the Gulf of California, Mexico, including a description of the morphological characters obtained from three of the five best-preserved specimens. The specimens were obtained from zooplankton samples collected in oblique Bongo net tows during June 2014 in the southern Gulf of California, Mexico. Chromatophore patterns on the head, chambered brachial pillar, and buccal mass, plus the presence of a structure, possibly a photophore, at the base of the eyes covered by thick, golden reflective tissue are different from those of the doratopsis stages of Planctoteuthis danae and Planctoteuthis lippula known from the Pacific Ocean. These differences suggest Planctoteuthis sp. 1 belongs to Planctoteuthis oligobessa, the only other species known from the Pacific Ocean or an unknown species. Systematic sampling covering a poorly sampled entrance zone of the Gulf of California was important in the collection of the specimens. Keywords: Paralarvae, Planctoteuthis, doratopsis, description, Gulf of California.
    [Show full text]
  • RACE Species Codes and Survey Codes 2018
    Alaska Fisheries Science Center Resource Assessment and Conservation Engineering MAY 2019 GROUNDFISH SURVEY & SPECIES CODES U.S. Department of Commerce | National Oceanic and Atmospheric Administration | National Marine Fisheries Service SPECIES CODES Resource Assessment and Conservation Engineering Division LIST SPECIES CODE PAGE The Species Code listings given in this manual are the most complete and correct 1 NUMERICAL LISTING 1 copies of the RACE Division’s central Species Code database, as of: May 2019. This OF ALL SPECIES manual replaces all previous Species Code book versions. 2 ALPHABETICAL LISTING 35 OF FISHES The source of these listings is a single Species Code table maintained at the AFSC, Seattle. This source table, started during the 1950’s, now includes approximately 2651 3 ALPHABETICAL LISTING 47 OF INVERTEBRATES marine taxa from Pacific Northwest and Alaskan waters. SPECIES CODE LIMITS OF 4 70 in RACE division surveys. It is not a comprehensive list of all taxa potentially available MAJOR TAXONOMIC The Species Code book is a listing of codes used for fishes and invertebrates identified GROUPS to the surveys nor a hierarchical taxonomic key. It is a linear listing of codes applied GROUNDFISH SURVEY 76 levelsto individual listed under catch otherrecords. codes. Specifically, An individual a code specimen assigned is to only a genus represented or higher once refers by CODES (Appendix) anyto animals one code. identified only to that level. It does not include animals identified to lower The Code listing is periodically reviewed
    [Show full text]
  • Diversity of Midwater Cephalopods in the Northern Gulf of Mexico: Comparison of Two Collecting Methods
    Mar Biodiv DOI 10.1007/s12526-016-0597-8 RECENT ADVANCES IN KNOWLEDGE OF CEPHALOPOD BIODIVERSITY Diversity of midwater cephalopods in the northern Gulf of Mexico: comparison of two collecting methods H. Judkins1 & M. Vecchione2 & A. Cook3 & T. Sutton 3 Received: 19 April 2016 /Revised: 28 September 2016 /Accepted: 12 October 2016 # Senckenberg Gesellschaft für Naturforschung and Springer-Verlag Berlin Heidelberg 2016 Abstract The Deepwater Horizon Oil Spill (DWHOS) ne- possible differences in inferred diversity and relative abun- cessitated a whole-water-column approach for assessment that dance. More than twice as many specimens were collected included the epipelagic (0–200 m), mesopelagic (200– with the LMTs than the MOC10, but the numbers of species 1000 m), and bathypelagic (>1000 m) biomes. The latter were similar between the two gear types. Each gear type col- two biomes collectively form the largest integrated habitat in lected eight species that were not collected by the other type. the Gulf of Mexico (GOM). As part of the Natural Resource Damage Assessment (NRDA) process, the Offshore Nekton Keywords Deep sea . Cephalopods . Gulf of Mexico . Sampling and Analysis Program (ONSAP) was implemented MOCNESS . Trawl to evaluate impacts from the spill and to enhance basic knowl- edge regarding the biodiversity, abundance, and distribution of deep-pelagic GOM fauna. Over 12,000 cephalopods were Introduction collected during this effort, using two different trawl methods (large midwater trawl [LMT] and 10-m2 Multiple Opening Cephalopods of the Gulf of Mexico (GOM), from the inshore and Closing Net Environmental Sensing System [MOC10]). areas to the deep sea, include many species of squids, octo- Prior to this work, 93 species of cephalopods were known pods, and their relatives.
    [Show full text]
  • Southeastern Regional Taxonomic Center South Carolina Department of Natural Resources
    Southeastern Regional Taxonomic Center South Carolina Department of Natural Resources http://www.dnr.sc.gov/marine/sertc/ Southeastern Regional Taxonomic Center Invertebrate Literature Library (updated 9 May 2012, 4056 entries) (1958-1959). Proceedings of the salt marsh conference held at the Marine Institute of the University of Georgia, Apollo Island, Georgia March 25-28, 1958. Salt Marsh Conference, The Marine Institute, University of Georgia, Sapelo Island, Georgia, Marine Institute of the University of Georgia. (1975). Phylum Arthropoda: Crustacea, Amphipoda: Caprellidea. Light's Manual: Intertidal Invertebrates of the Central California Coast. R. I. Smith and J. T. Carlton, University of California Press. (1975). Phylum Arthropoda: Crustacea, Amphipoda: Gammaridea. Light's Manual: Intertidal Invertebrates of the Central California Coast. R. I. Smith and J. T. Carlton, University of California Press. (1981). Stomatopods. FAO species identification sheets for fishery purposes. Eastern Central Atlantic; fishing areas 34,47 (in part).Canada Funds-in Trust. Ottawa, Department of Fisheries and Oceans Canada, by arrangement with the Food and Agriculture Organization of the United Nations, vols. 1-7. W. Fischer, G. Bianchi and W. B. Scott. (1984). Taxonomic guide to the polychaetes of the northern Gulf of Mexico. Volume II. Final report to the Minerals Management Service. J. M. Uebelacker and P. G. Johnson. Mobile, AL, Barry A. Vittor & Associates, Inc. (1984). Taxonomic guide to the polychaetes of the northern Gulf of Mexico. Volume III. Final report to the Minerals Management Service. J. M. Uebelacker and P. G. Johnson. Mobile, AL, Barry A. Vittor & Associates, Inc. (1984). Taxonomic guide to the polychaetes of the northern Gulf of Mexico.
    [Show full text]
  • Phylum: Mollusca Class: Cephalopoda
    PHYLUM: MOLLUSCA CLASS: CEPHALOPODA Authors Rob Leslie1 and Marek Lipinski2 Citation Leslie RW and Lipinski MR. 2018. Phylum Mollusca – Class Cephalopoda In: Atkinson LJ and Sink KJ (eds) Field Guide to the Ofshore Marine Invertebrates of South Africa, Malachite Marketing and Media, Pretoria, pp. 321-391. 1 South African Department of Agriculture, Forestry and Fisheries, Cape Town 2 Ichthyology Department, Rhodes University, Grahamstown, South Africa 321 Phylum: MOLLUSCA Class: Cephalopoda Argonauts, octopods, cuttlefish and squids Introduction to the Class Cephalopoda Cephalopods are among the most complex and The relative length of the arm pairs, an important advanced invertebrates. They are distinguished from identiication character, is generally expressed as the rest of the Phylum Mollusca by the presence an arm formula, listing the arms from longest to of circumoral (around the mouth) appendages shortest pair: e.g. III≥II>IV>I indicates that the two commonly referred to as arms and tentacles. lateral arm pairs (Arms II and III) are of similar length Cephalopods irst appeared in the Upper Cambrian, and are longer than the ventral pair (Arms IV). The over 500 million years ago, but most of those dorsal pair (Arms I) is the shortest. ancestral lineages went extinct. Only the nautiluses (Subclass Nautiloidea) survived past the Silurian (400 Order Vampyromorpha (Vampire squids) million years ago) and are today represented by only This order contains a single species. Body sac-like, two surviving genera. All other living cephalopods black, gelatinous with one pair (two in juveniles) of belong to the Subclass Coleoidea that irst appeared paddle-like ins on mantle and a pair of large light in the late Palaeozoic (400-350 million years ago).
    [Show full text]
  • Genus-Level Phylogeny of Cephalopods Using Molecular Markers: Current Status and Problematic Areas
    Genus-level phylogeny of cephalopods using molecular markers: current status and problematic areas Gustavo Sanchez1,2, Davin H.E. Setiamarga3,4, Surangkana Tuanapaya5, Kittichai Tongtherm5, Inger E. Winkelmann6, Hannah Schmidbaur7, Tetsuya Umino1, Caroline Albertin8, Louise Allcock9, Catalina Perales-Raya10, Ian Gleadall11, Jan M. Strugnell12, Oleg Simakov2,7 and Jaruwat Nabhitabhata13 1 Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan 2 Molecular Genetics Unit, Okinawa Institute of Science and Technology, Okinawa, Japan 3 Department of Applied Chemistry and Biochemistry, National Institute of Technology—Wakayama College, Gobo City, Wakayama, Japan 4 The University Museum, The University of Tokyo, Tokyo, Japan 5 Department of Biology, Prince of Songkla University, Songkhla, Thailand 6 Section for Evolutionary Genomics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark 7 Department of Molecular Evolution and Development, University of Vienna, Vienna, Austria 8 Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL, United States of America 9 Department of Zoology, Martin Ryan Marine Science Institute, National University of Ireland, Galway, Ireland 10 Centro Oceanográfico de Canarias, Instituto Español de Oceanografía, Santa Cruz de Tenerife, Spain 11 Graduate School of Agricultural Science, Tohoku University, Sendai, Tohoku, Japan 12 Marine Biology & Aquaculture, James Cook University, Townsville, Queensland, Australia 13 Excellence
    [Show full text]
  • Diversity of Midwater Cephalopods in the Northern Gulf of Mexico: Comparison of Two Collecting Methods
    Diversity of midwater cephalopods in the northern Gulf of Mexico: comparison of two collecting methods H. Judkins, M. Vecchione, A. Cook & T. Sutton Marine Biodiversity ISSN 1867-1616 Mar Biodiv DOI 10.1007/s12526-016-0597-8 1 23 Your article is protected by copyright and all rights are held exclusively by Senckenberg Gesellschaft für Naturforschung and Springer- Verlag Berlin Heidelberg. This e-offprint is for personal use only and shall not be self- archived in electronic repositories. If you wish to self-archive your article, please use the accepted manuscript version for posting on your own website. You may further deposit the accepted manuscript version in any repository, provided it is only made publicly available 12 months after official publication or later and provided acknowledgement is given to the original source of publication and a link is inserted to the published article on Springer's website. The link must be accompanied by the following text: "The final publication is available at link.springer.com”. 1 23 Author's personal copy Mar Biodiv DOI 10.1007/s12526-016-0597-8 RECENT ADVANCES IN KNOWLEDGE OF CEPHALOPOD BIODIVERSITY Diversity of midwater cephalopods in the northern Gulf of Mexico: comparison of two collecting methods H. Judkins1 & M. Vecchione2 & A. Cook3 & T. Sutton 3 Received: 19 April 2016 /Revised: 28 September 2016 /Accepted: 12 October 2016 # Senckenberg Gesellschaft für Naturforschung and Springer-Verlag Berlin Heidelberg 2016 Abstract The Deepwater Horizon Oil Spill (DWHOS) ne- possible differences in inferred diversity and relative abun- cessitated a whole-water-column approach for assessment that dance. More than twice as many specimens were collected included the epipelagic (0–200 m), mesopelagic (200– with the LMTs than the MOC10, but the numbers of species 1000 m), and bathypelagic (>1000 m) biomes.
    [Show full text]
  • Genus-Level Phylogeny of Cephalopods Using Molecular Markers: Current Status and Problematic Areas
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by ResearchOnline at James Cook University Genus-level phylogeny of cephalopods using molecular markers: current status and problematic areas Gustavo Sanchez1,2, Davin H.E. Setiamarga3,4, Surangkana Tuanapaya5, Kittichai Tongtherm5, Inger E. Winkelmann6, Hannah Schmidbaur7, Tetsuya Umino1, Caroline Albertin8, Louise Allcock9, Catalina Perales-Raya10, Ian Gleadall11, Jan M. Strugnell12, Oleg Simakov2,7 and Jaruwat Nabhitabhata13 1 Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan 2 Molecular Genetics Unit, Okinawa Institute of Science and Technology, Okinawa, Japan 3 Department of Applied Chemistry and Biochemistry, National Institute of Technology—Wakayama College, Gobo City, Wakayama, Japan 4 The University Museum, The University of Tokyo, Tokyo, Japan 5 Department of Biology, Prince of Songkla University, Songkhla, Thailand 6 Section for Evolutionary Genomics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark 7 Department of Molecular Evolution and Development, University of Vienna, Vienna, Austria 8 Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL, United States of America 9 Department of Zoology, Martin Ryan Marine Science Institute, National University of Ireland, Galway, Ireland 10 Centro Oceanográfico de Canarias, Instituto Español de Oceanografía, Santa Cruz de Tenerife, Spain 11 Graduate School of Agricultural Science, Tohoku University, Sendai, Tohoku, Japan 12 Marine Biology & Aquaculture, James Cook University, Townsville, Queensland, Australia 13 Excellence Centre for Biodiversity of Peninsular Thailand, Prince of Songkla University, Songkhla, Thailand ABSTRACT Comprising more than 800 extant species, the class Cephalopoda (octopuses, squid, Submitted 19 June 2017 cuttlefish, and nautiluses) is a fascinating group of marine conchiferan mollusks.
    [Show full text]