Efficient Cryptographic Techniques for Securing Storage Systems Thesis Proposal

Total Page:16

File Type:pdf, Size:1020Kb

Efficient Cryptographic Techniques for Securing Storage Systems Thesis Proposal Efficient Cryptographic Techniques for Securing Storage Systems Thesis Proposal Alina Oprea Carnegie Mellon University, Computer Science Department Abstract With the advance of storage technologies to networked-attached storage, a recently emerging ar- chitecture that provides higher performance and availability than traditional direct-attached disks, new security concerns arise. In these environments, clients can no longer rely only on the storage servers to provide security guarantees, since these become now easier to compromise. In consequence, clients have to play a more proactive role in protocols designed for data protection and work together with the storage servers to ensure the confidentiality and integrity of the data. For this purpose, traditional file systems have been augmented with client-side cryptographic operations, leading to a number of different cryptographic file systems solutions proposed recently. In this thesis, we propose new approaches for three different mechanisms that are currently employed in implementations of cryptographic file systems. First, we propose novel constructions that reduce the amount of additional storage required for integrity in block storage systems. These constructions are based on the observation that, in practice, distributions of block contents and of block access patterns are not random. As future work, we plan to extend our constructions to provide integrity of both data and metadata in cryptographic file systems. Secondly, we construct efficient key management schemes for cryptographic file systems in which the re-encryption of a file following a user revocation is delayed until the next write to that file, a model called lazy revocation. The encryption key evolves at each revocation and we devise an efficient al- gorithm to recover previous encryption keys with only logarithmic cost in the number of revocations supported. Thirdly, we address the problem of consistency of encrypted shared file objects used to im- plement cryptographic file systems abstractly. We provide sufficient conditions for the realization of a given level of consistency, when concurrent writes to both the file and encryption key objects are possi- ble. We plan to integrate our three novel mechanisms in an example architecture of a cryptographic file system, and implement it on top of NFS using the SFS toolkit. We also plan to evaluate the amount of storage needed for integrity, the latency overhead incurred by the encryption and the integrity mech- anisms, and the throughput offered by the file system upon concurrent writes compared against those offered by NFS. 1 Introduction Networked storage solutions, such as Network-Attached Storage (NAS) and Storage Area Networks (SAN), have emerged as an alternative to direct-attached storage. These modern architectures provide remote block- level data storage services for clients, preserving the same interface as a local disk to the client file system. 1 A storage area network service is often owned and managed by an organization other than the client’s, and it may additionally store other client organizations’ data using the same physical resources. While storing large amounts of data on high-speed, dedicated storage-area networks simplifies storage management and stimulates information sharing, it also raises security concerns. It is desirable that clients using a networked storage system have similar security guarantees to those offered by traditional storage systems. However, the storage servers in a NAS or SAN are more exposed than direct-attached disks. In these environments, the clients cannot rely on the storage servers for security guarantees, and, it is thus necessary that clients secure the stored data themselves in a manner transparent to the storage servers. For this purpose, cryptographic file systems augment file systems with client-side cryptographic operations that can be used to protect the confidentiality and integrity of stored data. Several security mechanisms are needed to implement cryptographic file systems, in particular prim- itives for data confidentiality and integrity, access control methods to enable sharing of information, key management schemes that support user revocation, and methods for guaranteeing consistency of encrypted data, detailed below: Data Confidentiality. In order to prevent access to stored data by unauthorized parties, data confidentiality can be maintained using either a standard block cipher (e.g., AES) in one of the standard modes of operation (e.g., CBC) or a tweakable cipher [50, 33, 34]. Tweakable ciphers were designed following a call for algorithms for block level encryption by the IEEE Security In Storage Working Group (SISW) [1]. These algorithms are length-preserving, so that block boundaries do not shift or need to be adjusted as a result of encryption. Data Integrity. The data stored on the storage servers is vulnerable to modification and replay attacks. Tra- ditionally, data integrity is protected using cryptographic primitives such as message-authentication codes (MAC) and digital signatures. More sophisticated constructions (e.g., based on Merkle trees [54]) can be used to reduce the amount of additional storage needed to check the integrity of data blocks. Access Control. An access control mechanism needs to be employed to restrict access to the information stored to only authorized users. A natural access control method for cryptographic file systems is to distribute the appropriate cryptographic keys (e.g., encryption, MAC or signing keys) for a certain file only to users that have access permissions to that file. An alternative method uses capabilities [29], but assumes intelligent storage devices that can check the validity of the capabilities presented by users before performing operations on data. Key Management and User Revocation. Key management solutions in cryptographic file systems range from fully centralized key distribution using a trusted key server [26] to completely decentralized key distribution done by the file system users [45, 40]. The cryptographic keys for a file need to be updated after a user’s access permissions to that file are revoked. Additionally, the cryptographic information for that file (either an encryption of the file or some integrity information) has to be recomputed with the new cryptographic key. There are two revocation models, depending on when the cryptographic information for a file is up- dated. In an active revocation model, all cryptographic information is immediately recomputed after a revocation takes place. This is expensive and might cause disruptions in the normal operation of the file system. In the alternative model of lazy revocation, the information for each file is recomputed only when the file is modified for the first time after a revocation [26]. Consistency of Encrypted Data. Sharing of information among clients is an important feature offered by file systems. When multiple users are allowed concurrent access and modification of information, 2 consistency of data needs to be maintained. Many different consistency models have been defined and implemented, ranging from strong conditions such as linearizability [35] and sequential consis- tency [46], to loose consistency guarantees such as causal consistency [5] and PRAM [49]. Thesis contributions. In this thesis, we propose new approaches to three different mechanisms that can be used to improve current implementations of cryptographic file systems: data integrity, key management for cryptographic file systems adopting lazy revocation, and consistency of encrypted file objects. Our goal in this thesis is to demonstrate that storage systems can be secured using novel provably secure cryptographic constructions that are space-efficient and incur low performance-overhead. To this end, we first propose space-efficient novel constructions for storage integrity that exploit the fact that distributions of block contents and of block access patterns are not random in practice [57]. To preserve the length of the encrypted blocks sent to the storage servers, clients encrypt the blocks with a tweakable cipher and keep locally some state used to check the integrity of the blocks written. The constructions use the non-malleability property of tweakable ciphers to minimize the amount of local storage for integrity. Our preliminary results demonstrate that our constructions are space-efficient and have low performance overhead compared to constructions in which a hash or a MAC is stored per block. Experiments also demonstrate that defending against replay attacks requires more storage for integrity than a simple solution that defends only against modification attacks. Secondly, we construct efficient key management schemes for systems adopting lazy revocation, called key-updating schemes for lazy revocation [8, 7]. Assume that the same cryptographic key is used initially for a group of files with the same access permissions and the key is modified after every revocation. We denote the time between two revocations as a time interval. After several user revocations, the lazy revocation model implies that different versions of the key might be used for different files in the group. Storing and distributing these keys becomes more difficult in such systems than in systems using active revocation. We model key-updating schemes using a center (e.g., the group owner) that initially generates some state information, updated at every revocation. Upon a user request, the center uses its current local state to derive a user key and gives that to the user. From
Recommended publications
  • IB Case Study Vocabulary a Local Economy Driven by Blockchain (2020) Websites
    IB Case Study Vocabulary A local economy driven by blockchain (2020) Websites Merkle Tree: https://blockonomi.com/merkle-tree/ Blockchain: https://unwttng.com/what-is-a-blockchain Mining: https://www.buybitcoinworldwide.com/mining/ Attacks on Cryptocurrencies: https://blockgeeks.com/guides/hypothetical-attacks-on-cryptocurrencies/ Bitcoin Transaction Life Cycle: https://ducmanhphan.github.io/2018-12-18-Transaction-pool-in- blockchain/#transaction-pool 51 % attack - a potential attack on a blockchain network, where a single entity or organization can control the majority of the hash rate, potentially causing a network disruption. In such a scenario, the attacker would have enough mining power to intentionally exclude or modify the ordering of transactions. Block - records, which together form a blockchain. ... Blocks hold all the records of valid cryptocurrency transactions. They are hashed and encoded into a hash tree or Merkle tree. In the world of cryptocurrencies, blocks are like ledger pages while the whole record-keeping book is the blockchain. A block is a file that stores unalterable data related to the network. Blockchain - a data structure that holds transactional records and while ensuring security, transparency, and decentralization. You can also think of it as a chain or records stored in the forms of blocks which are controlled by no single authority. Block header – main way of identifying a block in a blockchain is via its block header hash. The block hash is responsible for block identification within a blockchain. In short, each block on the blockchain is identified by its block header hash. Each block is uniquely identified by a hash number that is obtained by double hashing the block header with the SHA256 algorithm.
    [Show full text]
  • Universal Leaky Random Oracle
    Universal Leaky Random Oracle Guangjun Fan1, Yongbin Zhou2, Dengguo Feng1 1 Trusted Computing and Information Assurance Laboratory,Institute of Software,Chinese Academy of Sciences,Beijing,China [email protected] , [email protected] 2 State Key Laboratory of Information Security,Institute of Information Engineering,Chinese Academy of Sciences,Beijing,China [email protected] Abstract. Yoneyama et al. introduces the Leaky Random Oracle Model at ProvSec2008 to capture the leakages from the hash list of a hash func- tion used by a cryptography construction due to various attacks caused by sloppy usages or implementations in the real world. However, an im- portant fact is that such attacks would leak not only the hash list, but also other secret states (e.g. the secret key) outside the hash list. There- fore, the Leaky Random Oracle Model is very limited in the sense that it considers the leakages from the hash list alone, instead of taking into con- sideration other possible leakages from secret states simultaneously. In this paper, we present an augmented model of the Leaky Random Oracle Model. In our new model, both the secret key and the hash list can be leaked. Furthermore, the secret key can be leaked continually during the whole lifecycle of the cryptography construction. Hence, our new model is more universal and stronger than the Leaky Random Oracle Model and some other leakage models (e.g. only computation leaks model and memory leakage model). As an application example, we also present a public key encryption scheme which is provably IND-CCA secure in our new model.
    [Show full text]
  • PGP Command Line User Guide
    PGP Command Line User Guide Last updated: July 2020 Copyright statement Broadcom, the pulse logo, Connecting everything, and Symantec are among the trademarks of Broadcom. Copyright © 2020 Broadcom. All Rights Reserved. The term “Broadcom” refers to Broadcom Inc. and/or its subsidiaries. For more information, please visit www.broadcom.com. Broadcom reserves the right to make changes without further notice to any products or data herein to improve reliability, function, or design. Information furnished by Broadcom is believed to be accurate and reliable. However, Broadcom does not assume any liability arising out of the application or use of this information, nor the application or use of any product or circuit described herein, neither does it convey any license under its patent rights nor the rights of others. Contents About PGP Command Line 1 Important Concepts 1 Technical Support 2 Installing 5 Install Location 5 Installing on AIX 6 Installing on AIX 6 Changing the Home Directory on AIX 7 Uninstalling on AIX 7 Installing on HP-UX 8 Installing on HP-UX 8 Changing the Home Directory on HP-UX 9 Installing to a Non-Default Directory on HP-UX 9 Uninstalling on HP-UX 9 Installing on macOS 10 Installing on macOS 10 Changing the Home Directory on macOS 10 Uninstalling on macOS 11 Installing on Red Hat Enterprise Linux, SLES, or Fedora Core 11 Installing on Red Hat Enterprise Linux or Fedora Core 11 Changing the Home Directory on Linux or Fedora Core 12 Uninstalling on Linux or Fedora Core 12 Installing on Oracle Solaris 13 Installing on Oracle
    [Show full text]
  • Comparative Analysis of Hash Authentication Algorithms and ECC Based Security Algorithms in Cloud Data
    Asian Journal of Computer Science and Technology ISSN: 2249-0701 Vol.8 No.1, 2019, pp. 53-61 © The Research Publication, www.trp.org.in Comparative Analysis of Hash Authentication Algorithms and ECC Based Security Algorithms in Cloud Data S. Hendry Leo Kanickam1 and L. Jayasimman2 1Research Scholar, Department of Computer Science, 2Assistant Professor, Department of Computer Applications 1&2Bishop Heber College, Trichy, Tamil Nadu, India E-Mail: [email protected] Abstract - Cloud computing is ensuring the security of stored encryption techniques is not sufficient for information data in cloud computing servers is one of the mainly security over internet, therefore the combination of demanding issues. In Cloud numerous security issues arises encryption and encoding is broadly being used to attain such as authentication, integrity and confidentiality. Different integrity and confidentiality. There is need of a system that encryption techniques attempt to overcome these data security fulfills encrypted data transfer, verification and issues to an enormous extent. Hashing algorithm plays an important role in data integrity, message authentication, and authentication, therefore maintaining data confidentiality, to digital signature in modern information security. For security obtain rid of the same and to induce trust in the computing. purpose using encryption algorithm like ECC (Elliptic Curve The most important use of hybrid cryptographic algorithm Cryptography) and Authentication of data integrity using merges with digital signature and encryption algorithm to hashing algorithms like MD5, and SHA-512. This combination secure data stored in cloud. Subsequently, the encryption method provides data security, authentication and verification algorithm is used for data confidentiality and digital for secure cloud computing.
    [Show full text]
  • WBAN) for Healthcare
    International Journal of Research in Engineering, Science and Management 614 Volume-2, Issue-3, March-2019 www.ijresm.com | ISSN (Online): 2581-5792 QOS based Wireless Body Area Network (WBAN) for Healthcare P. Kavitha1, R. Jayasanthi2, S. Meenakshi Ishwaryar3 1Assistant Professor, Dept. of CSE, P. S. R. Rengasamy College of Engineering for Women, Sivakasi, India 2,3UG Student, Dept. of CSE, P. S. R. Rengasamy College of Engineering for Women, Sivakasi, India Abstract: In many military network scenarios, connections of Delays can be typically on the order of minutes or wire- less devices carried by soldiers may be temporarily hours, but could potentially be days depending on the disconnected by jamming, environmental factors, and mobility, exact scenario. especially when they operate in hostile environments. In a hospital environment, the total number of Wireless Body Area Network C. Objectives (WBAN) equipped patients requesting ubiquitous healthcare services in an area increases significantly. Therefore, increased Asynchronously interconnecting different networks traffic load and group-based mobility of WBANs degrades the Network of regional networks Network of regional performance of each WBAN significantly, concerning service networks delay and network throughput. In addition, the mobility of Each network can have WBANs affects connectivity between a WBAN and an Access Arbitrary underlying technologies Point (AP) dynamically, which affects the variation in link quality significantly. To address the connectivity problem and provide Different administrative controls Quality of Services (QoS) in the network, we propose a dynamic No accessible infrastructure connectivity establishment and cooperative scheduling scheme, which minimizes the packet delivery delay and maximizes the 2. Existing system network throughput.
    [Show full text]
  • Lecture 10: Security Proofs (Encryption Under Computational Hardness Assumption)
    Introduction to Security Reduction Lecture 10: Security Proofs (Encryption under Computational Hardness Assumption) My IQ is up to 186. My interest is breaking schemes. You want me to help you solve problem? Fool me first! Lecture 12: Flaws in Papers Lecture 11: Revision of Security Reduction Lecture 10: Security Proofs for Encryption (Computational) Lecture 9: Security Proofs for Encryption (Decisional) Lecture 8: Security Proofs for Digital Signatures Lecture 7: Analysis (Towards A Correct Reduction) Lecture 6: Simulation and Solution Lecture 5: Difficulties in Security Reduction Lecture 4: Entry to Security Reduction Lecture 3: Preliminaries (Hard Problem and Secure Scheme) Lecture 2: Preliminaries (Field, Group, Pairing, and Hash Function) Lecture 1: Definitions (Algorithm and Security Model) Computational Complexity Theory Introduction1 to Security Reduction 1/24 Outline 1 Random Oracle in Applications Random and Independent Revisited One-Time Pad Revisited Solution to Hard Problem Revisited Simulation of Challenge Ciphertext 2 Proof Structure Proof Structure Advantage Analysis 3 CCA Security 4 Summary Introduction1 to Security Reduction Outline Random Oracle in Applications Proof Structure CCA Security Summary Random and Independent Revisited One-Time Pad Revisited Solution to Hard Problem Revisited Simulation of Challenge Ciphertext Outline 1 Random Oracle in Applications Random and Independent Revisited One-Time Pad Revisited Solution to Hard Problem Revisited Simulation of Challenge Ciphertext 2 Proof Structure Proof Structure Advantage
    [Show full text]
  • Lecture 17 November 1, 2017
    Outline Hashed Data Structures Lamport Signatures Merkle Signatures Passwords CPSC 467: Cryptography and Computer Security Michael J. Fischer Lecture 17 November 1, 2017 CPSC 467, Lecture 17 1/42 Outline Hashed Data Structures Lamport Signatures Merkle Signatures Passwords Hashed Data Structures Motivation: Peer-to-peer file sharing networks Hash lists Hash Trees Lamport One-Time Signatures Merkle Signatures Authentication Using Passwords Authentication problem Passwords authentication schemes Secure password storage Dictionary attacks CPSC 467, Lecture 17 2/42 Outline Hashed Data Structures Lamport Signatures Merkle Signatures Passwords Hashed Data Structures CPSC 467, Lecture 17 3/42 Outline Hashed Data Structures Lamport Signatures Merkle Signatures Passwords P2P Peer-to-peer networks One real-world application of hash functions is to peer-to-peer file-sharing networks. The goal of a P2P network is to improve throughput when sending large files to large numbers of clients. It operates by splitting the file into blocks and sending each block separately through the network along possibly different paths to the client. Rather than fetching each block from the master source, a block can be received from any node (peer) that happens to have the needed block. The problem is to validate blocks received from untrusted peers. CPSC 467, Lecture 17 4/42 Outline Hashed Data Structures Lamport Signatures Merkle Signatures Passwords P2P Integrity checking An obvious approach is for a trusted master node to send each client a hash of the entire file. When all blocks have been received, the client reassembles the file, computes its hash, and checks that it matches the hash received from the master.
    [Show full text]
  • Lecture 16 October 27, 2020
    Outline Common Hash Functions Hashed Data Structures Appendix CPSC 467: Cryptography and Security Michael J. Fischer Lecture 16 October 27, 2020 CPSC 467, Lecture 16, October 27, 2020 1/36 Outline Common Hash Functions Hashed Data Structures Appendix Common Hash Functions SHA-2 SHA-3 MD5 Hashed Data Structures Motivation: Peer-to-peer file sharing networks Hash lists Hash Trees Appendix: Birthday Attack Revisited CPSC 467, Lecture 16, October 27, 2020 2/36 Outline Common Hash Functions Hashed Data Structures Appendix Common Hash Functions CPSC 467, Lecture 16, October 27, 2020 3/36 Outline Common Hash Functions Hashed Data Structures Appendix Popular hash functions Many cryptographic hash functions are currently in use. For example, the openssl library includes implementations of MD2, MD4, MD5, MDC2, RIPEMD, SHA, SHA-1, SHA-256, SHA-384, and SHA-512. The SHA-xxx methods (otherwise known as SHA-2) are recommended for new applications, but these other functions are also in widespread use. CPSC 467, Lecture 16, October 27, 2020 4/36 Outline Common Hash Functions Hashed Data Structures Appendix SHA-2 SHA-2 SHA-2 is a family of hash algorithms designed by NSA known as SHA-224, SHA-256, SHA-384, SHA-512, SHA-512/224, SHA-512/256. They produce message digests of lengths 224, 256, 384, or 512 bits. They comprise the current Secure Hash Standard (SHS) and are described in FIPS 180{4. It states, \Secure hash algorithms are typically used with other cryp- tographic algorithms, such as digital signature algorithms and keyed-hash message authentication codes, or in the generation of random numbers (bits)." CPSC 467, Lecture 16, October 27, 2020 5/36 Outline Common Hash Functions Hashed Data Structures Appendix SHA-2 SHA-1 broken SHA-1 was first described in 1995.
    [Show full text]
  • A Polynomial Subset-Based Efficient Multi-Party Key Management System for Lightweight Device Networks
    sensors Article A Polynomial Subset-Based Efficient Multi-Party Key Management System for Lightweight Device Networks Zahid Mahmood 1, Huansheng Ning 1,* and AtaUllah Ghafoor 2 1 School of Computer and Communication Engineering, University of Science and Technology Beijing, Beijing 100083, China; [email protected] 2 Department of Computer Science, National University of Modern Languages, Islamabad 44000, Pakistan; [email protected] * Correspondence: [email protected], Tel.: +86-136-0131-7155 Academic Editors: Yunchuan Sun, Zhipeng Cai and Antonio Jara Received: 3 February 2017; Accepted: 18 March 2017; Published: 24 March 2017 Abstract: Wireless Sensor Networks (WSNs) consist of lightweight devices to measure sensitive data that are highly vulnerable to security attacks due to their constrained resources. In a similar manner, the internet-based lightweight devices used in the Internet of Things (IoT) are facing severe security and privacy issues because of the direct accessibility of devices due to their connection to the internet. Complex and resource-intensive security schemes are infeasible and reduce the network lifetime. In this regard, we have explored the polynomial distribution-based key establishment schemes and identified an issue that the resultant polynomial value is either storage intensive or infeasible when large values are multiplied. It becomes more costly when these polynomials are regenerated dynamically after each node join or leave operation and whenever key is refreshed. To reduce the computation, we have proposed an Efficient Key Management (EKM) scheme for multiparty communication-based scenarios. The proposed session key management protocol is established by applying a symmetric polynomial for group members, and the group head acts as a responsible node.
    [Show full text]
  • Recover Various Password Hashes by Using Cryptanalysis Technique
    International Journal of Latest Trends in Engineering and Technology (IJLTET) Recover Various Password hashes By Using Cryptanalysis Technique Shailendra Nigam Computer Science & Engineering Department DIET, Kharar Mohali(Punjab) India. Bhanu Sharma Computer Science & Engineering Department BBSBEC, Fatehgarh sahib(Punjab) India Abstract - This paper is based on literature survey and thoughts. Recover various password hashes by using cryptanalysis technique is used for analyzing the hidden information of the system. This technique is based on rainbow table that are used to retrieve the passwords. Rainbow table is an application of Martin Hellman Algorithm. Diffie-Hellman key exchange (D-H) is a specific method of exchanging cryptographic keys. It is one of the earliest practical examples of key exchange implemented with in the field of cryptography. The aim of this work is to recover the password hashes in plain text format using cryptanalysis attack. Keywords:- Hellman Algorithm, Rainbow table, Recover password , Hashes I. INTRODUCTION Recover Various Password hashes By Using Cryptanalysis Technique is based on the rainbow table and recovery software tool. Rainbow table usually for a cracking password hashes. In this tables are used in recovering the text password but limited set of characters. Rainbow table solve the collisions problem with the help of ordinary hash chain. Rainbow tables are an application of an earlier, simpler algorithm by Martin Hellman. Recover Various Password hashes By Using Cryptanalysis Technique strategy which option strategy to use is one of the most difficult decisions for an option trader. Some recovery software are available in the market but based on the brute force, dictionary attacks and other technique but I will use the cryptanalysis technique because this technique is based on the rainbow table and provide the information about the password in the plain text format.
    [Show full text]
  • A Survey on Data Security in Cloud Computing Using Cryptography
    International Journal of Computer Applications (0975 – 8887) Volume 178 – No.4, November 2017 A Survey on Data Security in Cloud Computing using Cryptography M. Vedaraj M. Vigilson Prem, PhD Assistant Professor Professor RMD Engineering College RMK College of Engineering and Technology Tamilnadu Tamilnadu ABSTRACT Cloud computing is the latest technology through which people Data cryptography mainly is the scrambling of the content of the can share resources, services and information among the people data, such as text, image, audio, video and so forth to make the through use of internet. Since we share the data through the data unreadable, invisible or meaningless during transmission or internet, security is considered as a major issue. In Cloud storage is termed Encryption. The main aim of cryptography is computing several security issues arises like confidentiality, to take care of data secure from invaders. The opposite process integrity and authentication. Most of the time the data passed via of getting back the original data from encrypted data is internet might contain confidential or personal information Decryption, which restores the original data. To encrypt data at which many people would want to be protected against attacks. cloud storage both symmetric-key and asymmetric-key Various data encryption algorithms has been developed to make algorithms can be used. Cloud storage contains a large set of sure that the data transmitted via internet is secure from any sort databases and for such a large database asymmetric-key of hacking or attacks. Several cryptographic algorithms also algorithm’s performance is slower when compared to have been developed for encryption and with each one having symmetric-key algorithms.
    [Show full text]
  • An Overview of Cryptography (Updated Version, 3 March 2016)
    Publications 3-3-2016 An Overview of Cryptography (Updated Version, 3 March 2016) Gary C. Kessler Embry-Riddle Aeronautical University, [email protected] Follow this and additional works at: https://commons.erau.edu/publication Part of the Information Security Commons Scholarly Commons Citation Kessler, G. C. (2016). An Overview of Cryptography (Updated Version, 3 March 2016). , (). Retrieved from https://commons.erau.edu/publication/127 This Report is brought to you for free and open access by Scholarly Commons. It has been accepted for inclusion in Publications by an authorized administrator of Scholarly Commons. For more information, please contact [email protected]. An Overview of Cryptography Gary C. Kessler 3 March 2016 © 1998-2016 — A much shorter, edited version of this paper appears in the 1999 Edition of Handbook on Local Area Networks , published by Auerbach in September 1998. Since that time, this paper has taken on a life of its own... CONTENTS FIGURES 1. INTRODUCTION 1. Three types of cryptography: secret-key, public key, and hash 2. THE PURPOSE OF CRYPTOGRAPHY function. 3. TYPES OF CRYPTOGRAPHIC ALGORITHMS 2. Sample application of the three cryptographic techniques for 3.1. Secret Key Cryptography secure communication. 3.2. Public-Key Cryptography 3. Kerberos architecture. 3.3. Hash Functions 4. VeriSign Class 3 certificate. 3.4. Why Three Encryption Techniques? 5. Sample entries in Unix/Linux password files. 3.5. The Significance of Key Length 6. DES enciphering algorithm. 4. TRUST MODELS 7. A PGP signed message. 4.1. PGP Web of Trust 8. A PGP encrypted message. 4.2. Kerberos 9. The decrypted message.
    [Show full text]