University of Piraeus

Total Page:16

File Type:pdf, Size:1020Kb

University of Piraeus University Of Piraeus Department Of Digital Systems Postgraduate Programme " Techno-Economic Management and Security Of Digital Systems " MASTER THESIS SUBJECT: PASSWORD CRACKING Supervisor: Xenakis Christos Student: Christofakis Michail Α.Μ: ΜΤΕ1138 PIRAEUS JULY 2013 1 Acknowledgements I would like to thank my teacher and supervisor for this paper, Mr. Christos Xenakis, as for his help in the accomplishment of this dissertation. Also I would like to thank my family for the whole support all this years in giving me the strength to continue making my dreams come true. 2 Abstract Information security is the next big thing in computers society because of the rapidly growing security incidents and the outcomes of those. Hacking and cracking existed even from the start of the eighties decade when there was the first step of the interconnection through the internet between humans. From then and ever after there was a big explosion of such incidents mostly because of the worldwide web which was introduced in the early nineties. Following the huge steps forward of computers evolution till today anyone can now clearly see that security is more than ever important to everyday life. Mainly because everything happens really fast and everything is done online, from communicating with each other to transactions and so on. Finally the possibilities plus the software and hardware offered are endless today, something that gives the opportunity to a malicious person to do some significant damage. Last but not least, attention should be given to security measures and techniques to avoid unhappy situations and security awareness should be a part of everyone’s life where no one is excluded. 3 Summary This paper refers to the use of passwords on computer systems and the ways of attacking them. It also states ways of protecting passwords from cracking and puts through serious testing on some cracking tools. Afterwards it focuses on comparing the efficiency of these cracking tools and it draws some conclusions on their use. Finally future work is left to be done in order to make even greater steps through password security. In the first chapter, a general reference to passwords is made as to what they are and what they consist of. Also an overview is made on the importance of having secure passwords nowadays. Lastly the main methods of attacking passwords are presented. In the second chapter, some ways of making password cracking harder are presented and emphasis is given on how to secure and strengthen passwords in general using salts, key stretching and considering password entropy. Also the classes of attack are presented and the time needed to crack passwords is explained. Moreover, password policies are introduced and guidelines for having secure passwords are given. In the third chapter, some ways to accelerate password cracking are shown and an extensive reference on password cracking tools is made. Also a thorough overview on basic usage is given for four basic and commonly used tools. In the fourth chapter, a hands on experience is demonstrated on how to crack hashes using basic password cracking tools with an emphasis on hashcat tool. It is taken from 2012 contest of Korelogic named CrackMeIfYouCan. There was given several types of hashes and it was requested to crack as many as possible in two days time. So a complete task is presented here on specific hash types like md5. In the final chapter of this paper, the results drawn from the above procedures are gathered and put together in order to be analyzed. Several comparison graphs are made that give valuable information to the reader as to what these tools can do. Lastly special conclusions and suggestions are given considering the whole aspect of password cracking thing and future work is anticipated in the hope of perfectioning the knowledge on the field. 4 Table Of Contents Acknowledgements ...................................................................................................................................2 Abstract .....................................................................................................................................................3 Summary....................................................................................................................................................4 Figure Table ...............................................................................................................................................7 Introduction...............................................................................................................................................9 1.INTRODUCTION TO PASSWORDS .........................................................................................................10 1.1 What is a password........................................................................................................................10 1.2 Passphrase & password.................................................................................................................10 1.3 Introduction to password cracking................................................................................................11 1.4 Main Methods of Attack................................................................................................................11 1.4.1 Weak encryption.....................................................................................................................11 1.4.2 Encryption of cases (Guessing) ..............................................................................................12 1.4.3 Phishing...................................................................................................................................12 1.4.4 Social engineering...................................................................................................................12 1.4.5 Malware..................................................................................................................................13 1.4.6 Offline cracking.......................................................................................................................13 1.4.7 Spidering.................................................................................................................................13 1.4.8 Brute-Force attack ..................................................................................................................13 1.4.10 Hybrid attack.........................................................................................................................13 1.4.9 Dictionary attack.....................................................................................................................14 1.4.1 Lookup Tables.........................................................................................................................14 1.4.11 Reverse Lookup Tables .........................................................................................................14 1.4.11 Rainbow tables.....................................................................................................................14 1.5 Hacks , Cracks ................................................................................................................................15 2.HOW TO MAKE PASSWORD CRACKING HARDER .................................................................................16 2.1 Password entropy..........................................................................................................................16 2.2 Key stretching ................................................................................................................................18 2.3 Salting ............................................................................................................................................19 2.4 Time needed to crack passwords ..................................................................................................20 2.5 Classes of Attack............................................................................................................................20 2.6 Password creation .........................................................................................................................24 2.7 Password policy .............................................................................................................................25 5 2.8 Guidelines for creating strong passwords .....................................................................................26 3.USING PASSWORD CRACKING TOOLS ..................................................................................................27 3.1 How to make password cracking faster.........................................................................................27 3.1.1 GPU’s ......................................................................................................................................27 3.1.2 Computer clusters ..................................................................................................................27 3.2 Most Used Programms ..................................................................................................................28 3.2.1 CAIN & ABEL............................................................................................................................30 3.2.2 RAINBOW CRACK....................................................................................................................31
Recommended publications
  • Automating Security Checks
    Mag. iur. Dr. techn. Michael Sonntag Automating security checks Institute for Information Processing and Microprocessor Technology (FIM) Johannes Kepler University Linz, Austria E-Mail: [email protected] http://www.fim.uni-linz.ac.at/staff/sonntag.htm © Michael Sonntag 2010 Agenda Why automatization? What can be automated? Example: Skipfish How reliable are these tools? Practical examples of searching for vulnerabilities: Information collection with NMap Password cracking (John the Ripper, Ophcrack) Exploit scanning with Nessus Michael Sonntag Automating security checks 2 Why automatization? Ensuring security is not that hard for a single system You know it in detail When something is discovered, it is implemented and tested But: Many sites with many configuration options? Do you know them all? » Are they identical everywhere (versions!)? Do you have time to change everything accordingly? » Or do you depend on automatic updates/roll-out? Are you sure you did not miss one option somewhere? » Testing the same thing several times is tedious Solution: Automatic testing whether a problem exists Professionals write tests You just apply them » No need to know exactly how the attack works! Regular re-testing is possible Ad-hoc & patchy testing Systematic & comprehensive Michael Sonntag Automating security checks 3 Overlap with monitoring Some overlap with system monitoring exists Failures are just a “different kind” of attack Some problems may occur accidentally or intentionally » Example: Blacklisting of mail
    [Show full text]
  • Analysis of Password Cracking Methods & Applications
    The University of Akron IdeaExchange@UAkron The Dr. Gary B. and Pamela S. Williams Honors Honors Research Projects College Spring 2015 Analysis of Password Cracking Methods & Applications John A. Chester The University Of Akron, [email protected] Please take a moment to share how this work helps you through this survey. Your feedback will be important as we plan further development of our repository. Follow this and additional works at: http://ideaexchange.uakron.edu/honors_research_projects Part of the Information Security Commons Recommended Citation Chester, John A., "Analysis of Password Cracking Methods & Applications" (2015). Honors Research Projects. 7. http://ideaexchange.uakron.edu/honors_research_projects/7 This Honors Research Project is brought to you for free and open access by The Dr. Gary B. and Pamela S. Williams Honors College at IdeaExchange@UAkron, the institutional repository of The nivU ersity of Akron in Akron, Ohio, USA. It has been accepted for inclusion in Honors Research Projects by an authorized administrator of IdeaExchange@UAkron. For more information, please contact [email protected], [email protected]. Analysis of Password Cracking Methods & Applications John A. Chester The University of Akron Abstract -- This project examines the nature of password cracking and modern applications. Several applications for different platforms are studied. Different methods of cracking are explained, including dictionary attack, brute force, and rainbow tables. Password cracking across different mediums is examined. Hashing and how it affects password cracking is discussed. An implementation of two hash-based password cracking algorithms is developed, along with experimental results of their efficiency. I. Introduction Password cracking is the process of either guessing or recovering a password from stored locations or from a data transmission system [1].
    [Show full text]
  • Hash Crack: Password Cracking Manual
    Hash Crack. Copyright © 2017 Netmux LLC All rights reserved. Without limiting the rights under the copyright reserved above, no part of this publication may be reproduced, stored in, or introduced into a retrieval system, or transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise) without prior written permission. ISBN-10: 1975924584 ISBN-13: 978-1975924584 Netmux and the Netmux logo are registered trademarks of Netmux, LLC. Other product and company names mentioned herein may be the trademarks of their respective owners. Rather than use a trademark symbol with every occurrence of a trademarked name, we are using the names only in an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the trademark. The information in this book is distributed on an “As Is” basis, without warranty. While every precaution has been taken in the preparation of this work, neither the author nor Netmux LLC, shall have any liability to any person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly by the information contained in it. While every effort has been made to ensure the accuracy and legitimacy of the references, referrals, and links (collectively “Links”) presented in this book/ebook, Netmux is not responsible or liable for broken Links or missing or fallacious information at the Links. Any Links in this book to a specific product, process, website, or service do not constitute or imply an endorsement by Netmux of same, or its producer or provider. The views and opinions contained at any Links do not necessarily express or reflect those of Netmux.
    [Show full text]
  • Chapter 5 Results
    CHAPTER 5 RESULTS 5.1 Results This chapter will discuss the results of the testing and comparison of the password cracking tools used. This chapter can be summarized as follows: • Research Data and Result Analysis (Locally) • Research Data and Result Analysis (Remotely) • Research Data and Result Analysis (Alphabets only) • Research Data and Result Analysis (Alphabets and a special character) 5.2 Research Data and Result Analysis (Locally) In Figure 16, Ophcrack was used to crack the local users' password with different combinations of password, alphabets, alphanumeric, alphanumeric special characters, english and non-english words. In Figure 17, Ophcrack was used to crack the same password, but excluding the 3 password that were not cracked in the previous attempt. In Figure 18, Cain was used to crack the local users' password. 35 36 Figure 16 - Ophcrack cracked 7 of 10 passwords Figure 17 - Ophcrack cracked 7 of 7 passwords 37 Figure 18 - Cain cracked 5 of 10 passwords 5.3 Research Data and Result Analysis (Remotely) First, the author scans the network for active IP address with NMAP (Figure 19). He used the command of "nmap -O 192.168.1.1-254" to scan the network, it would scan each IP address for active computer. The command -O enabled operating system detection. From the result of the scanning, there were few ports in the state of open and the services that were using those ports, 135/TCP, 139/TCP, 445/TCP and 1984/TCP. Another important detail was the OS details; it showed that the computer was running under Microsoft Windows XP Professional SP2 or Windows Server 2003.
    [Show full text]
  • Password Security - When Passwords Are There for the World to See
    Password Security - When Passwords are there for the World to see Eleanore Young Marc Ruef (Editor) Offense Department, scip AG Research Department, scip AG [email protected] [email protected] https://www.scip.ch https://www.scip.ch Keywords: Bitcoin, Exchange, GitHub, Hashcat, Leak, OWASP, Password, Policy, Rapid, Storage 1. Preface password from a hash without having to attempt a reversal of the hashing algorithm. This paper was written in 2017 as part of a research project at scip AG, Switzerland. It was initially published online at Furthermore, if passwords are fed through hashing https://www.scip.ch/en/?labs.20170112 and is available in algorithms as is, two persons who happen to use the same English and German. Providing our clients with innovative password, will also have the same hash value. As a research for the information technology of the future is an countermeasure, developers have started adding random essential part of our company culture. user-specific values (the salt) to the password before calculating the hash. The salt will then be stored alongside 2. Introduction the password hash in the user account database. As such, even if two persons use the same password, their resulting The year 2016 has seen many reveals of successful attacks hash value will be different due to the added salt. on user account databases; the most notable cases being the attacks on Yahoo [1] and Dropbox [2]. Thanks to recent Modern GPU architectures are designed for large scale advances not only in graphics processing hardware (GPUs), parallelism. Currently, a decent consumer-grade graphics but also in password cracking software, it has become card is capable of performing on the order of 1000 dangerously cheap to determine the actual passwords from calculations simultaneously.
    [Show full text]
  • IB Case Study Vocabulary a Local Economy Driven by Blockchain (2020) Websites
    IB Case Study Vocabulary A local economy driven by blockchain (2020) Websites Merkle Tree: https://blockonomi.com/merkle-tree/ Blockchain: https://unwttng.com/what-is-a-blockchain Mining: https://www.buybitcoinworldwide.com/mining/ Attacks on Cryptocurrencies: https://blockgeeks.com/guides/hypothetical-attacks-on-cryptocurrencies/ Bitcoin Transaction Life Cycle: https://ducmanhphan.github.io/2018-12-18-Transaction-pool-in- blockchain/#transaction-pool 51 % attack - a potential attack on a blockchain network, where a single entity or organization can control the majority of the hash rate, potentially causing a network disruption. In such a scenario, the attacker would have enough mining power to intentionally exclude or modify the ordering of transactions. Block - records, which together form a blockchain. ... Blocks hold all the records of valid cryptocurrency transactions. They are hashed and encoded into a hash tree or Merkle tree. In the world of cryptocurrencies, blocks are like ledger pages while the whole record-keeping book is the blockchain. A block is a file that stores unalterable data related to the network. Blockchain - a data structure that holds transactional records and while ensuring security, transparency, and decentralization. You can also think of it as a chain or records stored in the forms of blocks which are controlled by no single authority. Block header – main way of identifying a block in a blockchain is via its block header hash. The block hash is responsible for block identification within a blockchain. In short, each block on the blockchain is identified by its block header hash. Each block is uniquely identified by a hash number that is obtained by double hashing the block header with the SHA256 algorithm.
    [Show full text]
  • Universal Leaky Random Oracle
    Universal Leaky Random Oracle Guangjun Fan1, Yongbin Zhou2, Dengguo Feng1 1 Trusted Computing and Information Assurance Laboratory,Institute of Software,Chinese Academy of Sciences,Beijing,China [email protected] , [email protected] 2 State Key Laboratory of Information Security,Institute of Information Engineering,Chinese Academy of Sciences,Beijing,China [email protected] Abstract. Yoneyama et al. introduces the Leaky Random Oracle Model at ProvSec2008 to capture the leakages from the hash list of a hash func- tion used by a cryptography construction due to various attacks caused by sloppy usages or implementations in the real world. However, an im- portant fact is that such attacks would leak not only the hash list, but also other secret states (e.g. the secret key) outside the hash list. There- fore, the Leaky Random Oracle Model is very limited in the sense that it considers the leakages from the hash list alone, instead of taking into con- sideration other possible leakages from secret states simultaneously. In this paper, we present an augmented model of the Leaky Random Oracle Model. In our new model, both the secret key and the hash list can be leaked. Furthermore, the secret key can be leaked continually during the whole lifecycle of the cryptography construction. Hence, our new model is more universal and stronger than the Leaky Random Oracle Model and some other leakage models (e.g. only computation leaks model and memory leakage model). As an application example, we also present a public key encryption scheme which is provably IND-CCA secure in our new model.
    [Show full text]
  • PGP Command Line User Guide
    PGP Command Line User Guide Last updated: July 2020 Copyright statement Broadcom, the pulse logo, Connecting everything, and Symantec are among the trademarks of Broadcom. Copyright © 2020 Broadcom. All Rights Reserved. The term “Broadcom” refers to Broadcom Inc. and/or its subsidiaries. For more information, please visit www.broadcom.com. Broadcom reserves the right to make changes without further notice to any products or data herein to improve reliability, function, or design. Information furnished by Broadcom is believed to be accurate and reliable. However, Broadcom does not assume any liability arising out of the application or use of this information, nor the application or use of any product or circuit described herein, neither does it convey any license under its patent rights nor the rights of others. Contents About PGP Command Line 1 Important Concepts 1 Technical Support 2 Installing 5 Install Location 5 Installing on AIX 6 Installing on AIX 6 Changing the Home Directory on AIX 7 Uninstalling on AIX 7 Installing on HP-UX 8 Installing on HP-UX 8 Changing the Home Directory on HP-UX 9 Installing to a Non-Default Directory on HP-UX 9 Uninstalling on HP-UX 9 Installing on macOS 10 Installing on macOS 10 Changing the Home Directory on macOS 10 Uninstalling on macOS 11 Installing on Red Hat Enterprise Linux, SLES, or Fedora Core 11 Installing on Red Hat Enterprise Linux or Fedora Core 11 Changing the Home Directory on Linux or Fedora Core 12 Uninstalling on Linux or Fedora Core 12 Installing on Oracle Solaris 13 Installing on Oracle
    [Show full text]
  • Computer Forensics CCIC Training Chapter 4: Understanding the Registry
    Computer Forensics CCIC Training Chapter 4: Understanding the Registry Lauren Pixley, Cassidy Elwell, and James Poirier March 2020 (Version 3) This work by California Cybersecurity Institute is licensed under a Attribution-NonCommercial-NoDerivatives 4.0 International License. Introduction As you are going through your investigation, you will need to know basic information about the forensic image you are searching. To find out more about the image you are analyzing, you will need to look through the Windows Registry. The Windows Registry is basically a database that stores thousands of records with information, such as the operating system, time zone, user settings, user accounts, external storage devices, and some program data. When you look through the Windows Registry in the next section with REGEDIT, it may appear as though the registry is one large storage location. However, there are several files where the information is being stored throughout the computer. REGEDIT simply takes these files and records stored in different locations and displays them for you. There are many records in the Windows Registry that will have no forensic value to you as an examiner, but there are some pieces of information that you will find useful. This chapter will walk you through the basic structure of the registry and where you need to look to find information that is valuable to your investigation. REGEDIT In this section, you will start with the Windows registry utility known as REGEDIT.exe. You can open this by pressing the Windows key+R and then typing in “REGEDIT”. You can also click on the Start menu and type “REGEDIT” in the Search box.
    [Show full text]
  • How to Handle Rainbow Tables with External Memory
    How to Handle Rainbow Tables with External Memory Gildas Avoine1;2;5, Xavier Carpent3, Barbara Kordy1;5, and Florent Tardif4;5 1 INSA Rennes, France 2 Institut Universitaire de France, France 3 University of California, Irvine, USA 4 University of Rennes 1, France 5 IRISA, UMR 6074, France [email protected] Abstract. A cryptanalytic time-memory trade-off is a technique that aims to reduce the time needed to perform an exhaustive search. Such a technique requires large-scale precomputation that is performed once for all and whose result is stored in a fast-access internal memory. When the considered cryptographic problem is overwhelmingly-sized, using an ex- ternal memory is eventually needed, though. In this paper, we consider the rainbow tables { the most widely spread version of time-memory trade-offs. The objective of our work is to analyze the relevance of storing the precomputed data on an external memory (SSD and HDD) possibly mingled with an internal one (RAM). We provide an analytical evalua- tion of the performance, followed by an experimental validation, and we state that using SSD or HDD is fully suited to practical cases, which are identified. Keywords: time memory trade-off, rainbow tables, external memory 1 Introduction A cryptanalytic time-memory trade-off (TMTO) is a technique introduced by Martin Hellman in 1980 [14] to reduce the time needed to perform an exhaustive search. The key-point of the technique resides in the precomputation of tables that are then used to speed up the attack itself. Given that the precomputation phase is much more expensive than an exhaustive search, a TMTO makes sense in a few scenarios, e.g., when the adversary has plenty of time for preparing the attack while she has a very little time to perform it, the adversary must repeat the attack many times, or the adversary is not powerful enough to carry out an exhaustive search but she can download precomputed tables.
    [Show full text]
  • Ophcrack USB Booting Windows Password Recovery for Windows XP Or Vista
    Ophcrack USB Booting Windows Password Recovery for Windows XP or Vista Labels: How To, Password, Solutions, USB BOOT, Windows We have already seen using Ophcrack Live CD for Cracking Windows XP and Windows Vista Passwords. The thing is that now a days we do not use CDs anymore, we use USB drives for our day to day activities. Now what if you want to run Ophcrack from your USB drive instead of wasting money on a CD or if your CD ROM Drive is not working? Moreover using USB drives are more convenient and common these days. Here I have an Ideal solution for this question. But if you are not interested in recovering the password or you simply want to reset or delete the password then there is much easier technique which requires only a 3 MB file instead of Ophcrack. Just see how to Reset windows Password Using a USB drive or a CD In this method we will be using a program called 7-ZIP for extracting the ISO file and some batch files for making the drives bootable. USB Requirement: • Minimum 512 MB for Windows XP • Minimum 1 GB for Windows Vista Or Windows 7 Beta • Format: FAT32 I have tried this method in Windows XP, Windows Vista, and Windows 7 Beta and it works perfectly fine. Follow the steps below: Step 1: Download the ISO File For Ophcrack Live CD 2.1.0 From the links below: (Choose according to your operating system). If you have already downloaded skip this step. Windows XP: Size: 452 MB http://downloads.sourceforge.net/ophcrack/ophcrack-xp-livecd-2.1.0.iso Windows Vista or 7: Size: 532 MB http://downloads.sourceforge.net/ophcrack/ophcrack-vista-livecd-2.1.0.iso Step 2: Download the ZIP File For making USB boot version of Ophcrack Live CD From the link below: Size: 414 KB http://www.techrena.net/downloads/usbboot.zip Step 3: Extract the usbboot.zip file at any location of your computer, not in the USB drive.
    [Show full text]
  • Password Cracking
    Password Cracking Sam Martin and Mark Tokutomi 1 Introduction Passwords are a system designed to provide authentication. There are many different ways to authenticate users of a system: a user can present a physical object like a key card, prove identity using a personal characteristic like a fingerprint, or use something that only the user knows. In contrast to the other approaches listed, a primary benefit of using authentication through a pass- word is that in the event that your password becomes compromised it can be easily changed. This paper will discuss what password cracking is, techniques for password cracking when an attacker has the ability to attempt to log in to the system using a user name and password pair, techniques for when an attacker has access to however passwords are stored on the system, attacks involve observing password entry in some way and finally how graphical passwords and graphical password cracks work. Figure 1: The flow of password attacking possibilities. Figure 1 shows some scenarios attempts at password cracking can occur. The attacker can gain access to a machine through physical or remote access. The user could attempt to try each possible password or likely password (a form of dictionary attack). If the attack can gain access to hashes of the passwords it is possible to use software like OphCrack which utilizes Rainbow Tables to crack passwords[1]. A spammer may use dictionary attacks to gain access to bank accounts or other 1 web services as well. Wireless protocols are vulnerable to some password cracking techniques when packet sniffers are able to gain initialization packets.
    [Show full text]