An Overview of Cryptography (Updated Version, 3 March 2016)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
An Advance Visual Model for Animating Behavior of Cryptographic Protocols
An Advance Visual Model for Animating Behavior of Cryptographic Protocols Mabroka Ali Mayouf Maeref1*, Fatma Alghali2, Khadija Abied2 1 Sebha University, Faculty of Science, Department of Computer Science, P. O. Box 18758 Sebha, Libya, Libyan. 2 Sebha University of Libya, Sebha, Libya. * Corresponding author. Tel.: 00218-925132935; email: [email protected] Manuscript submitted February 13, 2015; accepted July 5, 2015. doi: 10.17706/jcp.10.5.336-346 Abstract: Visual form description benefits from the ability of visualization to provide precise and clear description of object behavior especially if the visual form is extracted from the real world. It provides clear definition of object and the behavior of that object. Although the current descriptions of cryptographic protocol components and operations use a different visual representation, the cryptographic protocols behaviors are not actually reflected. This characteristic is required and included within our proposed visual model. The model uses visual form and scenario-based approach for describing cryptographic protocol behavior and thus increasing the ability to describe more complicated protocol in a simple and easy way. Key words: Animation, cryptographic protocols, interactive tool, visualization. 1. Introduction Cryptographic protocols (CPs) mostly combine both theory and practice [1], [2]. These cause protocol complexity describing and understanding. Therefore, separating the mathematical part from the protocol behavior should provide feeling of how the protocol works, thus increasing the ability to describe and to gain confidence in reflecting more complicated information about CPs, as well as to generate interest to know about other more complex protocol concepts. Several researchers realized the use of visual model and animation techniques to reflect the explanation of the learning objectives and their benefits [3]-[11]. -
A Quantitative Study of Advanced Encryption Standard Performance
United States Military Academy USMA Digital Commons West Point ETD 12-2018 A Quantitative Study of Advanced Encryption Standard Performance as it Relates to Cryptographic Attack Feasibility Daniel Hawthorne United States Military Academy, [email protected] Follow this and additional works at: https://digitalcommons.usmalibrary.org/faculty_etd Part of the Information Security Commons Recommended Citation Hawthorne, Daniel, "A Quantitative Study of Advanced Encryption Standard Performance as it Relates to Cryptographic Attack Feasibility" (2018). West Point ETD. 9. https://digitalcommons.usmalibrary.org/faculty_etd/9 This Doctoral Dissertation is brought to you for free and open access by USMA Digital Commons. It has been accepted for inclusion in West Point ETD by an authorized administrator of USMA Digital Commons. For more information, please contact [email protected]. A QUANTITATIVE STUDY OF ADVANCED ENCRYPTION STANDARD PERFORMANCE AS IT RELATES TO CRYPTOGRAPHIC ATTACK FEASIBILITY A Dissertation Presented in Partial Fulfillment of the Requirements for the Degree of Doctor of Computer Science By Daniel Stephen Hawthorne Colorado Technical University December, 2018 Committee Dr. Richard Livingood, Ph.D., Chair Dr. Kelly Hughes, DCS, Committee Member Dr. James O. Webb, Ph.D., Committee Member December 17, 2018 © Daniel Stephen Hawthorne, 2018 1 Abstract The advanced encryption standard (AES) is the premier symmetric key cryptosystem in use today. Given its prevalence, the security provided by AES is of utmost importance. Technology is advancing at an incredible rate, in both capability and popularity, much faster than its rate of advancement in the late 1990s when AES was selected as the replacement standard for DES. Although the literature surrounding AES is robust, most studies fall into either theoretical or practical yet infeasible. -
Zero Correlation Linear Cryptanalysis on LEA Family Ciphers
Journal of Communications Vol. 11, No. 7, July 2016 Zero Correlation Linear Cryptanalysis on LEA Family Ciphers Kai Zhang, Jie Guan, and Bin Hu Information Science and Technology Institute, Zhengzhou 450000, China Email: [email protected]; [email protected]; [email protected] Abstract—In recent two years, zero correlation linear Zero correlation linear cryptanalysis was firstly cryptanalysis has shown its great potential in cryptanalysis and proposed by Andrey Bogdanov and Vicent Rijmen in it has proven to be effective against massive ciphers. LEA is a 2011 [2], [3]. Generally speaking, this cryptanalytic block cipher proposed by Deukjo Hong, who is the designer of method can be concluded as “use linear approximation of an ISO standard block cipher - HIGHT. This paper evaluates the probability 1/2 to eliminate the wrong key candidates”. security level on LEA family ciphers against zero correlation linear cryptanalysis. Firstly, we identify some 9-round zero However, in this basic model of zero correlation linear correlation linear hulls for LEA. Accordingly, we propose a cryptanalysis, the data complexity is about half of the full distinguishing attack on all variants of 9-round LEA family code book. The high data complexity greatly limits the ciphers. Then we propose the first zero correlation linear application of this new method. In FSE 2012, multiple cryptanalysis on 13-round LEA-192 and 14-round LEA-256. zero correlation linear cryptanalysis [4] was proposed For 13-round LEA-192, we propose a key recovery attack with which use multiple zero correlation linear approximations time complexity of 2131.30 13-round LEA encryptions, data to reduce the data complexity. -
Investigating Profiled Side-Channel Attacks Against the DES Key
IACR Transactions on Cryptographic Hardware and Embedded Systems ISSN 2569-2925, Vol. 2020, No. 3, pp. 22–72. DOI:10.13154/tches.v2020.i3.22-72 Investigating Profiled Side-Channel Attacks Against the DES Key Schedule Johann Heyszl1[0000−0002−8425−3114], Katja Miller1, Florian Unterstein1[0000−0002−8384−2021], Marc Schink1, Alexander Wagner1, Horst Gieser2, Sven Freud3, Tobias Damm3[0000−0003−3221−7207], Dominik Klein3[0000−0001−8174−7445] and Dennis Kügler3 1 Fraunhofer Institute for Applied and Integrated Security (AISEC), Germany, [email protected] 2 Fraunhofer Research Institution for Microsystems and Solid State Technologies (EMFT), Germany, [email protected] 3 Bundesamt für Sicherheit in der Informationstechnik (BSI), Germany, [email protected] Abstract. Recent publications describe profiled single trace side-channel attacks (SCAs) against the DES key-schedule of a “commercially available security controller”. They report a significant reduction of the average remaining entropy of cryptographic keys after the attack, with surprisingly large, key-dependent variations of attack results, and individual cases with remaining key entropies as low as a few bits. Unfortunately, they leave important questions unanswered: Are the reported wide distributions of results plausible - can this be explained? Are the results device- specific or more generally applicable to other devices? What is the actual impact on the security of 3-key triple DES? We systematically answer those and several other questions by analyzing two commercial security controllers and a general purpose microcontroller. We observe a significant overall reduction and, importantly, also observe a large key-dependent variation in single DES key security levels, i.e. -
Constructing Low-Weight Dth-Order Correlation-Immune Boolean Functions Through the Fourier-Hadamard Transform Claude Carlet and Xi Chen*
1 Constructing low-weight dth-order correlation-immune Boolean functions through the Fourier-Hadamard transform Claude Carlet and Xi Chen* Abstract The correlation immunity of Boolean functions is a property related to cryptography, to error correcting codes, to orthogonal arrays (in combinatorics, which was also a domain of interest of S. Golomb) and in a slightly looser way to sequences. Correlation-immune Boolean functions (in short, CI functions) have the property of keeping the same output distribution when some input variables are fixed. They have been widely used as combiners in stream ciphers to allow resistance to the Siegenthaler correlation attack. Very recently, a new use of CI functions has appeared in the framework of side channel attacks (SCA). To reduce the cost overhead of counter-measures to SCA, CI functions need to have low Hamming weights. This actually poses new challenges since the known constructions which are based on properties of the Walsh-Hadamard transform, do not allow to build unbalanced CI functions. In this paper, we propose constructions of low-weight dth-order CI functions based on the Fourier- Hadamard transform, while the known constructions of resilient functions are based on the Walsh-Hadamard transform. We first prove a simple but powerful result, which makes that one only need to consider the case where d is odd in further research. Then we investigate how constructing low Hamming weight CI functions through the Fourier-Hadamard transform (which behaves well with respect to the multiplication of Boolean functions). We use the characterization of CI functions by the Fourier-Hadamard transform and introduce a related general construction of CI functions by multiplication. -
On the Feistel Counterpart of the Boomerang Connectivity Table Introduction and Analysis of the FBCT
IACR Transactions on Symmetric Cryptology ISSN 2519-173X, Vol. 2020, No. 1, pp. 331–362. DOI:10.13154/tosc.v2020.i1.331-362 On the Feistel Counterpart of the Boomerang Connectivity Table Introduction and Analysis of the FBCT Hamid Boukerrou, Paul Huynh, Virginie Lallemand, Bimal Mandal and Marine Minier Université de Lorraine, CNRS, Inria, LORIA, F-54000 Nancy, France [email protected] Abstract. At Eurocrypt 2018, Cid et al. introduced the Boomerang Connectivity Table (BCT), a tool to compute the probability of the middle round of a boomerang distinguisher from the description of the cipher’s Sbox(es). Their new table and the following works led to a refined understanding of boomerangs, and resulted in a series of improved attacks. Still, these works only addressed the case of Substitution Permutation Networks, and completely left out the case of ciphers following a Feistel construction. In this article, we address this lack by introducing the FBCT, the Feistel counterpart of the BCT. We show that the coefficient at row ∆i, ∇o corresponds to the number of times the second order derivative at points (∆i, ∇o) cancels out. We explore the properties of the FBCT and compare it to what is known on the BCT. Taking matters further, we show how to compute the probability of a boomerang switch over multiple rounds with a generic formula. Keywords: Cryptanalysis · Feistel cipher · Boomerang attack · Boomerang switch 1 Introduction Boomerang attacks date back to 1999, when David Wagner introduced them at FSE to break COCONUT98 [Wag99]. When presented, this variant of differential attacks [BS91] shook up the conventional thinking that consisted in believing that a cipher with only small probability differentials is secure. -
On the NIST Lightweight Cryptography Standardization
On the NIST Lightweight Cryptography Standardization Meltem S¨onmez Turan NIST Lightweight Cryptography Team ECC 2019: 23rd Workshop on Elliptic Curve Cryptography December 2, 2019 Outline • NIST's Cryptography Standards • Overview - Lightweight Cryptography • NIST Lightweight Cryptography Standardization Process • Announcements 1 NIST's Cryptography Standards National Institute of Standards and Technology • Non-regulatory federal agency within U.S. Department of Commerce. • Founded in 1901, known as the National Bureau of Standards (NBS) prior to 1988. • Headquarters in Gaithersburg, Maryland, and laboratories in Boulder, Colorado. • Employs around 6,000 employees and associates. NIST's Mission to promote U.S. innovation and industrial competitiveness by advancing measurement science, standards, and technology in ways that enhance economic security and improve our quality of life. 2 NIST Organization Chart Laboratory Programs Computer Security Division • Center for Nanoscale Science and • Cryptographic Technology Technology • Secure Systems and Applications • Communications Technology Lab. • Security Outreach and Integration • Engineering Lab. • Security Components and Mechanisms • Information Technology Lab. • Security Test, Validation and • Material Measurement Lab. Measurements • NIST Center for Neutron Research • Physical Measurement Lab. Information Technology Lab. • Advanced Network Technologies • Applied and Computational Mathematics • Applied Cybersecurity • Computer Security • Information Access • Software and Systems • Statistical -
Known and Chosen Key Differential Distinguishers for Block Ciphers
Known and Chosen Key Differential Distinguishers for Block Ciphers Ivica Nikoli´c1?, Josef Pieprzyk2, Przemys law Soko lowski2;3, Ron Steinfeld2 1 University of Luxembourg, Luxembourg 2 Macquarie University, Australia 3 Adam Mickiewicz University, Poland [email protected], [email protected], [email protected], [email protected] Abstract. In this paper we investigate the differential properties of block ciphers in hash function modes of operation. First we show the impact of differential trails for block ciphers on collision attacks for various hash function constructions based on block ciphers. Further, we prove the lower bound for finding a pair that follows some truncated differential in case of a random permutation. Then we present open-key differential distinguishers for some well known round-reduced block ciphers. Keywords: Block cipher, differential attack, open-key distinguisher, Crypton, Hierocrypt, SAFER++, Square. 1 Introduction Block ciphers play an important role in symmetric cryptography providing the basic tool for encryp- tion. They are the oldest and most scrutinized cryptographic tool. Consequently, they are the most trusted cryptographic algorithms that are often used as the underlying tool to construct other cryp- tographic algorithms. One such application of block ciphers is for building compression functions for the hash functions. There are many constructions (also called hash function modes) for turning a block cipher into a compression function. Probably the most popular is the well-known Davies-Meyer mode. Preneel et al. in [27] have considered all possible modes that can be defined for a single application of n-bit block cipher in order to produce an n-bit compression function. -
TS 102 176-1 V2.1.1 (2011-07) Technical Specification
ETSI TS 102 176-1 V2.1.1 (2011-07) Technical Specification Electronic Signatures and Infrastructures (ESI); Algorithms and Parameters for Secure Electronic Signatures; Part 1: Hash functions and asymmetric algorithms 2 ETSI TS 102 176-1 V2.1.1 (2011-07) Reference RTS/ESI-000080-1 Keywords e-commerce, electronic signature, security ETSI 650 Route des Lucioles F-06921 Sophia Antipolis Cedex - FRANCE Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16 Siret N° 348 623 562 00017 - NAF 742 C Association à but non lucratif enregistrée à la Sous-Préfecture de Grasse (06) N° 7803/88 Important notice Individual copies of the present document can be downloaded from: http://www.etsi.org The present document may be made available in more than one electronic version or in print. In any case of existing or perceived difference in contents between such versions, the reference version is the Portable Document Format (PDF). In case of dispute, the reference shall be the printing on ETSI printers of the PDF version kept on a specific network drive within ETSI Secretariat. Users of the present document should be aware that the document may be subject to revision or change of status. Information on the current status of this and other ETSI documents is available at http://portal.etsi.org/tb/status/status.asp If you find errors in the present document, please send your comment to one of the following services: http://portal.etsi.org/chaircor/ETSI_support.asp Copyright Notification No part may be reproduced except as authorized by written permission. -
A Matter of Security, Privacy and Trust
A matter of security, privacy and trust: A study of the principles and values of encryption in New Zealand Michael Dizon Ryan Ko Wayne Rumbles Patricia Gonzalez Philip McHugh Anthony Meehan Acknowledgements This study was funded by grants from the New Zealand Law Foundation and the University of Waikato. We would like to express our gratitude to our project collaborators and members of the Advisory Board – Prof Bert-Jaap Koops (Tilburg University), Prof Lyria Bennett Moses (UNSW Sydney), Prof Alana Maurushat (Western Sydney University), and Associate Professor Alex Sims (University of Auckland) – for their support as well as feedback on specific parts of this report. We would also like to thank Patricia Gonzalez, Joseph Graddy, Philip McHugh, Anthony Meehan, Jean Murray and Peter Upson for their valuable research assistance and other contributions to this study. Michael Dizon, Ryan Ko and Wayne Rumbles Principal investigators December 2019 Executive summary Cybersecurity is crucial for ensuring the safety and well-being of the general public, businesses, government, and the country as a whole. New Zealand has a reasonably comprehensive and well-grounded legal regime and strategy for dealing with cybersecurity matters. However, there is one area that deserves further attention and discussion – encryption. Encryption is at the heart of and underpins many of the technologies and technical processes used for computer and network security, but current laws and policies do not expressly cover this significant technology. The principal objective of this study is to identify the principles and values of encryption in New Zealand with a view to informing future developments of encryption- related laws and policies. -
State of the Art in Lightweight Symmetric Cryptography
State of the Art in Lightweight Symmetric Cryptography Alex Biryukov1 and Léo Perrin2 1 SnT, CSC, University of Luxembourg, [email protected] 2 SnT, University of Luxembourg, [email protected] Abstract. Lightweight cryptography has been one of the “hot topics” in symmetric cryptography in the recent years. A huge number of lightweight algorithms have been published, standardized and/or used in commercial products. In this paper, we discuss the different implementation constraints that a “lightweight” algorithm is usually designed to satisfy. We also present an extensive survey of all lightweight symmetric primitives we are aware of. It covers designs from the academic community, from government agencies and proprietary algorithms which were reverse-engineered or leaked. Relevant national (nist...) and international (iso/iec...) standards are listed. We then discuss some trends we identified in the design of lightweight algorithms, namely the designers’ preference for arx-based and bitsliced-S-Box-based designs and simple key schedules. Finally, we argue that lightweight cryptography is too large a field and that it should be split into two related but distinct areas: ultra-lightweight and IoT cryptography. The former deals only with the smallest of devices for which a lower security level may be justified by the very harsh design constraints. The latter corresponds to low-power embedded processors for which the Aes and modern hash function are costly but which have to provide a high level security due to their greater connectivity. Keywords: Lightweight cryptography · Ultra-Lightweight · IoT · Internet of Things · SoK · Survey · Standards · Industry 1 Introduction The Internet of Things (IoT) is one of the foremost buzzwords in computer science and information technology at the time of writing. -
IB Case Study Vocabulary a Local Economy Driven by Blockchain (2020) Websites
IB Case Study Vocabulary A local economy driven by blockchain (2020) Websites Merkle Tree: https://blockonomi.com/merkle-tree/ Blockchain: https://unwttng.com/what-is-a-blockchain Mining: https://www.buybitcoinworldwide.com/mining/ Attacks on Cryptocurrencies: https://blockgeeks.com/guides/hypothetical-attacks-on-cryptocurrencies/ Bitcoin Transaction Life Cycle: https://ducmanhphan.github.io/2018-12-18-Transaction-pool-in- blockchain/#transaction-pool 51 % attack - a potential attack on a blockchain network, where a single entity or organization can control the majority of the hash rate, potentially causing a network disruption. In such a scenario, the attacker would have enough mining power to intentionally exclude or modify the ordering of transactions. Block - records, which together form a blockchain. ... Blocks hold all the records of valid cryptocurrency transactions. They are hashed and encoded into a hash tree or Merkle tree. In the world of cryptocurrencies, blocks are like ledger pages while the whole record-keeping book is the blockchain. A block is a file that stores unalterable data related to the network. Blockchain - a data structure that holds transactional records and while ensuring security, transparency, and decentralization. You can also think of it as a chain or records stored in the forms of blocks which are controlled by no single authority. Block header – main way of identifying a block in a blockchain is via its block header hash. The block hash is responsible for block identification within a blockchain. In short, each block on the blockchain is identified by its block header hash. Each block is uniquely identified by a hash number that is obtained by double hashing the block header with the SHA256 algorithm.