Developing a Protocol for Observational Comparative

Total Page:16

File Type:pdf, Size:1020Kb

Developing a Protocol for Observational Comparative Developing a Protocol for Observational Comparative Effectiveness Research A User’s Guide The Agency for Healthcare Research and Quality’s (AHRQ) Effective Health Care Program conducts and supports research focused on the outcomes, effectiveness, comparative clinical effectiveness, and appropriateness of pharmaceuticals, devices, and health care services. More information on the Effective Health Care Program and electronic copies of this report can be found at www.effectivehealthcare.ahrq. gov. This report was produced under contract to AHRQ by the Brigham and Women’s Hospital DEcIDE (Developing Evidence to Inform Decisions about Effectiveness) Methods Center and Quintiles Outcomes under Contract No. 290-2005-0016-I and 290-2005-0035-1. The AHRQ Task Order Officer for this project was Parivash Nourjah, Ph.D. The findings and conclusions in this document are those of the authors, who are responsible for its contents; the findings and conclusions do not necessarily represent the views of AHRQ or the U.S. Department of Health and Human Services. Therefore, no statement in this report should be construed as an official position of AHRQ or the U.S. Department of Health and Human Services. Persons using assistive technology may not be able to fully access information in this report. For assistance contact [email protected]. None of the investigators have any affiliations or financial involvement that conflicts with the material presented in this report. Copyright Information: Developing a Protocol for Observational Comparative Effectiveness Research: A User’s Guide is copyrighted by the Agency for Healthcare Research and Quality (AHRQ). The product and its contents may be used and incorporated into other materials on the following three conditions: (1) the contents are not changed in any way (including covers and front matter), (2) no fee is charged by the reproducer of the product or its contents for its use, and (3) the user obtains permission from the copyright holders identified therein for materials noted as copyrighted by others. The product may not be sold for profit or incorporated into any profitmaking venture without the expressed written permission of AHRQ. Specifically: 1. When the document is reprinted, it must be reprinted in its entirety without any changes. 2. When parts of the document are used or quoted, the following citation should be used. Suggested Citation: Velentgas P, Dreyer NA, Nourjah P, Smith SR, Torchia MM, eds. Developing a Protocol for Observational Comparative Effectiveness Research: A User’s Guide. AHRQ Publication No. 12(13)-EHC099. Rockville, MD: Agency for Healthcare Research and Quality; January 2013. www.effectivehealthcare.ahrq.gov/ Methods-OCER.cfm. Suggested citations for individual chapters are provided after the lists of authors and reviewers. Developing a Protocol for Observational Comparative Effectiveness Research: A User’s Guide Prepared for: Agency for Healthcare Research and Quality U.S. Department of Health and Human Services 540 Gaither Road Rockville, MD 20850 www.ahrq.gov Prepared by: Quintiles Outcome Cambridge, MA Contract No. 290-2005-0016-I and 290-2005-0035-I Editors: Priscilla Velentgas, Ph.D. Nancy A. Dreyer, M.P.H., Ph.D. Parivash Nourjah, Ph.D. Scott R. Smith, Ph.D. Marion M. Torchia, Ph.D. AHRQ Publication No. 12(13)-EHC099 January 2013 Acknowledgments The editors would like to acknowledge the efforts of the following individuals who contributed to this User’s Guide: Sebastian Schneeweiss, John D. Seeger, and Elizabeth Robinson of the Brigham and Women’s Hospital DEcIDE Methods Center; and Michelle Leavy, Anna Estrella, Aaron Mendelsohn, and Allison Bryant of Quintiles Outcome. We would especially like to thank April Duddy of Quintiles Outcome, who served as the managing editor for this guide. We also would like to thank the staff of AHRQ’s Office of Communications and Knowledge Transfer, who guided the User’s Guide through the editorial process, starting with the overall guidance provided by Sandy Cummings, the editorial skills provided by Marion Torchia and Chris Heidenrich, and the design and layout provided by Frances Eisel. And finally, we want to express our appreciation for the multiple contributions of Dr. Patrick Arbogast, author of Chapter 10. We were privileged to work with Patrick, who died before this project was completed. His positive, collegial spirit is very much missed. ii Contents Introduction to Developing a Protocol for Observational Comparative Effectiveness Research: A User’s Guide ............................................................................................................................................. 1 Background ........................................................................................................................................... 1 Aims of the User’s Guide Related to the Design of Observational CER Protocols .............................. 2 Summary and Conclusion ..................................................................................................................... 4 References............................................................................................................................................. 5 Chapter 1. Study Objectives and Questions .......................................................................................... 7 Abstract ................................................................................................................................................. 7 Overview ............................................................................................................................................... 7 Identifying Decisions, Decisionmakers, Actions, and Context ............................................................ 9 Synthesizing the Current Knowledge Base .......................................................................................... 9 Conceptualizing the Research Problem .............................................................................................. 10 Determining the Stage of Knowledge Development for the Study Design ........................................ 11 Defining and Refining Study Questions Using PICOTS Framework ................................................. 12 Endpoints .................................................................................................................................... 13 Discussing Evidentiary Need and Uncertainty ................................................................................... 13 Additional Considerations When Considering Evidentiary Needs ............................................. 15 Specifying Magnitude of Effect .......................................................................................................... 16 iii Challenges to Developing Study Questions and Initial Solutions ...................................................... 17 Summary and Conclusion ................................................................................................................... 17 Checklist: Guidance and Key Considerations for Developing Study Objectives and Questions for Observational CER Protocols ............................................................................................................. 18 References........................................................................................................................................... 19 Chapter 2. Study Design Considerations ............................................................................................. 21 Abstract ............................................................................................................................................... 21 Introduction......................................................................................................................................... 21 Issues of Bias in Observational CER .................................................................................................. 22 Basic Epidemiologic Study Designs ................................................................................................... 22 Cohort Study Design ................................................................................................................... 24 Case-Control Study Design ........................................................................................................ 25 Case-Cohort Study Design ......................................................................................................... 26 Other Epidemiological Study Designs Relevant to CER .................................................................... 26 Case-Crossover Design ............................................................................................................... 26 Case–Time Controlled Design .................................................................................................... 27 Self-Controlled Case-Series Design ........................................................................................... 27 Study Design Features ........................................................................................................................ 28 Study Setting ............................................................................................................................... 28 Inclusion and Exclusion Criteria ................................................................................................. 28 Developing an Observational
Recommended publications
  • Drug Exposure Definition and Healthy User Bias Impacts on the Evaluation of Oral Anti Hyperglycemic Therapies
    Drug Exposure Definition and Healthy User Bias Impacts on the Evaluation of Oral Anti Hyperglycemic Therapies by Maxim Eskin A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Health Policy Research School of Public Health University of Alberta © Maxim Eskin, 2017 ABSTRACT Accurate estimation of medication use is an essential component of any pharmacoepidemiological research as exposure misclassification will threaten study validity and lead to spurious associations. Many pharmacoepidemiological studies use simple definitions, such as the categorical “any versus no use” to classify oral antihyperglycemic medications exposure, which has potentially serious drawbacks. This approach has led to numerous highly publicized observational studies of metformin effect on health outcomes reporting exaggerated relationships that were later contradicted by randomized controlled trials. Although selection bias, unmeasured confounding, and many other factors contribute to the discrepancies, one critical element, which is often overlooked, is the method used to define exposure. Another factor that may provide additional explanation for the discrepancy between randomized controlled trials and observational study results of the association between metformin use and various health outcomes is the healthy user effect. Aspects of a healthy lifestyle such as following a balanced diet, exercising regularly, avoiding tobacco use, etc., are not recorded in typical administrative databases and failure to account for these factors in observational studies may introduce bias and produce spurious associations. The influence of a healthy user bias has not been fully examined when evaluating the effect of oral antihyperglycemic therapies in observational studies. It is possible that some, if not all, of the benefit, observed with metformin in observational studies may be related to analytic design and exposure definitions.
    [Show full text]
  • 10. Sample Bias, Bias of Selection and Double-Blind
    SEC 4 Page 1 of 8 10. SAMPLE BIAS, BIAS OF SELECTION AND DOUBLE-BLIND 10.1 SAMPLE BIAS: In statistics, sampling bias is a bias in which a sample is collected in such a way that some members of the intended population are less likely to be included than others. It results in abiased sample, a non-random sample[1] of a population (or non-human factors) in which all individuals, or instances, were not equally likely to have been selected.[2] If this is not accounted for, results can be erroneously attributed to the phenomenon under study rather than to the method of sampling. Medical sources sometimes refer to sampling bias as ascertainment bias.[3][4] Ascertainment bias has basically the same definition,[5][6] but is still sometimes classified as a separate type of bias Types of sampling bias Selection from a specific real area. For example, a survey of high school students to measure teenage use of illegal drugs will be a biased sample because it does not include home-schooled students or dropouts. A sample is also biased if certain members are underrepresented or overrepresented relative to others in the population. For example, a "man on the street" interview which selects people who walk by a certain location is going to have an overrepresentation of healthy individuals who are more likely to be out of the home than individuals with a chronic illness. This may be an extreme form of biased sampling, because certain members of the population are totally excluded from the sample (that is, they have zero probability of being selected).
    [Show full text]
  • Should the Randomistas (Continue To) Rule?
    Should the Randomistas (Continue to) Rule? Martin Ravallion Abstract The rising popularity of randomized controlled trials (RCTs) in development applications has come with continuing debates on the pros and cons of this approach. The paper revisits the issues. While RCTs have a place in the toolkit for impact evaluation, an unconditional preference for RCTs as the “gold standard” is questionable. The statistical case is unclear on a priori grounds; a stronger ethical defense is often called for; and there is a risk of distorting the evidence-base for informing policymaking. Going forward, pressing knowledge gaps should drive the questions asked and how they are answered, not the methodological preferences of some researchers. The gold standard is the best method for the question at hand. Keywords: Randomized controlled trials, bias, ethics, external validity, ethics, development policy JEL: B23, H43, O22 Working Paper 492 August 2018 www.cgdev.org Should the Randomistas (Continue to) Rule? Martin Ravallion Department of Economics, Georgetown University François Roubaud encouraged the author to write this paper. For comments the author is grateful to Sarah Baird, Mary Ann Bronson, Caitlin Brown, Kevin Donovan, Markus Goldstein, Miguel Hernan, Emmanuel Jimenez, Madhulika Khanna, Nishtha Kochhar, Andrew Leigh, David McKenzie, Berk Özler, Dina Pomeranz, Lant Pritchett, Milan Thomas, Vinod Thomas, Eva Vivalt, Dominique van de Walle and Andrew Zeitlin. Staff of the International Initiative for Impact Evaluation kindly provided an update to their database on published impact evaluations and helped with the author’s questions. Martin Ravallion, 2018. “Should the Randomistas (Continue to) Rule?.” CGD Working Paper 492. Washington, DC: Center for Global Development.
    [Show full text]
  • Getting Off the Gold Standard for Causal Inference
    Getting Off the Gold Standard for Causal Inference Robert Kubinec New York University Abu Dhabi March 1st, 2020 Abstract I argue that social scientific practice would be improved if we abandoned the notion that a gold standard for causal inference exists. Instead, we should consider the three main in- ference modes–experimental approaches and the counterfactual theory, large-N observational studies, and qualitative process-tracing–as observable indicators of an unobserved latent con- struct, causality. Under ideal conditions, any of these three approaches provide strong, though not perfect, evidence of an important part of what we mean by causality. I also present the use of statistical entropy, or information theory, as a possible yardstick for evaluating research designs across the silver standards. Rather than dichotomize studies as either causal or descrip- tive, the concept of relative entropy instead emphasizes the relative causal knowledge gained from a given research finding. Word Count: 9,823 words 1 You shall not crucify mankind upon a cross of gold. – William Jennings Bryan, July 8, 1896 The renewed attention to causal identification in the last twenty years has elevated the status of the randomized experiment to the sine qua non gold standard of the social sciences. Nonetheless, re- search employing observational data, both qualitative and quantitative, continues unabated, albeit with a new wrinkle: because observational data cannot, by definition, assign cases to receive causal treatments, any conclusions from these studies must be descriptive, rather than causal. However, even though this new norm has received widespread adoption in the social sciences, the way that so- cial scientists discuss and interpret their data often departs from this clean-cut approach.
    [Show full text]
  • Assessing the Accuracy of a New Diagnostic Test When a Gold Standard Does Not Exist Todd A
    UW Biostatistics Working Paper Series 10-1-1998 Assessing the Accuracy of a New Diagnostic Test When a Gold Standard Does Not Exist Todd A. Alonzo University of Southern California, [email protected] Margaret S. Pepe University of Washington, [email protected] Suggested Citation Alonzo, Todd A. and Pepe, Margaret S., "Assessing the Accuracy of a New Diagnostic Test When a Gold Standard Does Not Exist" (October 1998). UW Biostatistics Working Paper Series. Working Paper 156. http://biostats.bepress.com/uwbiostat/paper156 This working paper is hosted by The Berkeley Electronic Press (bepress) and may not be commercially reproduced without the permission of the copyright holder. Copyright © 2011 by the authors 1 Introduction Medical diagnostic tests play an important role in health care. New diagnostic tests for detecting viral and bacterial infections are continually being developed. The performance of a new diagnostic test is ideally evaluated by comparison with a perfect gold standard test (GS) which assesses infection status with certainty. Many times a perfect gold standard does not exist and a reference test or imperfect gold standard must be used instead. Although statistical methods and techniques are well established for assessing the accuracy of a new diagnostic test when a perfect gold standard exists, such methods are lacking for settings where a gold standard is not available. In this paper we will review some existing approaches to this problem and propose an alternative approach. To fix ideas we consider a specific example. Chlamydia trachomatis is the most common sexually transmitted bacterial pathogen. In women Chlamydia trachomatis can result in pelvic inflammatory disease (PID) which can lead to infertility, chronic pelvic pain, and life-threatening ectopic pregnancy.
    [Show full text]
  • Memorandum Explaining Basis for Declining Request for Emergency Use Authorization for Emergency Use of Hydroxychloroquine Sulfate
    Memorandum Explaining Basis for Declining Request for Emergency Use Authorization for Emergency Use of Hydroxychloroquine Sulfate On July 6, 2020, the United States Food and Drug Administration (FDA) received a submission from Dr. William W. O’Neill, co-signed by Dr. John E. McKinnon1, Dr. Dee Dee Wang, and Dr. Marcus J. Zervos requesting, among other things, emergency use authorization (EUA) of hydroxychloroquine sulfate (HCQ) for prevention (pre- and post-exposure prophylaxis) and treatment of “early COVID-19 infections”. We interpret the term “early COVID-19 infections” to mean individuals with 2019 coronavirus disease (COVID-19) who are asymptomatic or pre- symptomatic or have mild illness.2 The statutory criteria for issuing an EUA are set forth in Section 564(c) of the Federal Food, Drug and Cosmetic Act (FD&C Act). Specifically, the FDA must determine, among other things, that “based on the totality of scientific information available to [FDA], including data from adequate and well-controlled clinical trials, if available,” it is reasonable to believe that the product may be effective in diagnosing, treating, or preventing a serious or life-threatening disease or condition caused by the chemical, biological, radiological, or nuclear agent; that the known and potential benefits, when used to diagnose, treat, or prevent such disease or condition, outweigh the known and potential risks of the product; and that there are no adequate, approved, and available alternatives. FDA scientific review staff have reviewed available information derived from clinical trials and observational studies investigating the use of HCQ in the prevention or the treatment of COVID- 19.
    [Show full text]
  • Developing a Protocol
    FACILITATOR/MENTOR GUIDE Developing a Protocol Created: 2013 Developing a Protocol. Atlanta, GA: Centers for Disease Control and Prevention (CDC), 2013. DEVELOPING A PROTOCOL Table of Contents LEARNING OBJECTIVES ................................................................................................... 3 ESTIMATED COMPLETION TIME ........................................................................................ 3 TARGET AUDIENCE ......................................................................................................... 3 PRE-WORK AND PREREQUISITES ..................................................................................... 3 MATERIALS .................................................................................................................... 4 OPTIONS FOR FACILITATING THIS TRAINING ....................................................................... 4 ICON GLOSSARY ............................................................................................................ 5 ACKNOWLEDGEMENTS .................................................................................................... 5 FACILITATOR RESPONSIBILITIES ...................................................................................... 7 SECTIONS 1 & 2: INTRODUCTION AND OVERVIEW .............................................................. 8 SECTION 3: WRITING A PROPOSAL OR CONCEPT PAPER ..................................................... 9 SECTION 4: WRITING A DRAFT OF THE PROTOCOL ...........................................................
    [Show full text]
  • Randomized Controlled Trials, Development Economics and Policy Making in Developing Countries
    Randomized Controlled Trials, Development Economics and Policy Making in Developing Countries Esther Duflo Department of Economics, MIT Co-Director J-PAL [Joint work with Abhijit Banerjee and Michael Kremer] Randomized controlled trials have greatly expanded in the last two decades • Randomized controlled Trials were progressively accepted as a tool for policy evaluation in the US through many battles from the 1970s to the 1990s. • In development, the rapid growth starts after the mid 1990s – Kremer et al, studies on Kenya (1994) – PROGRESA experiment (1997) • Since 2000, the growth have been very rapid. J-PAL | THE ROLE OF RANDOMIZED EVALUATIONS IN INFORMING POLICY 2 Cameron et al (2016): RCT in development Figure 1: Number of Published RCTs 300 250 200 150 100 50 0 1975 1980 1985 1990 1995 2000 2005 2010 2015 Publication Year J-PAL | THE ROLE OF RANDOMIZED EVALUATIONS IN INFORMING POLICY 3 BREAD Affiliates doing RCT Figure 4. Fraction of BREAD Affiliates & Fellows with 1 or more RCTs 100% 90% 80% 70% 60% 50% 40% 30% 20% 10% 0% 1980 or earlier 1981-1990 1991-2000 2001-2005 2006-today * Total Number of Fellows and Affiliates is 166. PhD Year J-PAL | THE ROLE OF RANDOMIZED EVALUATIONS IN INFORMING POLICY 4 Top Journals J-PAL | THE ROLE OF RANDOMIZED EVALUATIONS IN INFORMING POLICY 5 Many sectors, many countries J-PAL | THE ROLE OF RANDOMIZED EVALUATIONS IN INFORMING POLICY 6 Why have RCT had so much impact? • Focus on identification of causal effects (across the board) • Assessing External Validity • Observing Unobservables • Data collection • Iterative Experimentation • Unpack impacts J-PAL | THE ROLE OF RANDOMIZED EVALUATIONS IN INFORMING POLICY 7 Focus on Identification… across the board! • The key advantage of RCT was perceived to be a clear identification advantage • With RCT, since those who received a treatment are randomly selected in a relevant sample, any difference between treatment and control must be due to the treatment • Most criticisms of experiment also focus on limits to identification (imperfect randomization, attrition, etc.
    [Show full text]
  • Evaluating Diagnostic Tests in the Absence of a Gold Standard
    Evaluating Diagnostic Tests in the Absence of a Gold Standard Nandini Dendukuri Departments of Medicine & Epidemiology, Biostatistics and Occupational Health, McGill University; Technology Assessment Unit, McGill University Health Centre Advanced TB diagnostics course, Montreal, July 2011 Evaluating Diagnostic Tests in the Absence of a Gold Standard • An area where we are still awaiting a solution – We are still working on methods for Phase 0 studies • A number of methods have appeared in the pipeline – Some have been completely discredited (e.g. Discrepant Analysis) – Some are more realistic but have had scale-up problems due to mathematical complexity and lack of software (e.g. Latent Class Analysis) – Some in-between solutions seem easy to use, but their inherent biases are poorly understood (e.g. Composite reference standards) • Not yet at the stage where you can stick your data into a machine and get accurate results in 2 hours No gold-standard for many types of TB • Example 1: TB pleuritis: – Conventional tests have less than perfect sensitivity* Microscopy of the pleural fluid <5% Culture of pleural fluid 24 to 58% Biopsy of pleural tissue ~ 86% + culture of biopsy material – Most conventional tests have good, though not perfect specificity ranging from 90-100% * Source: Pai et al., BMC Infectious Diseases, 2004 No gold-standard for many types of TB • Example 2: Latent TB Screening/Diagnosis: – Traditionally based on Tuberculin Skin Test (TST) • TST has poor specificity* due to cross-reactivity with BCG vaccination and infection
    [Show full text]
  • Screening for Alcohol Problems, What Makes a Test Effective?
    Screening for Alcohol Problems What Makes a Test Effective? Scott H. Stewart, M.D., and Gerard J. Connors, Ph.D. Screening tests are useful in a variety of settings and contexts, but not all disorders are amenable to screening. Alcohol use disorders (AUDs) and other drinking problems are a major cause of morbidity and mortality and are prevalent in the population; effective treatments are available, and patient outcome can be improved by early detection and intervention. Therefore, the use of screening tests to identify people with or at risk for AUDs can be beneficial. The characteristics of screening tests that influence their usefulness in clinical settings include their validity, sensitivity, and specificity. Appropriately conducted screening tests can help clinicians better predict the probability that individual patients do or do not have a given disorder. This is accomplished by qualitatively or quantitatively estimating variables such as positive and negative predictive values of screening in a population, and by determining the probability that a given person has a certain disorder based on his or her screening results. KEY WORDS: AOD (alcohol and other drug) use screening method; identification and screening for AODD (alcohol and other drug disorders); risk assessment; specificity of measurement; sensitivity of measurement; predictive validity; Alcohol Use Disorders Identification Test (AUDIT) he term “screening” refers to the confirm whether or not they have the application of a test to members disorder. When a screening test indicates SCOTT H. STEWART, M.D., is an assistant Tof a population (e.g., all patients that a patient may have an AUD or professor in the Department of Medicine, in a physician’s practice) to estimate their other drinking problem, the clinician School of Medicine and Biomedical probability of having a specific disorder, might initiate a brief intervention and Sciences at the State University of New such as an alcohol use disorder (AUD) arrange for clinical followup, which York at Buffalo, Buffalo, New York.
    [Show full text]
  • Sample Size for Clinical Trials Martin Bland Prof
    British Standards Institution Study Day Sample size for clinical trials Martin Bland Prof. of Health Statistics University of York http://martinbland.co.uk Outcome variables for trials An outcome variable is one which we hope to change, predict or estimate in a trial. Examples: • Systolic blood pressure in a hypertension trial • Caesarean section rate in an obstetric trial • Survival time in a cancer trial How many outcome variables should I have? If we have many outcome variables: • all possibilities would be covered, • we would be less likely to miss something, • the risk of false positives, finding an apparent effect when there is none in reality, would be increased. If we have few outcome variables: • the trial would be easier and quicker to check and analyse, • the trial would be cheaper, • the trial would be easier for research subjects, • we would avoid multiple testing and the high risk of a false positive result. We get round the problem of multiple testing by having one outcome variable on which the main conclusion stands or falls, the primary outcome variable. If we do not find an effect for this variable, the study has a negative result. Usually we have several secondary outcome variables, to answer secondary questions. A significant difference for one of these would generate further questions to investigate rather than provide clear evidence for a treatment effect. The primary outcome variable must relate to the main aim of the study. Choose one and stick to it. How large a sample should I take? A significance test for comparing two means is more likely to detect a large difference between two populations than a small one.
    [Show full text]
  • Phase 3 Clinical Study Protocol
    ModernaTX, Inc. 20 Aug 2020 Protocol mRNA-1273-P301, Amendment 3 mRNA-1273 CLINICAL STUDY PROTOCOL Protocol Title: A Phase 3, Randomized, Stratified, Observer-Blind, Placebo-Controlled Study to Evaluate the Efficacy, Safety, and Immunogenicity of mRNA-1273 SARS-CoV-2 Vaccine in Adults Aged 18 Years and Older Protocol Number: mRNA-1273-P301 Sponsor Name: ModernaTX, Inc. Legal Registered Address: 200 Technology Square Cambridge, MA 02139 Sponsor Contact and Tal Zaks, MD, PhD, Chief Medical Officer Medical Monitor: ModernaTX, Inc. 200 Technology Square, Cambridge, MA 02139 Telephone: 1-617-209-5906 e-mail: [email protected] Regulatory Agency Identifier Number(s): IND: 19745 Amendment Number: 3 Date of Amendment 3: 20 Aug 2020 Date of Amendment 2: 31 Jul 2020 Date of Amendment 1: 26 Jun 2020 Date of Original Protocol: 15 Jun 2020 CONFIDENTIAL All financial and nonfinancial support for this study will be provided by ModernaTX, Inc. The concepts and information contained in this document or generated during the study are considered proprietary and may not be disclosed in whole or in part without the expressed written consent of ModernaTX, Inc. The study will be conducted according to the International Council for Harmonisation (ICH) Technical Requirements for Registration of Pharmaceuticals for Human Use, E6(R2) Good Clinical Practice (GCP) Guidance. Confidential Page 1 ModernaTX, Inc. 20 Aug 2020 Protocol mRNA-1273-P301, Amendment 3 mRNA-1273 PROTOCOL APPROVAL – SPONSOR SIGNATORY Study Title: A Phase 3, Randomized, Stratified, Observer-Blind, Placebo-Controlled Study to Evaluate the Efficacy, Safety, and Immunogenicity of mRNA-1273 SARS-CoV-2 Vaccine in Adults Aged 18 Years and Older Protocol Number: mRNA-1273-P301 Protocol Version Date: 20 Aug 2020 Protocol accepted and approved by: See esignature and date signed on last page of document.
    [Show full text]