The Highest Elevation Angle of the Sun During the Shortest Day of the Year, 21St of December, Is Only 3,35°. in the Period From

Total Page:16

File Type:pdf, Size:1020Kb

The Highest Elevation Angle of the Sun During the Shortest Day of the Year, 21St of December, Is Only 3,35°. in the Period From NORDIC LIGHT & COLOUR The highest elevation angle of the sun during the shortest day midnight sun does not occur in the capitals of Nordic countries of the year, 21st of December, is only 3,35°. In the period from and other settled areas situated about 60° N. the 21st of December to the beginning of February the elevation angle of the sun will never reach 10°, this occurs first on the Duration of sunny skies 3rd of February. After this day the number of hours when the We should not forget that availability of sunlight is also strongly sun is over 10° increases rapidly on a daily basis, but we have dependent on the cloud cover. Let us look at the frequency of to wait until the 30th of March to observe the sun reaching the sunny skies. For this purpose four maps were generated with 30° elevation angle. the help of the Satel-Light (Satel-Light 2013), see figure 8 and The highest position of the sun in Trondheim is 50,01°. There 9. are only four days during the year, 19th, 20th, 21st and 22nd of June, when the elevation angle of the sun is higher than 50°; at The frequency of “sunny skies” during the year in Europe north 21st of June it lasts for 12 minutes. of the Alps is rather low (30-40%), the British Islands receive the least sunlight. In the Nordic region covered by the satel- lite and shown on the map, the highest frequencies of sunny skies may be found at the Baltic See (40-45%), the lowest in the Norwegian mountains (20-25%), see figure 8. A large differ- ence may be observed between different seasons and different months of the year. Generally, the highest frequency of sunny skies occurs in the spring, the lowest in the winter, figure 9. Special features of daylight in Nordic region The analysis made so far shows the typical features of daylight Table 2. The time duration in hours when the sun is in the three elevation angle intervals, calculated monthly for the first part of the year in Trond- in the Nordic countries: heim. 1. Dominating low solar elevation angle during the year 2. Long periods of twilight and white nights in the time period close to summer solstice, midnight sun at places north of the The results are striking: the percentage of time when the sun is Arctic Circle between 0° and 10° is 35%. This means that for more than 1/3 3. Rather low frequency of sunny skies during the year, espe- of the whole daytime during the year we may expect a nearly cially during winter horizontal light from the sun. The time when the sun is in the 0°-10° angle interval is actually much longer than the time What are the consequences of the dominating low solar eleva- when it is over 30° (26%). tion and low occurrence of sunny skies? Twilight When solar elevation angle is low, the sunlight accessibility is Since the sun stays for that long time just over the horizon, it obviously low as well, in buildings and outside, especially in may also stay for a long time just beneath the horizon. To ex- mountain regions and areas with undulating terrain. amine this, the twilight time was calculated! The twilight is de- Even if the sunlight is present, it has much lower luminous flux fined as a condition where the sun is no more than 6° beneath than in southernmost regions, it is not perceived as dangerous- the horizon. The total twilight duration, 430 h for ½ year, i.e. 860 ly strong, both for the people and for the natural environment. h a year, is a long time. Twilight makes 19% of the night-time The modelling of terrain and objects is sparse and gentle. during the year (the length of the daytime and the night-time The low position of the sun contributes to frequent occurrence in a year is equal). The twilight duration is longest during the of solar glare, i.e. an experience of the presence of the sun in summer months. During the four weeks period closest to the the visual field of a subject. summer solstice (21st of June) the twilight is strong enough to The low sun is even more annoying than a high sun, since the illuminate landscape and people quite well, even daytime ac- direction of view is very often horizontal, at least outdoors. tivities, such as reading, are still possible without artificial light People living in Nordic region are annoyed by solar glare quite on a clear night. There is no really dark time during the whole often; they have worked out an intuitive, unconscious method night; the white night is a fact. for dealing with the solar glare, e.g. by turning the body and/or White nights should not be mixed up with midnight sun that oc- visual object to a more comfortable position. Also simple sun curs only at places north of the Arctic Circle 66° 33’ 44’’N. The shading methods have been developed for usage in buildings, 31.
Recommended publications
  • Starry Starry Night Part 1
    Starry Starry Night Part 1 DO NOT WRITE ON THIS PORTION OF THE TEST 1. If a lunar eclipse occurs tonight, when is the soonest a solar eclipse can occur? A) Tomorrow B) In two weeks C) In six months D) In one year 2. The visible surface of the Sun is called its A) corona B) photosphere C) chromosphere D) atmosphere 3. Which moon in the Solar System has lakes and rivers on it: A) Triton B) Charon C) Titan D) Europa 4. The sixth planet from the Sun is: A) Mars B) Jupiter C) Saturn D) Uranus 5. The orbits of the planets and dwarf planets around the Sun are in the shape of: A) An eclipse B) A circle C) An ellipse D) None of the above 6. True or False: During the summer and winter solstices, nighttime and daytime are of equal length. 7. The diameter of the observable universe is estimated to be A) 93 billion miles B) 93 billion astronomical units C) 93 billion light years D) 93 trillion miles 8. Asteroids in the same orbit as Jupiter -- in front and behind it -- are called: A) Greeks B) Centaurs C) Trojans D) Kuiper Belt Objects 9. Saturn's rings are made mostly of: A) Methane ice B) Water ice C) Ammonia ice D) Ice cream 10. The highest volcano in the Solar System is on: A) Earth B) Venus C) Mars D) Io 11. The area in the Solar System just beyond the orbit of Neptune populated by icy bodies is called A) The asteroid belt B) The Oort cloud C) The Kuiper Belt D) None of the above 12.
    [Show full text]
  • Conspicuity of High-Visibility Safety Apparel During Civil Twilight
    UMTRI-2006-13 JUNE 2006 CONSPICUITY OF HIGH-VISIBILITY SAFETY APPAREL DURING CIVIL TWILIGHT JAMES R. SAYER MARY LYNN MEFFORD CONSPICUITY OF HIGH-VISIBILITY SAFETY APPAREL DURING CIVIL TWILIGHT James R. Sayer Mary Lynn Mefford The University of Michigan Transportation Research Institute Ann Arbor, MI 48109-2150 U.S.A. Report No. UMTRI-2006-13 June 2006 Technical Report Documentation Page 1. Report No. 2. Government Accession No. 3. Recipient’s Catalog No. UMTRI-2006-13 4. Title and Subtitle 5. Report Date Conspicuity of High-Visibility Safety Apparel During Civil June 2006 Twilight 6. Performing Organization Code 302753 7. Author(s) 8. Performing Organization Report No. Sayer, J.R. and Mefford, M.L. UMTRI-2006-13 9. Performing Organization Name and Address 10. Work Unit no. (TRAIS) The University of Michigan Transportation Research Institute 11. Contract or Grant No. 2901 Baxter Road Ann Arbor, Michigan 48109-2150 U.S.A. 12. Sponsoring Agency Name and Address 13. Type of Report and Period Covered The University of Michigan Industry Affiliation Program for 14. Sponsoring Agency Code Human Factors in Transportation Safety 15. Supplementary Notes The Affiliation Program currently includes Alps Automotive/Alpine Electronics, Autoliv, Avery Dennison, Bendix, BMW, Bosch, Com-Corp Industries, DaimlerChrysler, DBM Reflex, Decoma Autosystems, Denso, Federal-Mogul, Ford, GE, General Motors, Gentex, Grote Industries, Guide Corporation, Hella, Honda, Ichikoh Industries, Koito Manufacturing, Lang- Mekra North America, Magna Donnelly, Muth, Nissan, North American Lighting, Northrop Grumman, OSRAM Sylvania, Philips Lighting, Renault, Schefenacker International, Sisecam, SL Corporation, Stanley Electric, Toyota Technical Center, USA, Truck-Lite, Valeo, Visteon, 3M Personal Safety Products and 3M Traffic Safety Systems Information about the Affiliation Program is available at: http://www.umich.edu/~industry 16.
    [Show full text]
  • Dark Model Adaptation: Semantic Image Segmentation from Daytime to Nighttime
    Dark Model Adaptation: Semantic Image Segmentation from Daytime to Nighttime Dengxin Dai1 and Luc Van Gool1;2 Abstract— This work addresses the problem of semantic also under these adverse conditions. In this work, we focus image segmentation of nighttime scenes. Although considerable on semantic object recognition for nighttime driving scenes. progress has been made in semantic image segmentation, it Robust object recognition using visible light cameras is mainly related to daytime scenarios. This paper proposes a novel method to progressive adapt the semantic models trained remains a difficult problem. This is because the structural, on daytime scenes, along with large-scale annotations therein, textural and/or color features needed for object recognition to nighttime scenes via the bridge of twilight time — the time sometimes do not exist or highly disbursed by artificial lights, between dawn and sunrise, or between sunset and dusk. The to the point where it is difficult to recognize the objects goal of the method is to alleviate the cost of human annotation even for human. The problem is further compounded by for nighttime images by transferring knowledge from standard daytime conditions. In addition to the method, a new dataset camera noise [32] and motion blur. Due to this reason, of road scenes is compiled; it consists of 35,000 images ranging there are systems using far-infrared (FIR) cameras instead from daytime to twilight time and to nighttime. Also, a subset of the widely used visible light cameras for nighttime scene of the nighttime images are densely annotated for method understanding [31], [11]. Far-infrared (FIR) cameras can be evaluation.
    [Show full text]
  • Midnight Sun and Northern Lights Name
    volume 3 Midnight Sun and issue 5 Northern Lights It’s black, which absorbs the sun’s warmth. In fact, polar midnight, bears feel hot if the temperature rises above freezing. but the sun The polar nights are long and dark, but sometimes is shining there’s a light show in the sky. The northern lights, which brightly. Where are called the aurora, are often green or pink. They seem are you? You’re to wave and dance in the sky. Auroras are caused by gas in the Arctic, particles that were thrown off by the sun. These particles near the North collide in Earth’s atmosphere and make a beautiful show. Pole. During Few people live in the Arctic because it’s so cold, but the arctic Canada, Greenland, Norway, Iceland, and Russia are summer, the good places to see the midnight sun and the aurora. In ©2010 by Asbjørn Floden in Flickr. Some rights reserved http://creativecommons.org/licenses/by-nc/2.0/deed.en sun doesn’t fact, Norway is often called the Land of the Midnight set for months. Instead, it goes around the horizon. You Sun. could read outside at midnight. As you travel south The temperature stays warm, too, although not as from the North Pole, warm as where you live. The average temperature in there is less midnight sun the summer near the North Pole is about 32 degrees, and fewer northern lights. or freezing. That may sound cold to you, but it’s warm It gets warmer, too. Soon, in the Arctic.
    [Show full text]
  • Midnight Sun, Part II by PA Lassiter
    Midnight Sun, Part II by PA Lassiter . N.B. These chapters are based on characters created by Stephenie Meyer in Twilight, the novel. The title used here, Midnight Sun, some of the chapter titles, and all the non-interior dialogue between Edward and Bella are copyright Stephenie Meyer. The first half of Ms. Meyer’s rough-draft novel, of which this is a continuation, can be found at her website here: http://www.stepheniemeyer.com/pdf/midnightsun_partial_draft4.pdf 12. COMPLICATIONSPart B It was well after midnight when I found myself slipping through Bella’s window. This was becoming a habit that, in the light of day, I knew I should attempt to curb. But after nighttime fell and I had huntedfor though these visits might be irresponsible, I was determined they not be recklessall of my resolve quickly faded. There she lay, the sheet and blanket coiled around her restless body, her feet bound up outside the covers. I inhaled deeply through my nose, welcoming the searing pain that coursed down my throat. As always, Bella’s bedroom was warm and humid and saturated with her scent. Venom flowed into my mouth and my muscles tensed in readiness. But for what? Could I ever train my body to give up this devilish reaction to my beloved’s smell? I feared not. Cautiously, I held my breath and moved to her bedside. I untangled the bedclothes and spread them carefully over her again. She twitched suddenly, her legs scissoring as she rolled to her other side. I froze. “Edward,” she breathed.
    [Show full text]
  • CERI Commodity Report — Natural Gas
    June-July 2014 CERI Commodity Report — Natural Gas Hydrocarbon Gold under the Midnight Sun? exploration efforts will continue until 2018, with Jon Rozhon production potentially starting soon thereafter. For all practical intents and purposes, the Western Figure 1: Yukon’s Eight Hydrocarbons Basins Canadian Sedimentary Basin (WCSB) ends abruptly at the 60th parallel, along the border between British Columbia and the Yukon Territory. North of 60° there has been little exploration for oil and gas for over 30 years. South of 60°, especially in areas such as the Montney basin, oil and gas activity is now as busy as it has ever been. The difference is especially visible from the air: within Alberta and British Columbia you can see cut-lines crisscrossing the landscape; flying over the Yukon – the renowned Land of the Midnight Sun – the wilderness to this day still appears almost untouched. Of course, the geologic reality of the situation is that the WCSB extends further north, so there should be significant hydrocarbon resources within the Yukon. Governments know this, E&P companies know this, and so do stakeholders such as First Nations, land owners, and other local residents. Northern Cross Energy, an affiliate of the Chinese National Overseas Oil Corporation (CNOOC), is one company that has been doing much work in the Yukon’s Eagle Plain basin. In 2011, boosted with a cash infusion from CNOOC, the company was granted exploration permits from the Government of Yukon and dedicated a Sources: Government of Yukon, CERI total of $22 million in work commitments. Since then, Northern Cross has spent more than $100 million in What will Northern Cross do with any discovered oil and Eagle Plain, and though the company states results of its gas resources? Chinese State-Owned Enterprises such as work “are still being analyzed”, their continued and CNOOC are busy throughout the world diversifying their 1 resource holdings with a view to ensuring the country’s increasing funding indicates cause for optimism.
    [Show full text]
  • Daytime and Nighttime Polar Cloud and Snow Identification Using MODIS Data Qing Trepte SAIC, Hampton, VA USA Patrick Minnis Atmo
    Daytime and Nighttime Polar Cloud and Snow Identification Using MODIS Data Qing Trepte SAIC, Hampton, VA USA Patrick Minnis Atmospheric Sciences, NASA Langley Research Center, Hampton, VA USA Robert F. Arduini SAIC, Hampton, VA USA Extended Abstract for SPIE 3rd International Asia-Pacific Environmental Remote Sensing Symposium 2002: Remote Sensing of the Atmosphere, Ocean, Environment, and Space Hangzhou, China October 23-27, 2002 Daytime and nighttime polar cloud and snow identification using MODIS data Qing Z. Trepte*a, Patrick Minnisb, Robert F. Arduinia aScience Applications International Corp.; bAtmospheric Sciences, NASA Langley Research Center ABSTRACT The Moderate Resolution Imaging Spectroradiometer (MODIS) on Terra, with its high horizontal resolution and frequent sampling over Arctic and Antarctic regions, provides unique data sets to study clouds and the surface energy balance over snow and ice surfaces. This paper describes a polar cloud mask using MODIS data. The daytime cloud and snow identification methods were developed using theoretical snow bi-directional reflectance models for the MODIS 1.6 and 3.75-µm channels. The model-based polar cloud mask minimizes the need for empirically adjusting the thresholds for a given set of conditions and reduces the error accrued from using single-value thresholds. During night, the MODIS brightness temperature differences (BTD) for 3.75 - 11, 3.75 - 12, 8.55 - 11, and 6.7 - 11 µm are used to detect clouds while snow and ice maps are used to determine snow and ice surfaces. At twilight, the combination of the 1.6-µm reflectance and the 3.75 - 11-µm BTD are used to detect clouds.
    [Show full text]
  • Intertextuality, Masculinity, and Desire in the Twilight Series
    Virtue as Adventure and Excess: Intertextuality, Masculinity, and Desire in the Twilight Series By Claudia Lindén Abstract The vampire is still primarily a literary figure. The vampires we have seen on TV and cinema in recent years are all based on literary models. The vampire is at the same time a popular cultural icon and a figure that, especially women writers, use to problematize gender, sexuality and power. As a vampire story the Twilight se- ries both produces and problematizes norms in regard to gender, class and ethnici- ty. As the main romantic character in Twilight, Edward Cullen becomes interest- ing both as a vampire of our time and as a man. In a similar way as in the 19th century novel the terms of relationship are negotiated and like his namesake Ed- ward Rochester, Edward Cullen has to change in important ways for the “happy ending” to take place. In spite of a strong interest in sexuality and gender norms in relation to vampires very few studies have focused exclusively on masculinity. This article examines the construction of masculinity in relation to vampirism in the Twilight series. It offers an interpretation of Stephenie Meyer’s novels and the character of Edward as part of a broader field of feminist (re-)uses of the vampire in modern literature with its roots in the literary tradition from Austen and the Brontë-sisters as well as from classic Gothic fiction. Keywords: Twilight Series, Stephenie Meyer, masculinity, vampires, were- wolves, Midnight Sun, Jane Austen, Pride and Prejudice, Charlotte Brontë, Jane Eyre, feminist theory, queer theory, gothic.
    [Show full text]
  • The Idea of the North Transcript
    The Idea of the North Transcript Date: Friday, 19 June 2009 - 12:00AM Location: Barnard's Inn Hall The Idea of the North City of London Festival 2009 by Peter Davidson 19 June 2009 Snowlight and Evening: The Fall of Northern Light If I were at home in Aberdeenshire in the evening of a day so near to midsummer as today, the daylight would be undiminished until about ten. It would feel as if time itself were stretching and slowing in the endless northern evening. It is difficult to exaggerate the way in which the presence and absence of light governs the life of the north. On such an evening it is hard to stay in the house, hard to waste the daylight, because in the north you are always aware of the dark biding its time. In a week or two, the prodigious light will already be dwindling: in the words of that splendidly miserable old sod Professor Housman The dark Has passed its nadir and begun to climb. We would go out just as, at last, the sun begins to go down. Out into the cooling air and the level light, into the scents of the clove pinks in the bed beside the greenhouse. Viridian shadows are beginning to deepen under the trees on the lawn. We walk away from the house, between the beech hedges which lead out of the clearing at the end of the garden, and down the broad steps into the wood. A grass path stretches away to the north of us, into the sunlight which still sends its last low rays over the stream and amongst the trunks of the trees.
    [Show full text]
  • AAR Chapter 2
    Go back to opening screen 9 Chapter 2 Physical/Geographical Characteristics of the Arctic –––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– Contents 2.2.1. Climate boundaries 2.1. Introduction . 9 On the basis of temperature, the Arctic is defined as the area 2.2. Definitions of the Arctic region . 9 2.2.1. Climate boundaries . 9 north of the 10°C July isotherm, i.e., north of the region 2.2.2. Vegetation boundaries . 9 which has a mean July temperature of 10°C (Figure 2·1) 2.2.3. Marine boundary . 10 (Linell and Tedrow 1981, Stonehouse 1989, Woo and Gre- 2.2.4. Geographical coverage of the AMAP assessment . 10 gor 1992). This isotherm encloses the Arctic Ocean, Green- 2.3. Climate and meteorology . 10 2.3.1. Climate . 10 land, Svalbard, most of Iceland and the northern coasts and 2.3.2. Atmospheric circulation . 11 islands of Russia, Canada and Alaska (Stonehouse 1989, 2.3.3. Meteorological conditions . 11 European Climate Support Network and National Meteoro- 2.3.3.1. Air temperature . 11 2.3.3.2. Ocean temperature . 12 logical Services 1995). In the Atlantic Ocean west of Nor- 2.3.3.3. Precipitation . 12 way, the heat transport of the North Atlantic Current (Gulf 2.3.3.4. Cloud cover . 13 Stream extension) deflects this isotherm northward so that 2.3.3.5. Fog . 13 2.3.3.6. Wind . 13 only the northernmost parts of Scandinavia are included. 2.4. Physical/geographical description of the terrestrial Arctic 13 Cold water and air from the Arctic Ocean Basin in turn 2.4.1.
    [Show full text]
  • Federal Communications Commission § 73.1730
    Federal Communications Commission § 73.1730 writing, is signed by the licensees of ing daytime and until local sunset if the stations affected thereby and filed located west of the Class A station on in triplicate by each licensee with the the channel, or until local sunset at FCC in Washington, DC prior to the the Class A station if located east of time of the time of the proposed that station. Operation is also per- change. If time is of the essence, the mitted during nighttime hours not actual departure in operating schedule used by the Class A station or other may precede the actual filing of writ- stations on the channel. ten agreement, provided appropriate (b) No authorization will be granted notice is sent to the FCC. for: (d) If the license of an AM station au- (1) A new limited time station; thorized to share time does not specify (2) A limited time station operating the hours of operation, the station may on a changed frequency; be operated for the transmission of reg- (3) A limited time station with a new ular programs during the experimental transmitter site materially closer to period provided an agreement thereto the 0.1 mV/m contour of a co-channel is reached with the other stations with U.S. Class A station; or which the broadcast day is shared: And (4) Modification of the operating fa- further provided, Such operation is not cilities of a limited time station result- in conflict with § 73.72 (Operating dur- ing in increased radiation toward any ing the experimental period).
    [Show full text]
  • The Effectiveness of Daytime Running Lights for Passenger Vehicles
    DOT HS 811 029 September 2008 The Effectiveness of Daytime Running Lights For Passenger Vehicles This report is free of charge from the NHTSA Web site at www.nhtsa.dot.gov This publication is distributed by the U.S. Department of Transportation, National Highway Traffic Safety Administration, in the interest of information exchange. The opinions, findings and conclusions expressed in this publication are those of the author(s) and not necessarily those of the Department of Transportation or the National Highway Traffic Safety Administration. The United States Government assumes no liability for its content or use thereof. If trade or manufacturers’ names or products are mentioned, it is because they are considered essential to the object of the publication and should not be construed as an endorsement. The United States Government does not endorse products or manufacturers. Technical Report Documentation Page 1. Report No. 2. Government Accession No. 3. Recipient’s Catalog No. DOT HS 811 029 4. Title and Subtitle 5. Report Date The Effectiveness of Daytime Running Lights for Passenger Vehicles September 2008 6. Performing Organization Code 7. Author(s) 8. Performing Organization Report No. Jing-Shiarn Wang 9. Performing Organization Name and Address 10. Work Unit No. (TRAIS) Office of Regulatory Analysis and Evaluation 11. Contract or Grant No. National Center for Statistics and Analysis National Highway Traffic Safety Administration Washington, DC 20590 12. Sponsoring Agency Name and Address 13. Type of Report and Period Covered Department of Transportation National Highway Traffic Safety Administration NHTSA Technical Report 1200 New Jersey Avenue SE. 14. Sponsoring Agency Code Washington, DC 20590 15.
    [Show full text]