Frame Theory on a Separable Hilbert Space
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
21. Orthonormal Bases
21. Orthonormal Bases The canonical/standard basis 011 001 001 B C B C B C B0C B1C B0C e1 = B.C ; e2 = B.C ; : : : ; en = B.C B.C B.C B.C @.A @.A @.A 0 0 1 has many useful properties. • Each of the standard basis vectors has unit length: q p T jjeijj = ei ei = ei ei = 1: • The standard basis vectors are orthogonal (in other words, at right angles or perpendicular). T ei ej = ei ej = 0 when i 6= j This is summarized by ( 1 i = j eT e = δ = ; i j ij 0 i 6= j where δij is the Kronecker delta. Notice that the Kronecker delta gives the entries of the identity matrix. Given column vectors v and w, we have seen that the dot product v w is the same as the matrix multiplication vT w. This is the inner product on n T R . We can also form the outer product vw , which gives a square matrix. 1 The outer product on the standard basis vectors is interesting. Set T Π1 = e1e1 011 B C B0C = B.C 1 0 ::: 0 B.C @.A 0 01 0 ::: 01 B C B0 0 ::: 0C = B. .C B. .C @. .A 0 0 ::: 0 . T Πn = enen 001 B C B0C = B.C 0 0 ::: 1 B.C @.A 1 00 0 ::: 01 B C B0 0 ::: 0C = B. .C B. .C @. .A 0 0 ::: 1 In short, Πi is the diagonal square matrix with a 1 in the ith diagonal position and zeros everywhere else. -
Sums of Hilbert Space Frames 1
SUMS OF HILBERT SPACE FRAMES SOFIAN OBEIDAT, SALTI SAMARAH, PETER G. CASAZZA AND JANET C. TREMAIN Abstract. We give simple necessary and sufficient conditions on Bessel sequences {fi} and {gi} and operators L1,L2 on a Hilbert space H so that {L1fi + L2gi} is a frame for H. This allows us to construct a large number of new Hilbert space frames from existing frames. 1. Introduction Frames for Hilbert spaces were introduced by Duffin and Schaeffer [8] as a part of their research in non-harmonic Fourier series. Their work on frames was somewhat forgotten until 1986 when Daubechies, Grossmann and Meyer [13] brought it all back to life during their fundamental work on wavelets. Today, frame theory plays an important role not just in signal processing, but also in dozens of applied areas (See [1, 2]). Holub [12] showed that if {xn} is any normalized basis for a Hilbert space H and {fn} is the associated dual basis of coefficient functionals, then the sequence {xn + fn} is again a basis for H. In this paper we study cases in which new frames can be obtained from old ones. Throughout H denotes a separable Hilbert space and HN is the Nth dimensional Hilbert space. A frame for H is a family of vectors fi ∈ H, for i ∈ I for which there exist constants A, B > 0 satisfying: 2 X 2 2 (1.1) Akfk ≤ |hf, fii| ≤ Bkfk i∈I for all f ∈ H. A and B are called the lower and upper frame bounds respectively. If A = B, this is called an A-tight frame. -
Lecture 4: April 8, 2021 1 Orthogonality and Orthonormality
Mathematical Toolkit Spring 2021 Lecture 4: April 8, 2021 Lecturer: Avrim Blum (notes based on notes from Madhur Tulsiani) 1 Orthogonality and orthonormality Definition 1.1 Two vectors u, v in an inner product space are said to be orthogonal if hu, vi = 0. A set of vectors S ⊆ V is said to consist of mutually orthogonal vectors if hu, vi = 0 for all u 6= v, u, v 2 S. A set of S ⊆ V is said to be orthonormal if hu, vi = 0 for all u 6= v, u, v 2 S and kuk = 1 for all u 2 S. Proposition 1.2 A set S ⊆ V n f0V g consisting of mutually orthogonal vectors is linearly inde- pendent. Proposition 1.3 (Gram-Schmidt orthogonalization) Given a finite set fv1,..., vng of linearly independent vectors, there exists a set of orthonormal vectors fw1,..., wng such that Span (fw1,..., wng) = Span (fv1,..., vng) . Proof: By induction. The case with one vector is trivial. Given the statement for k vectors and orthonormal fw1,..., wkg such that Span (fw1,..., wkg) = Span (fv1,..., vkg) , define k u + u = v − hw , v i · w and w = k 1 . k+1 k+1 ∑ i k+1 i k+1 k k i=1 uk+1 We can now check that the set fw1,..., wk+1g satisfies the required conditions. Unit length is clear, so let’s check orthogonality: k uk+1, wj = vk+1, wj − ∑ hwi, vk+1i · wi, wj = vk+1, wj − wj, vk+1 = 0. i=1 Corollary 1.4 Every finite dimensional inner product space has an orthonormal basis. -
Orthonormality and the Gram-Schmidt Process
Unit 4, Section 2: The Gram-Schmidt Process Orthonormality and the Gram-Schmidt Process The basis (e1; e2; : : : ; en) n n for R (or C ) is considered the standard basis for the space because of its geometric properties under the standard inner product: 1. jjeijj = 1 for all i, and 2. ei, ej are orthogonal whenever i 6= j. With this idea in mind, we record the following definitions: Definitions 6.23/6.25. Let V be an inner product space. • A list of vectors in V is called orthonormal if each vector in the list has norm 1, and if each pair of distinct vectors is orthogonal. • A basis for V is called an orthonormal basis if the basis is an orthonormal list. Remark. If a list (v1; : : : ; vn) is orthonormal, then ( 0 if i 6= j hvi; vji = 1 if i = j: Example. The list (e1; e2; : : : ; en) n n forms an orthonormal basis for R =C under the standard inner products on those spaces. 2 Example. The standard basis for Mn(C) consists of n matrices eij, 1 ≤ i; j ≤ n, where eij is the n × n matrix with a 1 in the ij entry and 0s elsewhere. Under the standard inner product on Mn(C) this is an orthonormal basis for Mn(C): 1. heij; eiji: ∗ heij; eiji = tr (eijeij) = tr (ejieij) = tr (ejj) = 1: 1 Unit 4, Section 2: The Gram-Schmidt Process 2. heij; ekli, k 6= i or j 6= l: ∗ heij; ekli = tr (ekleij) = tr (elkeij) = tr (0) if k 6= i, or tr (elj) if k = i but l 6= j = 0: So every vector in the list has norm 1, and every distinct pair of vectors is orthogonal. -
Designing Structured Tight Frames Via an Alternating Projection Method Joel A
1 Designing Structured Tight Frames via an Alternating Projection Method Joel A. Tropp, Student Member, IEEE, Inderjit S. Dhillon, Member, IEEE, Robert W. Heath Jr., Member, IEEE and Thomas Strohmer Abstract— Tight frames, also known as general Welch-Bound- tight frame to a given ensemble of structured vectors; then Equality sequences, generalize orthonormal systems. Numer- it finds the ensemble of structured vectors nearest to the ous applications—including communications, coding and sparse tight frame; and it repeats the process ad infinitum. This approximation—require finite-dimensional tight frames that pos- sess additional structural properties. This paper proposes a technique is analogous to the method of projection on convex versatile alternating projection method that is flexible enough to sets (POCS) [4], [5], except that the class of tight frames is solve a huge class of inverse eigenvalue problems, which includes non-convex, which complicates the analysis significantly. Nev- the frame design problem. To apply this method, one only needs ertheless, our alternating projection algorithm affords simple to solve a matrix nearness problem that arises naturally from implementations, and it provides a quick route to solve difficult the design specifications. Therefore, it is fast and easy to develop versions of the algorithm that target new design problems. frame design problems. This article offers extensive numerical Alternating projection is likely to succeed even when algebraic evidence that our method succeeds for several important cases. constructions are unavailable. We argue that similar techniques apply to a huge class of To demonstrate that alternating projection is an effective tool inverse eigenvalue problems. for frame design, the article studies some important structural There is a major conceptual difference between the use properties in detail. -
FRAME WAVELET SETS in R §1. Introduction a Collection of Elements
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 129, Number 7, Pages 2045{2055 S 0002-9939(00)05873-1 Article electronically published on December 28, 2000 FRAME WAVELET SETS IN R X. DAI, Y. DIAO, AND Q. GU (Communicated by David R. Larson) Abstract. In this paper, we try to answer an open question raised by Han and Larson, which asks about the characterization of frame wavelet sets. We completely characterize tight frame wavelet sets. We also obtain some nec- essary conditions and some sufficient conditions for a set E to be a (general) frame wavelet set. Some results are extended to frame wavelet functions that are not defined by frame wavelet set. Several examples are presented and compared with some known results in the literature. x1. Introduction A collection of elements fxj : j 2Jgin a Hilbert space H is called a frame if there exist constants A and B,0<A≤ B<1, such that X 2 2 2 (1) Akfk ≤ jhf;xj ij ≤ Bkfk j2J for all f 2H. The supremum of all such numbers A and the infimum of all such numbers B are called the frame bounds of the frame and denoted by A0 and B0 respectively. The frame is called a tight frame when A0 = B0 andiscalleda normalized tight frame when A0 = B0 = 1. Any orthonormal basis in a Hilbert space is a normalized tight frame. The concept of frame first appeared in the late 40's and early 50's (see [6], [13] and [12]). The development and study of wavelet theory during the last decade also brought new ideas and attention to frames because of their close connections. -
The Contourlet Transform: an Efficient Directional Multiresolution Image Representation Minh N
IEEE TRANSACTIONS ON IMAGE PROCESSING 1 The Contourlet Transform: An Efficient Directional Multiresolution Image Representation Minh N. Do, Member, IEEE, and Martin Vetterli, Fellow, IEEE Abstract— The limitations of commonly used separable ex- representation has to be obtained by structured transforms and tensions of one-dimensional transforms, such as the Fourier fast algorithms. and wavelet transforms, in capturing the geometry of image For one-dimensional piecewise smooth signals, like scan- edges are well known. In this paper, we pursue a “true” two- dimensional transform that can capture the intrinsic geometrical lines of an image, wavelets have been established as the right structure that is key in visual information. The main challenge tool, because they provide an optimal representation for these in exploring geometry in images comes from the discrete nature signals in a certain sense [1], [2]. In addition, the wavelet of the data. Thus, unlike other approaches, such as curvelets, representation is amenable to efficient algorithms; in particular that first develop a transform in the continuous domain and it leads to fast transforms and convenient tree data structures. then discretize for sampled data, our approach starts with a discrete-domain construction and then studies its convergence These are the key reasons for the success of wavelets in to an expansion in the continuous domain. Specifically, we many signal processing and communication applications; for construct a discrete-domain multiresolution and multidirection example, the wavelet transform was adopted as the transform expansion using non-separable filter banks, in much the same way for the new image-compression standard, JPEG-2000 [3]. -
Inner Product Spaces
CHAPTER 6 Woman teaching geometry, from a fourteenth-century edition of Euclid’s geometry book. Inner Product Spaces In making the definition of a vector space, we generalized the linear structure (addition and scalar multiplication) of R2 and R3. We ignored other important features, such as the notions of length and angle. These ideas are embedded in the concept we now investigate, inner products. Our standing assumptions are as follows: 6.1 Notation F, V F denotes R or C. V denotes a vector space over F. LEARNING OBJECTIVES FOR THIS CHAPTER Cauchy–Schwarz Inequality Gram–Schmidt Procedure linear functionals on inner product spaces calculating minimum distance to a subspace Linear Algebra Done Right, third edition, by Sheldon Axler 164 CHAPTER 6 Inner Product Spaces 6.A Inner Products and Norms Inner Products To motivate the concept of inner prod- 2 3 x1 , x 2 uct, think of vectors in R and R as x arrows with initial point at the origin. x R2 R3 H L The length of a vector in or is called the norm of x, denoted x . 2 k k Thus for x .x1; x2/ R , we have The length of this vector x is p D2 2 2 x x1 x2 . p 2 2 x1 x2 . k k D C 3 C Similarly, if x .x1; x2; x3/ R , p 2D 2 2 2 then x x1 x2 x3 . k k D C C Even though we cannot draw pictures in higher dimensions, the gener- n n alization to R is obvious: we define the norm of x .x1; : : : ; xn/ R D 2 by p 2 2 x x1 xn : k k D C C The norm is not linear on Rn. -
Geometric Algebra Techniques for General Relativity
Geometric Algebra Techniques for General Relativity Matthew R. Francis∗ and Arthur Kosowsky† Dept. of Physics and Astronomy, Rutgers University 136 Frelinghuysen Road, Piscataway, NJ 08854 (Dated: February 4, 2008) Geometric (Clifford) algebra provides an efficient mathematical language for describing physical problems. We formulate general relativity in this language. The resulting formalism combines the efficiency of differential forms with the straightforwardness of coordinate methods. We focus our attention on orthonormal frames and the associated connection bivector, using them to find the Schwarzschild and Kerr solutions, along with a detailed exposition of the Petrov types for the Weyl tensor. PACS numbers: 02.40.-k; 04.20.Cv Keywords: General relativity; Clifford algebras; solution techniques I. INTRODUCTION Geometric (or Clifford) algebra provides a simple and natural language for describing geometric concepts, a point which has been argued persuasively by Hestenes [1] and Lounesto [2] among many others. Geometric algebra (GA) unifies many other mathematical formalisms describing specific aspects of geometry, including complex variables, matrix algebra, projective geometry, and differential geometry. Gravitation, which is usually viewed as a geometric theory, is a natural candidate for translation into the language of geometric algebra. This has been done for some aspects of gravitational theory; notably, Hestenes and Sobczyk have shown how geometric algebra greatly simplifies certain calculations involving the curvature tensor and provides techniques for classifying the Weyl tensor [3, 4]. Lasenby, Doran, and Gull [5] have also discussed gravitation using geometric algebra via a reformulation in terms of a gauge principle. In this paper, we formulate standard general relativity in terms of geometric algebra. A comprehensive overview like the one presented here has not previously appeared in the literature, although unpublished works of Hestenes and of Doran take significant steps in this direction. -
Inner Product Spaces Isaiah Lankham, Bruno Nachtergaele, Anne Schilling (March 2, 2007)
MAT067 University of California, Davis Winter 2007 Inner Product Spaces Isaiah Lankham, Bruno Nachtergaele, Anne Schilling (March 2, 2007) The abstract definition of vector spaces only takes into account algebraic properties for the addition and scalar multiplication of vectors. For vectors in Rn, for example, we also have geometric intuition which involves the length of vectors or angles between vectors. In this section we discuss inner product spaces, which are vector spaces with an inner product defined on them, which allow us to introduce the notion of length (or norm) of vectors and concepts such as orthogonality. 1 Inner product In this section V is a finite-dimensional, nonzero vector space over F. Definition 1. An inner product on V is a map ·, · : V × V → F (u, v) →u, v with the following properties: 1. Linearity in first slot: u + v, w = u, w + v, w for all u, v, w ∈ V and au, v = au, v; 2. Positivity: v, v≥0 for all v ∈ V ; 3. Positive definiteness: v, v =0ifandonlyifv =0; 4. Conjugate symmetry: u, v = v, u for all u, v ∈ V . Remark 1. Recall that every real number x ∈ R equals its complex conjugate. Hence for real vector spaces the condition about conjugate symmetry becomes symmetry. Definition 2. An inner product space is a vector space over F together with an inner product ·, ·. Copyright c 2007 by the authors. These lecture notes may be reproduced in their entirety for non- commercial purposes. 2NORMS 2 Example 1. V = Fn n u =(u1,...,un),v =(v1,...,vn) ∈ F Then n u, v = uivi. -
The Canonical Dual Frame of a Wavelet Frame
Applied and Computational Harmonic Analysis 12, 269–285 (2002) doi:10.1006/acha.2002.0381 The Canonical Dual Frame of a Wavelet Frame Ingrid Daubechies 1 PACM, Department of Mathematics, Princeton University, Fine Hall, Washington Road, Princeton, New Jersey 08544 E-mail: [email protected] and Bin Han 2 Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, Alberta T6G 2G1, Canada E-mail: [email protected] Communicated by Charles K. Chui Received July 11, 2000; revised December 20, 2001 In this paper we show that there exist wavelet frames that have nice dual wavelet frames, but for which the canonical dual frame does not consist of wavelets, i.e., cannot be generated by the translates and dilates of a single function. 2002 Elsevier Science (USA) Key Words: wavelet frame; the canonical dual frame; dual wavelet frame. 1. INTRODUCTION We start by recalling some notations and definitions. Let H be a Hilbert space. A set of elements {hk}k∈Z in H is said to be a frame (see [5]) in H if there exist two positive constants A and B such that 2 2 2 Af ≤ |f,hk| ≤ Bf , ∀f ∈ H, (1.1) k∈Z where A and B are called the lower frame bound and upper frame bound, respectively. In particular, when A = B = 1, we say that {hk}k∈Z is a (normalized) tight frame in H.The 1 Research was partially supported by NSF Grants DMS-9872890, DMS-9706753 and AFOSR Grant F49620- 98-1-0044. Web: http://www.princeton.edu/~icd. 2 Research was supported by NSERC Canada under Grant G121210654 and by Alberta Innovation and Science REE under Grant G227120136. -
Quantization in Signal Processing with Frame Theory
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Vanderbilt Electronic Thesis and Dissertation Archive QUANTIZATION IN SIGNAL PROCESSING WITH FRAME THEORY By JIAYI JIANG Dissertation Submitted to the Faculty of the Graduate School of Vanderbilt University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY in Mathematics May, 2016 Nashville, Tennessee Approved: Alexander Powell Akram Aldroubi Doug Hardin Brett Byram ©Copyright by Jiayi Jiang, 2016. All Rights Reserved ii ACKNOWLEDGEMENTS Firstly, I would like to express my sincere gratitude to my advisor, Alexander.M.Powell. He taught me too many thing in these five years which are not only on mathematics research but also on how to be a polite and organised person. Thanks a lot for his encouragement, patience and professional advices. I really appreciate for his supporting and helping when I decide to work in industry instead of academic. All of these mean a lot to me! My time in Vanderbilt has been a lot of fun. Thanks for the faculty of the math depart- ment. Thanks for all my teachers, Akram Aldroubi, Doug Hardin, Mark Ellingham, Mike Mihalik, Edward Saff. Each Professors in these list taught me at least one course which I will be benefited from them in my future carer. I really enjoy the different way of teaching from these professors. Thanks for my Vandy friends, Corey Jones, Yunxiang Ren, Sui tang and Zhengwei Liu. You guys give me too many helps and joys. I have to say thanks to my wife Suyang Zhao.