Pleiades: an Object Management System for Software Engineering

Total Page:16

File Type:pdf, Size:1020Kb

Pleiades: an Object Management System for Software Engineering Pleiades An Ob ject Management System for Software Engineering Environments Peri Tarr Lori A Clarke Software Development Laboratory Department of Computer Science University of Massachusetts Amherst MA analyzed These ob jects must b e maintained in a con Abstract sistent state for arbitrarily long p erio ds of time p erhaps Software engineering environments imp ose challeng while b eing shared by dierent to ols and b eing accessed ing requirements on the design and implementation of bymultiple users an ob ject management system Existing ob ject man A software engineering environment should therefore agement systems have b een limited in b oth the kinds provide object management capabilities that facilitate of functionality they haveprovided and in the mo dels the denition manipulation and maintenance of com of supp ort they dene This pap er describ es a system plex ob jects and their interrelationships Because of called Pleiades which provides many of the ob ject the complexityanddiversityofsoftware artifacts and management capabilities required to supp ort software the pro cesses that pro duce them software engineer engineering environments ing applications imp ose some challenging requirements on the design of an ob ject management system Pro Intro duction gramming languages le systems and database sys tems currently fail to satisfy these requirements Re Software engineering environments supp ort the pro centwork on database programming languages eg cess of pro ducing and maintaining software systems and ob jectoriented database systems One of the most common and p ervasive activities of eg are attempting to overcome some of software develop ers is the creation and manipulation their limitations but to date none of these eorts have of software objects that represent artifacts of the soft suciently provided the capabilities needed to supp ort ware development pro cess such as requirements sp ec the sp ectrum of software engineering activities There ications designs source co de test data and analysis fore as part of the Arcadia pro ject wehave results Ob jects that are created during the software b een trying to address these weaknesses to aid our own dev elopment pro cess tend to b e large complex struc environmentbuilding eorts esp ecially with regard to tures with complex interrelationship s to other ob jects supp ort for pro cess programming and software anal For example design elements are related to the require ysis ments they satisfy source co de is related to the design This pap er describ es a prototyp e system called it implements test data are related to the source co de Pleiades Programming Language Extensions Inte they test and analysis results are related to the require grated with Advanced Database Extended Semantics ments sp ecications designs or source co de that were whichprovides many of the ob ject management capabil This work was sp onsored by the Advanced Research Pro jects ities required to supp ort software engineering environ Agency under Grant MDAJ ments Pleiades is a database programming language in that it extends a programming language in this case Ada with capabilities asso ciated with traditional databases It do es not provide these capabilities in the traditional database style however Whereas database systems have commonly fo cused on eciency and a strict mo del of consistency rejecting capabilities that violate these requirements the Pleiades system em that is asso ciated with eachnodeoftheCFG The de phasizes functionality exibility and ease of use The p endency builder uses b oth the CFG and the defref result is an interesting and p owerful system annotations to construct dep endency information A The remainder of this pap er is organized as follows develop er mightdecidetochange the source co de either Section provides a small but typical example of a soft bymakingachange to the actual source and resub ware engineering application to illustrate some of the mitting the co de for reanalysis or by directly editing ob ject management needs that such applications have a visual depiction of the AST or CFG In either case This example is used rep eatedly throughout the remain when suchchanges o ccur each to ol asso ciated with an der of the pap er to justify our requirements and to mo aected data structure is notied so it can recompute tivate our design decisions Section describ es what we the appropriate information b elieve are imp ortant requirements on ob ject manage To ols in the software engineering environmentuse ment systems imp osed bysoftware engineering appli these data structures to provide users develop ers cations Section provides a brief overview of related andor maintainers with information ab out the soft work A more detailed description of related work is ware system they are developing or maintaining For given in Section where each of the ma jor language example a data ow analysis to ol mightbeemployed features of Pleiades is describ ed justied and con to detect anomalous sequences of events using the trasted with other approaches Finally Section briey CFG and defref annotations A cross reference to ol describ es our exp erience s using Pleiades and discusses might use defref annotations to answer users questions our plans for future work ab out a program under development such as where a variable is referenced or declared A program mainte nance to ol could use dep endency information to deter Ob ject ManagementinSoftware En mine which pro cedures would b e aected if a particular gineering An Example statementwas mo died To illustrate some typical ob ject management needs Ob ject Management Requirements of software engineering applications we describ e here a subset of the capabilities provided by some Arca The ab ove example can b e used to illustrate some dia to ols These to ols create and main of the functionality that should b e provided in an ob tain four ma jor data structures abstract syntax trees ject management system for software engineering envi AST control ow graphs CFG denition and refer ronments including highlevel primitivetyp e construc ence defref annotations and dep endency information tors navigational and asso ciative access over the same EachnodeinaCFGpoints to the ro ot of the AST structure p ersistence consistency management access subgraph that elab orates the statement asso ciated with control concurrency control resilienc yversion control the CFG no de To facilitate analysis defref informa conguration management name management evolu tion is derived from an AST and asso ciated with the tion and distribution In addition it demonstrates appropriate no de in the corresp onding CF G Based on some crosscutting requirements which imp ose ad the defref annotations and the structure of the CFG ditional constraints on the ways in which the functional dep endency information is asso ciated with CFGnodes requirements should b e satised The dep endency information used here are data depen The current implementation of Pleiades addresses dence control dependence and syntactic dependenceA the rst four functional requirements listed ab ove and no de n is data dep endent on a no de m if and only if the crosscutting requirements Although the other there is a denition of a variable v at m that reaches a functional requirements are not yet implemented we reference to v at no de nAnoden is control dep endent have attempted to anticipate and plan for the incre on a no de m if and only if there exists a path from m to mental inclusion of these additional features Both the n that do es not include the immediate forward domina functional and crosscutting requirements are discussed tor of m A no de n is syntactically dep endent onanode below m if and only if it is either control or data dep endenton no de m A program fragment and the resulting AST Functional Requirements CFG defref annotations and dep endency information are shown in Figure Highlevel typ e mo dels To ols that p opulate soft Separate to ols build each of these four data struc ware engineering environments dene and manipulate tures in turn A frontend to ol accepts source co de and large amounts of complex data Certain classes of ab creates an AST A CFG builder uses the AST to create stract data typ es recur throughout software engineering the corresp onding CFG The defref annotator uses the environments graphs varyinglength sequences rela AST to derive the denition and reference information tions and relationships Graph ob jects o ccur for exam ple in the form of abstract syntax graphs control ow Only informal denitions are needed here The interested reader should refer to graphs and dep endence information graphs as seen in next_stmt Ref = {B,C} := next_stmt Def = {A} A + IF next_stmt Ref = {A,D} B C > THEN ELSE Print Def = {O} A D next_stmt := D Ref = {A,D} Ref = {D,E} D + Def = {D} Def = {D} := next_stmt D E D + := Ref = {D} Def = {E} D A E + 2 D Ref = {D} Def = {O} AST Edges CFG Edges Control Dependencies AST to CFG relationship Data Dependencies AST Node CFG Node Figure Example of AST CFG DefRef Annotations and Dep endency Information Section The representation of ordered lists of ob jects An ob ject management system should also provide a such as the sections of a do cument or the op erands of means of determining when ob jects are no longer use an AST no de are easily captured through the use of y b e deleted Again ful or meaningful so that they ma varyinglength sequences Finally the ob jects dened returning to our example if the abstract syntax graph within
Recommended publications
  • Composition of Software Architectures Christos Kloukinas
    Composition of Software Architectures Christos Kloukinas To cite this version: Christos Kloukinas. Composition of Software Architectures. Computer Science [cs]. Université Rennes 1, 2002. English. tel-00469412 HAL Id: tel-00469412 https://tel.archives-ouvertes.fr/tel-00469412 Submitted on 1 Apr 2010 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Composition of Software Architectures - Ph.D. Thesis - - Presented in front of the University of Rennes I, France - - English Version - Christos Kloukinas Jury Members : Jean-Pierre Banâtre Jacky Estublier Cliff Jones Valérie Issarny Nicole Lévy Joseph Sifakis February 12, 2002 Résumé Les systèmes informatiques deviennent de plus en plus complexes et doivent offrir un nombre croissant de propriétés non fonctionnelles, comme la fiabi- lité, la disponibilité, la sécurité, etc.. De telles propriétés sont habituellement fournies au moyen d’un intergiciel qui se situe entre le matériel (et le sys- tème d’exploitation) et le niveau applicatif, masquant ainsi les spécificités du système sous-jacent et permettant à des applications d’être utilisées avec dif- férentes infrastructures. Cependant, à mesure que les exigences de propriétés non fonctionnelles augmentent, les architectes système se trouvent confron- tés au cas où aucun intergiciel disponible ne fournit toutes les propriétés non fonctionnelles visées.
    [Show full text]
  • Lecture Notes in Computer Science 1543 Edited by G
    Lecture Notes in Computer Science 1543 Edited by G. Goos, J. Hartmanis and J. van Leeuwen 3 Berlin Heidelberg New York Barcelona Hong Kong London Milan Paris Singapore Tokyo Serge Demeyer Jan Bosch (Eds.) Object-Oriented Technology ECOOP ’98 Workshop Reader ECOOP ’98 Workshops, Demos, and Posters Brussels, Belgium, July 20-24, 1998 Proceedings 13 Series Editors Gerhard Goos, Karlsruhe University, Germany Juris Hartmanis, Cornell University, NY, USA Jan van Leeuwen, Utrecht University, The Netherlands Volume Editors Serge Demeyer University of Berne Neubruckstr. 10, CH-3012 Berne, Switzerland E-mail: [email protected] Jan Bosch University of Karlskrona/Ronneby, Softcenter S-372 25 Ronneby, Sweden E-mail: [email protected] Cataloging-in-Publication data applied for Die Deutsche Bibliothek - CIP-Einheitsaufnahme Object-oriented technology : workshop reader, workshops, demos, and posters / ECOOP ’98, Brussels, Belgium, July 20 - 24, 1998 / Serge Demeyer ; Jan Bosch (ed.). - Berlin ; Heidelberg ; New York ; Barcelona ; Hong Kong ; London ; Milan ; Paris ; Singapore ; Tokyo : Springer, 1998 (Lecture notes in computer science ; Vol. 1543) ISBN 3-540-65460-7 CR Subject Classification (1998): D.1-3, H.2, E.3, C.2, K.4.3, K.6 ISSN 0302-9743 ISBN 3-540-65460-7 Springer-Verlag Berlin Heidelberg New York This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting, reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer-Verlag.
    [Show full text]
  • Workshop on Multi-Dimensional Separation of Concerns in Software Engineering
    ACM SIGSOFT Software Engineering Notes vol 26 no 1 January 2001 Page 78 Workshop on Multi-Dimensional Separation of Concerns in Software Engineering Peri Tarr, William Harrison, Harold Ossher (IBM T. I. Watson Research Center, USA) Anthony Finkelstein (University College London, UK) Bashar Nuseibeh (Imperial College, UK) Dewayne Perry (University of Texas at Austin, USA) Workshop Web site: http://www.research.ibm.com/hyperspace/workshops/icse2000 ABSTRACT cem may promote some goals and activities, while impeding oth- Separation of concerns has been central to software engineering ers; thus, any criterion for decomposition will be appropriate fm for decades, yet its many advantages are still not fully realized. A some contexts, but not for all. Further, multiple kinds of concerns key reason is that traditional modularization mechanisms do not may be relevant simultaneously, and they may overlap and inter- allow simultaneous decomposition according to multiple kinds of act, as features and classes do. Thus, different concerns and (overlapping and interacting) concerns. This workshop was in- modularizations are needed for different purposes: sometimes by tended to bring together researchers working on more advanced class, sometimes by feature, sometimes by viewpoint, or aspect, moclularization mechanisms, and practitioners who have experi- role, variant, or other criterion. enced the need for them, as a step towards a common understand- These considerations imply that developers must be able to iden- ing of the issues, problems and research challenges. tify, encapsulate, modularize, and wanipulate multiple dimensions Keywords of concern simultaneously, and to introduce new concerns and Separation of concerns, decomposition, composition dimensions at any point during the software lifecycle, without suf- fering the effects of invasive modification and rearchitecture.
    [Show full text]
  • Separation of Concerns for Dependable Software Design
    Separation of Concerns for Dependable Software Design Daniel Jackson and Eunsuk Kang MIT Computer Science and Artificial Intelligence Laboratory 32 Vassar Street, Cambridge, MA 02139 [email protected] ABSTRACT tiously includes collection of detailed statistics and explicit mechanisms for adjusting the process accordingly. For ‘mixed-criticality’ systems that have both critical and non-critical functions, the greatest leverage on dependabil- Testing is used for two very different purposes. On the one ity may be at the design level. By designing so that each hand, it is used to find bugs. Structural tests exploit knowl- critical requirement has a small trusted base, the cost of the edge of the structure of the software to identify bugs in analysis required for a dependability case might be dra- known categories. A mutation test, for example, might fo- matically reduced. An implication of this approach is that cus on the possibility that the wrong operator was selected conventional object-oriented design may be a liability, be- for an expression; a regression test is designed to detect the cause it leads to ‘entanglement’, and an approach based on reoccurrence of a particular flaw. For this kind of testing, a separating services may be preferable. successful test is one that fails, and thus identifies a bug. Categories and Subject Descriptors On the other hand, testing can be used to provide evidence D.2.2 [Software Engineering]: Design Tools and Tech- of dependability. In this case, tests focused on particular niques; D.2.4 Software/Program Verification; D.2.10 De- known bug categories are less useful (since a failure might sign.
    [Show full text]
  • Experiences from Representing Software Architecture in a Large Industrial Project Using Model Driven Development
    Experiences from representing software architecture in a large industrial project using model driven development Anders Mattsson1 Björn Lundell2 Brian Lings2 Brian Fitzgerald3 1 Combitech AB, P.O. Box 1017, SE-551 11 JÖNKÖPING, Sweden [email protected] 2 University of Skövde, P.O. Box 408, SE-541 28 SKÖVDE, Sweden {bjorn.lundell, brian.lings}@his.se 3 Lero – the Irish Software Engineering Research Centre University of Limerick, Ireland [email protected] Abstract There exist several approaches to MDD such as OMG’s MDA [5], Domain-Oriented Programming [6], A basic idea of Model Driven Development (MDD) and Software Factories [7] from Microsoft. A basic is to capture all important design information in a set idea of MDD is to capture all important design of formal or semi formal models that are automatically information in a set of formal or semi formal models kept consistent by tools. This paper reports on that are automatically kept consistent by tools to raise industrial experience from use of MDD and shows that the level of abstraction at which the developers work the approach needs improvements regarding the and to eliminate time consuming and error prone architecture since there are no suggested ways to manual work in keeping different design artifacts formalize design rules which are an important part of consistent, or to cite Brent Hailpern and Peri Tarr: the architecture. Instead, one has to rely on time “The primary goal is to raise the level of abstraction consuming and error prone manual interpretations, at which developers operate and, in doing so, reviews and reworkings to keep the system consistent reduce both the amount of developer effort and the with the architecture.
    [Show full text]
  • First Call for Papers
    Call for Papers Research th 29 International Conference on Software Engineering Minneapolis, Minnesota, USA, 20-26 May 2007 ICSE General Chair John Knight, U Virginia, USA ICSE is the premier forum for researchers, practitioners and educators to present and discuss the most recent innovations, trends, results, experiences and concerns in the field of software engineering. Research Program Co-Chairs Wolfgang Emmerich, UCL, UK The theme of ICSE 2007 is Developing Dependable Software, with which we acknowledge the increasingly Gregg Rothermel, U Nebraska-Lincoln, USA crucial role the engineering of software plays in business, healthcare, government and society at-large. The theme also highlights the growing responsibility our profession and its members are expected to assume. As Program Committee such, an important goal of this meeting will be to reach out to other engineering and scientific disciplines that Jo Atlee, U Waterloo, Canada have an impact upon or benefit from software engineering know-how. Judith Bishop, U Pretoria, South Africa We invite high quality submissions of technical papers describing original and unpublished results of Victor Braberman, U Buenos Aires, Argentina theoretical, empirical, conceptual, and experimental software engineering research. Incremental improvements Margaret Burnett, Oregon State U, USA over previously published work should have been evaluated through systematic empirical or experimental SC Cheung, HongKong U S T, HongKong evaluation. Submissions of papers describing groundbreaking approaches to
    [Show full text]
  • Managing Technical Debt in Software Development: Report on the 2
    ACM SIGSOFT Software Engineering Notes Page 33 September 2011 Volume 36 Number 5 Managing Technical Debt in Software tion, while the term was originally coined in reference to coding practices, today the metaphor is applied more broadly across the Development: project life cycle and may include practices of refactoring [5], test- Report on the 2nd International Work- driven development [6], iteration management [4][7][12], software architecture [2][8], and software craftsmanship [10]. shop on Managing Technical Debt, The concept of technical debt can provide a basis on which the held at ICSE 2011 various stakeholders can reason about the best course of action for Ipek Ozkaya,1 Philippe Kruchten,2 Robert L. Nord1, the evolution of a software product. As reflected by the composi- 1 tion of our program committee that includes practitioners, consul- and Nanette Brown 1 tants, and researchers, this area has significant relevance to Software Engineering Institute, Carnegie Mellon practicing software engineers and software engineering. University, USA A first workshop on technical debt was held at the Software En- ozkaya, rn, [email protected] gineering Institute in Pittsburgh on June 2 to 4, 2010. Its outcomes 2 University of British Columbia, Canada were published as a research position paper [1] summarizing the [email protected] open research questions in the area. DOI: 10.1145/2020976.2020979 The goal of the second workshop was to come up with a more http://doi.acm.org/10.1145/2020976.2020979 in-depth understanding of technical debt, its definition(s), charac- teristics, and various forms. One objective related to this goal was Abstract to understand the processes that lead to technical debt and its indi- The technical debt metaphor is gaining significant traction in the cators, such as degrading system quality and inability to maintain software development community as a way to understand and code.
    [Show full text]
  • Projectional Editing of Software Product Lines—The Peopl Approach
    PhD-FSTC-2017-39 The Faculty of Sciences, Technology and Communication DISSERTATION Defense held on 21/07/2017 in Luxembourg to obtain the degree of DOCTEUR DE L’UNIVERSITÉ DU LUXEMBOURG EN INFORMATIQUE by Benjamin BEHRINGER Born on 9 July 1984 in Essen (Germany) PROJECTIONAL EDITING OF SOFTWARE PRODUCT LINES– THE PEOPL APPROACH Dissertation defense committee Dr Steffen Rothkugel, Dissertation Supervisor Associate Professor, Université du Luxembourg Dr Thorsten Berger Assistant Professor, University of Gothenburg and Chalmers University of Technology Dr Denis Zampunieris, Chairman Professor, Université du Luxembourg Dr Ina Schäfer Professor, Technische Universität Braunschweig Dr Martina Lehser, Vice Chairman Professor, Hochschule für Technik und Wirtschaft des Saarlandes (host institution) Benjamin BEHRINGER: Projectional Editing of Software Product Lines— The PEoPL Approach, © July 2017 ABSTRACT The features of a software product line—a portfolio of system variants—can be realized using various variability implementation techniques. Each technique represents a feature’s software artifacts (a.k.a. feature artifacts) differently, typically classified into anno- tative and modular variability representations, each with distinct advantages and disadvantages. Annotative representations, such as C preprocessor annotations, are easy to apply, but clutter source code and hinder program comprehension. Modular representations, such as feature modules, support comprehension, but are difficult to realize. Most importantly, to engineer feature artifacts, developers need to choose one representation and adhere to it for evolving and maintaining the same artifacts. We present the approach PEoPL (Projectional Editing of Product Lines), which combines the advantages of different variability rep- resentations. When engineering a feature artifact, developers can choose the most-suited representation for the given task, switch representations on demand, and even use different representations in parallel.
    [Show full text]
  • Self-Organizing Software Architectures
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Helsingin yliopiston digitaalinen arkisto Department of Computer Science Series of Publications A Report A-2013-13 Self-Organizing Software Architectures Pietu Pohjalainen To be presented, with the permission of the Faculty of Science of the University of Helsinki, for public criticism in Auditorium XV, University Main Building, on 13th December 2013, at noon. University of Helsinki Finland Supervisors Jukka Paakki, University of Helsinki, Finland Juha Taina, University of Helsinki, Finland Pre-examiners G¨orelHedin, Lund University, Sweden Jyrki Nummenmaa, University of Tampere, Finland Opponent Kai Koskimies, Tampere University of Technology, Finland Custos Jukka Paakki, University of Helsinki, Finland Contact information Department of Computer Science P.O. Box 68 (Gustaf H¨allstr¨ominkatu 2b) FI-00014 University of Helsinki Finland Email address: [email protected].fi URL: http://www.cs.helsinki.fi/ Telephone: +358 9 1911, telefax: +358 9 191 51120 Copyright © 2013 Pietu Pohjalainen ISSN 1238-8645 ISBN 978-952-10-9424-8 (paperback) ISBN 978-952-10-9425-5 (PDF) Computing Reviews (1998) Classification: D.2.11, D.1.2, D1.5, D.2.2, D.2.3, D.2.7, D.2.13 Helsinki 2013 Unigrafia Self-Organizing Software Architectures Pietu Pohjalainen Department of Computer Science P.O. Box 68, FI-00014 University of Helsinki, Finland pietu.pohjalainen@iki.fi PhD Thesis, Series of Publications A, Report A-2013-13 Helsinki, December 2013, 114 + 71 pages ISSN 1238-8645 ISBN 978-952-10-9424-8 (paperback) ISBN 978-952-10-9425-5 (PDF) Abstract Looking at engineering productivity is a source for improving the state of software engineering.
    [Show full text]
  • Eindhoven University of Technology MASTER an Agile Approach
    Eindhoven University of Technology MASTER An agile approach supported by a tool environment for the development of software components Zwartjes, G.; van Geffen, J. Award date: 2005 Link to publication Disclaimer This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required minimum study period may vary in duration. General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain TECHNISCHE UNIVERSITEIT EINDHOVEN Department of Mathematics and Computing Science MASTER’S THESIS An Agile Approach Supported by a Tool Environment for the Development of Software Components Gertjan Zwartjes and Joost van Geffen fg.zwartjes, [email protected] Supervisor: Prof. Prof. Dr. B.W. Watson ∗+ [email protected] External advisers: Prof. Dr. D. G. Kourie +, Dr. A. Boake + [email protected], [email protected] ∗ Technische Universiteit Eindhoven, Eindhoven, The Netherlands.
    [Show full text]
  • Design Aspects and GRS-Based AOD the GREAT Transformation Framework
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Electronic Notes in Theoretical Computer Science 82 No. 5 (2003) URL: http://www.elsevier.nl/locate/entcs/volume82.html Design Aspects and GRS-based AOD The GREAT transformation framework Alexander Christoph1 SWT Forschungszentrum Informatik2 (FZI) Karlsruhe, Germany 1. Email: [email protected] 2. URL: http://www.fzi.de Abstract In analogy to Aspect Oriented Programming (AOP), Aspect Oriented Design (AOD) is a means of modelling different concerns in software designs independently from each other and from the design itself. Different approaches to AOD formalize design aspects as new design entities. Un- fortunately, these approaches are difficult to use or become unhandy with existing or large de- signs. This paper presents the rule-based design transformation framework GREAT that can be used to describe aspects in a formal way and generate weaving code from aspect descriptions. 1 Introduction The separation of concerns on the level of source code has been studied in a number of papers [10], [12]. The key issue of aspect oriented programming (AOP, [9]) is to realize different con- cepts separately from the implementation of the program. These concepts are later woven into the program, either prior to or during its execution. AOP aspects are defined as patterns over the program call graph, i.e. the execution view of the software. This facilitates the developer to declare additional behaviour before, during or after a method has been called. In [5] the authors explain that modelling different concerns separately during the design proc- ess can be useful, too.
    [Show full text]
  • Cleanroom Software Development Using Aspect - Oriented Programming
    Cleanroom Software Development using Aspect - Oriented Programming Natacha Govan Universidade Nova de Lisboa – Faculdade de Ciências e Tecnologia [email protected] Abstract CSD software engineering is clamed to yield software The issue of this article is pertaining with, Cleanroom that is correct by mathematically sound design, and Software Development using Aspect–Oriented software that is certified by statistically-valid testing. Programming. Reduced cycle time results from an incremental Cleanroom Software Development (CSD) is an development strategy and the avoidance of rework engineering process to develop software that is high in [Foreman 05]. quality and with a certified level of reliability. It is well-documented that significant differences in cost Aspect-Oriented Programming (AOP), also known as are associated with errors found at different stages of the Aspect-Oriented Software Development (AOSD), is an software life cycle. By detecting errors as early as approach to software development, which tends to possible, CSD reduces the cost of errors during separate concerns, or breaking a program into distinct development and the incidence of failures during features. operation; thus the overall life cycle cost of software The understanding of the meaning and the usage as well developed under CSD can be expected to be far lower as the functionality of the CSD can be very helpful, as it than industry average [Foreman 05]. can enable one to produce a software and in a developing process. Typical characteristics of CSD include: The present paper analyses the relationship that may • Software development based on formal methods exist between the Cleanroom Software Development and • Incremental implementation under statistical the Aspect - Oriented Programming.
    [Show full text]