Author Guidelines for 8

Total Page:16

File Type:pdf, Size:1020Kb

Author Guidelines for 8 RC23344 (W0409-136) September 21, 2004 Computer Science IBM Research Report Concern Modeling in the Concern Manipulation Environment William Harrison, Harold Ossher, Stanley Sutton Jr., Peri Tarr IBM Research Division Thomas J. Watson Research Center P.O. Box 704 Yorktown Heights, NY 10598 Research Division Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. I thas been issued as a Research Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g ,. payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P. O. Box 218, Yorktown Heights, NY 10598 USA (email: [email protected]). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home . Concern Modeling in the Concern Manipulation Environment William Harrison, Harold Ossher, Stanley Sutton Jr., Peri Tarr IBM Thomas J. Watson Research Center, Hawthorne, NY {harrisn, ossher, suttons, tarr}@us.ibm.com Abstract priori imposition of particular concerns or types of concern, the failure to treat concerns as first-class enti- The Concern Manipulation Environment (CME) is ties across the software life cycle, and the imposition an AOSD environment in which software is organized of rigid decompositions on software artifacts. At- and manipulated in terms of concerns. ConMan sup- tempts to address these problems have given rise to ports the identification, definition, encapsulation, ex- aspect-oriented software development (AOSD) [13], in traction and composition of concerns in the CME. which software is fundamentally represented, organ- ConMan models software in terms of concerns, rela- ized, and manipulated in terms of concerns. tionships, constraints, units, artifacts, and associated The Concern Manipulation Environment (CME) information. The concern model is multidimensional [12] is an AOSD environment based on the premise and concerns can be defined extensionally and/or in- that concerns should be treated as first-class entities in tensionally. ConMan is neutral with respect to artifact all stages of the software life cycle. The CME ad- types and formalisms, and it can be used with both dresses two main groups of users. For software devel- aspect-oriented and non-aspect oriented software and opers using AOSD, the CME offers tools for creating, methods. ConMan is intended to serve both as a tool manipulating, and evolving aspect-oriented software for directly modeling concerns and as a platform for across the lifecycle. For AOSD tool providers and developing alternative concern-modeling approaches. researchers, the CME offers a flexible, open set of components and frameworks on which to build and integrate aspect-oriented technologies. A key goal of 1. Introduction the CME is to promote incremental adoption of AOSD. The CME allows developers to identify, Concerns are pervasive in software development. model, and analyze concerns in existing software, re- They originate in the interests of the stakeholders of a gardless of whether it was developed using AOSD. software system, including customers, developers, us- Any software environment that organizes and op- ers. They arise throughout the software life cycle, erates on software according to concerns requires sup- from ideas for features or functions that inspire new port for concern modeling. This paper describes Con- development, through to properties such as maintain- Man, the Concern Manager component of the CME. ability and adaptability that affect the utility and value Section 2 introduces the topic of concern modeling and of a product long after initial development. We recog- gives some scenarios of concern modeling in software nize many categories of concern, including concerns development. Section 3 states our requirements for a relating to the physical and logical organization of sys- concern-modeling facility. Section 4 then presents the tems; application-specific concerns such as functions, ConMan schema and addresses issues of implementa- features; developer-oriented properties such as under- tion. Section 5 discusses ConMan in the context of the standability and maintainability; and user-oriented CME and Eclipse [12], and Section 6 describes our properties, such as performance and ease of use. Con- experience with it. The final sections address related cerns of many different kinds are important across the work and summarize our results. full range of software engineering activities. The representation, separation, and integration of 2. Concern Modeling concerns are important elements in programming lan- guages, modeling formalisms, and software engineer- Concern modeling is simply the representation of ing methods. Nevertheless, many problems with soft- concerns themselves as first-class entities. The fol- ware can still be traced to the limitations of current lowing scenarios suggest how concern modeling might approaches to managing concerns. These include the a be used in a variety of development scenarios: 1 In a COTS-based process1, a concern model of intended structure of material rather than simply re- the system under development can be constructed to flecting existing structure. provide a framework for evaluating the compatibility As part of the CME, the tool itself faces several and contribution of COTS products that are candidates noteworthy requirements: it should be able to deal for adoption. The suitability of candidate products can with artifacts across the whole lifecycle, with software be evaluated based on the range and compatibility of creation as well as with result artifacts, and with mate- concerns addressed, the need for tailoring, and the rial that is often incomplete and incorrect as it is being number of concerns not addressed. developed. It also requires a modern interactive inter- In new development, a concern model can be face to developers that have to work with the model elaborated to represent the initial concerns that moti- vate or constrain the project. As development pro- 3.1. Schema Requirements gresses the concern model can be elaborated. Con- cerns can be related to the work products in which they The concern-modeling schema must be “concern are addressed, and relationships between concerns can neutral”, that is, able to capture arbitrary concerns. be drawn to capture semantic and other dependencies. This is necessary to represent concerns for all kinds of The concern model can be analyzed for consistency stakeholders and all sorts of development tasks. To and coherence. As the life cycle is iterated, changes at represent arbitrary concerns it is necessary to represent various stages can be validated against the concern both abstract and concrete concerns. Abstract con- model, and the model can help to propagate updates cerns include conceptual entities, such as features in through both the concern space and the artifact space. the abstract, properties, topics of interest, and so on. In the retroactive development of a product line Concrete concerns represent physical entities, notably based on an existing product, concern modeling can be the work products of software development. used to characterize the potential feature space and to The concern modeling schema must support multi- position different product variants in that space. The ple, concurrent, overlapping classifications or dimen- existing product can be decomposed into units corre- sions of concerns. Concern spaces are certainly mul- sponding to specific concerns. Concerns representing tidimensional [30], that is, concerns are typically or- additional features can be identified and related to the ganized according to multiple classifications. For ex- existing model, and additional work products can be ample, a particular class in an object-oriented applica- developed to support implementation of the additional tion might be classified according to stakeholder rele- concerns. Variants within the family can be specified vance, development stage, features, complexity, size, by selecting concerns of interest from within the fam- and more, each of which may be taken as a dimension ily concern space. Compositional technologies can of concern. We must be able to support multiple levels then be used to compose variants using implementa- of concern, representing arbitrary levels of abstraction tions associated to the selected concerns. or detail. These may include multiple levels of classi- We could elaborate many additional scenarios, for fication, structure, aggregation, and so on. For exam- example, relating to software understanding, exten- ple, functionality may be organized by feature by spe- sion, deployment, and multi-team development. cific functions, and by functional variants (within func- Concern modeling thus has a role in many kinds of tions). It should be possible to form arbitrary groups of development tasks and processes. concerns or other model elements, on demand. This supports the flexible formulation of concerns and also 3. Concern-Modeling Requirements allows for “working sets” of model elements that may needed during concern-modeling activities While many of the requirements
Recommended publications
  • Composition of Software Architectures Christos Kloukinas
    Composition of Software Architectures Christos Kloukinas To cite this version: Christos Kloukinas. Composition of Software Architectures. Computer Science [cs]. Université Rennes 1, 2002. English. tel-00469412 HAL Id: tel-00469412 https://tel.archives-ouvertes.fr/tel-00469412 Submitted on 1 Apr 2010 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Composition of Software Architectures - Ph.D. Thesis - - Presented in front of the University of Rennes I, France - - English Version - Christos Kloukinas Jury Members : Jean-Pierre Banâtre Jacky Estublier Cliff Jones Valérie Issarny Nicole Lévy Joseph Sifakis February 12, 2002 Résumé Les systèmes informatiques deviennent de plus en plus complexes et doivent offrir un nombre croissant de propriétés non fonctionnelles, comme la fiabi- lité, la disponibilité, la sécurité, etc.. De telles propriétés sont habituellement fournies au moyen d’un intergiciel qui se situe entre le matériel (et le sys- tème d’exploitation) et le niveau applicatif, masquant ainsi les spécificités du système sous-jacent et permettant à des applications d’être utilisées avec dif- férentes infrastructures. Cependant, à mesure que les exigences de propriétés non fonctionnelles augmentent, les architectes système se trouvent confron- tés au cas où aucun intergiciel disponible ne fournit toutes les propriétés non fonctionnelles visées.
    [Show full text]
  • Lecture Notes in Computer Science 1543 Edited by G
    Lecture Notes in Computer Science 1543 Edited by G. Goos, J. Hartmanis and J. van Leeuwen 3 Berlin Heidelberg New York Barcelona Hong Kong London Milan Paris Singapore Tokyo Serge Demeyer Jan Bosch (Eds.) Object-Oriented Technology ECOOP ’98 Workshop Reader ECOOP ’98 Workshops, Demos, and Posters Brussels, Belgium, July 20-24, 1998 Proceedings 13 Series Editors Gerhard Goos, Karlsruhe University, Germany Juris Hartmanis, Cornell University, NY, USA Jan van Leeuwen, Utrecht University, The Netherlands Volume Editors Serge Demeyer University of Berne Neubruckstr. 10, CH-3012 Berne, Switzerland E-mail: [email protected] Jan Bosch University of Karlskrona/Ronneby, Softcenter S-372 25 Ronneby, Sweden E-mail: [email protected] Cataloging-in-Publication data applied for Die Deutsche Bibliothek - CIP-Einheitsaufnahme Object-oriented technology : workshop reader, workshops, demos, and posters / ECOOP ’98, Brussels, Belgium, July 20 - 24, 1998 / Serge Demeyer ; Jan Bosch (ed.). - Berlin ; Heidelberg ; New York ; Barcelona ; Hong Kong ; London ; Milan ; Paris ; Singapore ; Tokyo : Springer, 1998 (Lecture notes in computer science ; Vol. 1543) ISBN 3-540-65460-7 CR Subject Classification (1998): D.1-3, H.2, E.3, C.2, K.4.3, K.6 ISSN 0302-9743 ISBN 3-540-65460-7 Springer-Verlag Berlin Heidelberg New York This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting, reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer-Verlag.
    [Show full text]
  • Workshop on Multi-Dimensional Separation of Concerns in Software Engineering
    ACM SIGSOFT Software Engineering Notes vol 26 no 1 January 2001 Page 78 Workshop on Multi-Dimensional Separation of Concerns in Software Engineering Peri Tarr, William Harrison, Harold Ossher (IBM T. I. Watson Research Center, USA) Anthony Finkelstein (University College London, UK) Bashar Nuseibeh (Imperial College, UK) Dewayne Perry (University of Texas at Austin, USA) Workshop Web site: http://www.research.ibm.com/hyperspace/workshops/icse2000 ABSTRACT cem may promote some goals and activities, while impeding oth- Separation of concerns has been central to software engineering ers; thus, any criterion for decomposition will be appropriate fm for decades, yet its many advantages are still not fully realized. A some contexts, but not for all. Further, multiple kinds of concerns key reason is that traditional modularization mechanisms do not may be relevant simultaneously, and they may overlap and inter- allow simultaneous decomposition according to multiple kinds of act, as features and classes do. Thus, different concerns and (overlapping and interacting) concerns. This workshop was in- modularizations are needed for different purposes: sometimes by tended to bring together researchers working on more advanced class, sometimes by feature, sometimes by viewpoint, or aspect, moclularization mechanisms, and practitioners who have experi- role, variant, or other criterion. enced the need for them, as a step towards a common understand- These considerations imply that developers must be able to iden- ing of the issues, problems and research challenges. tify, encapsulate, modularize, and wanipulate multiple dimensions Keywords of concern simultaneously, and to introduce new concerns and Separation of concerns, decomposition, composition dimensions at any point during the software lifecycle, without suf- fering the effects of invasive modification and rearchitecture.
    [Show full text]
  • Separation of Concerns for Dependable Software Design
    Separation of Concerns for Dependable Software Design Daniel Jackson and Eunsuk Kang MIT Computer Science and Artificial Intelligence Laboratory 32 Vassar Street, Cambridge, MA 02139 [email protected] ABSTRACT tiously includes collection of detailed statistics and explicit mechanisms for adjusting the process accordingly. For ‘mixed-criticality’ systems that have both critical and non-critical functions, the greatest leverage on dependabil- Testing is used for two very different purposes. On the one ity may be at the design level. By designing so that each hand, it is used to find bugs. Structural tests exploit knowl- critical requirement has a small trusted base, the cost of the edge of the structure of the software to identify bugs in analysis required for a dependability case might be dra- known categories. A mutation test, for example, might fo- matically reduced. An implication of this approach is that cus on the possibility that the wrong operator was selected conventional object-oriented design may be a liability, be- for an expression; a regression test is designed to detect the cause it leads to ‘entanglement’, and an approach based on reoccurrence of a particular flaw. For this kind of testing, a separating services may be preferable. successful test is one that fails, and thus identifies a bug. Categories and Subject Descriptors On the other hand, testing can be used to provide evidence D.2.2 [Software Engineering]: Design Tools and Tech- of dependability. In this case, tests focused on particular niques; D.2.4 Software/Program Verification; D.2.10 De- known bug categories are less useful (since a failure might sign.
    [Show full text]
  • Experiences from Representing Software Architecture in a Large Industrial Project Using Model Driven Development
    Experiences from representing software architecture in a large industrial project using model driven development Anders Mattsson1 Björn Lundell2 Brian Lings2 Brian Fitzgerald3 1 Combitech AB, P.O. Box 1017, SE-551 11 JÖNKÖPING, Sweden [email protected] 2 University of Skövde, P.O. Box 408, SE-541 28 SKÖVDE, Sweden {bjorn.lundell, brian.lings}@his.se 3 Lero – the Irish Software Engineering Research Centre University of Limerick, Ireland [email protected] Abstract There exist several approaches to MDD such as OMG’s MDA [5], Domain-Oriented Programming [6], A basic idea of Model Driven Development (MDD) and Software Factories [7] from Microsoft. A basic is to capture all important design information in a set idea of MDD is to capture all important design of formal or semi formal models that are automatically information in a set of formal or semi formal models kept consistent by tools. This paper reports on that are automatically kept consistent by tools to raise industrial experience from use of MDD and shows that the level of abstraction at which the developers work the approach needs improvements regarding the and to eliminate time consuming and error prone architecture since there are no suggested ways to manual work in keeping different design artifacts formalize design rules which are an important part of consistent, or to cite Brent Hailpern and Peri Tarr: the architecture. Instead, one has to rely on time “The primary goal is to raise the level of abstraction consuming and error prone manual interpretations, at which developers operate and, in doing so, reviews and reworkings to keep the system consistent reduce both the amount of developer effort and the with the architecture.
    [Show full text]
  • First Call for Papers
    Call for Papers Research th 29 International Conference on Software Engineering Minneapolis, Minnesota, USA, 20-26 May 2007 ICSE General Chair John Knight, U Virginia, USA ICSE is the premier forum for researchers, practitioners and educators to present and discuss the most recent innovations, trends, results, experiences and concerns in the field of software engineering. Research Program Co-Chairs Wolfgang Emmerich, UCL, UK The theme of ICSE 2007 is Developing Dependable Software, with which we acknowledge the increasingly Gregg Rothermel, U Nebraska-Lincoln, USA crucial role the engineering of software plays in business, healthcare, government and society at-large. The theme also highlights the growing responsibility our profession and its members are expected to assume. As Program Committee such, an important goal of this meeting will be to reach out to other engineering and scientific disciplines that Jo Atlee, U Waterloo, Canada have an impact upon or benefit from software engineering know-how. Judith Bishop, U Pretoria, South Africa We invite high quality submissions of technical papers describing original and unpublished results of Victor Braberman, U Buenos Aires, Argentina theoretical, empirical, conceptual, and experimental software engineering research. Incremental improvements Margaret Burnett, Oregon State U, USA over previously published work should have been evaluated through systematic empirical or experimental SC Cheung, HongKong U S T, HongKong evaluation. Submissions of papers describing groundbreaking approaches to
    [Show full text]
  • Managing Technical Debt in Software Development: Report on the 2
    ACM SIGSOFT Software Engineering Notes Page 33 September 2011 Volume 36 Number 5 Managing Technical Debt in Software tion, while the term was originally coined in reference to coding practices, today the metaphor is applied more broadly across the Development: project life cycle and may include practices of refactoring [5], test- Report on the 2nd International Work- driven development [6], iteration management [4][7][12], software architecture [2][8], and software craftsmanship [10]. shop on Managing Technical Debt, The concept of technical debt can provide a basis on which the held at ICSE 2011 various stakeholders can reason about the best course of action for Ipek Ozkaya,1 Philippe Kruchten,2 Robert L. Nord1, the evolution of a software product. As reflected by the composi- 1 tion of our program committee that includes practitioners, consul- and Nanette Brown 1 tants, and researchers, this area has significant relevance to Software Engineering Institute, Carnegie Mellon practicing software engineers and software engineering. University, USA A first workshop on technical debt was held at the Software En- ozkaya, rn, [email protected] gineering Institute in Pittsburgh on June 2 to 4, 2010. Its outcomes 2 University of British Columbia, Canada were published as a research position paper [1] summarizing the [email protected] open research questions in the area. DOI: 10.1145/2020976.2020979 The goal of the second workshop was to come up with a more http://doi.acm.org/10.1145/2020976.2020979 in-depth understanding of technical debt, its definition(s), charac- teristics, and various forms. One objective related to this goal was Abstract to understand the processes that lead to technical debt and its indi- The technical debt metaphor is gaining significant traction in the cators, such as degrading system quality and inability to maintain software development community as a way to understand and code.
    [Show full text]
  • Projectional Editing of Software Product Lines—The Peopl Approach
    PhD-FSTC-2017-39 The Faculty of Sciences, Technology and Communication DISSERTATION Defense held on 21/07/2017 in Luxembourg to obtain the degree of DOCTEUR DE L’UNIVERSITÉ DU LUXEMBOURG EN INFORMATIQUE by Benjamin BEHRINGER Born on 9 July 1984 in Essen (Germany) PROJECTIONAL EDITING OF SOFTWARE PRODUCT LINES– THE PEOPL APPROACH Dissertation defense committee Dr Steffen Rothkugel, Dissertation Supervisor Associate Professor, Université du Luxembourg Dr Thorsten Berger Assistant Professor, University of Gothenburg and Chalmers University of Technology Dr Denis Zampunieris, Chairman Professor, Université du Luxembourg Dr Ina Schäfer Professor, Technische Universität Braunschweig Dr Martina Lehser, Vice Chairman Professor, Hochschule für Technik und Wirtschaft des Saarlandes (host institution) Benjamin BEHRINGER: Projectional Editing of Software Product Lines— The PEoPL Approach, © July 2017 ABSTRACT The features of a software product line—a portfolio of system variants—can be realized using various variability implementation techniques. Each technique represents a feature’s software artifacts (a.k.a. feature artifacts) differently, typically classified into anno- tative and modular variability representations, each with distinct advantages and disadvantages. Annotative representations, such as C preprocessor annotations, are easy to apply, but clutter source code and hinder program comprehension. Modular representations, such as feature modules, support comprehension, but are difficult to realize. Most importantly, to engineer feature artifacts, developers need to choose one representation and adhere to it for evolving and maintaining the same artifacts. We present the approach PEoPL (Projectional Editing of Product Lines), which combines the advantages of different variability rep- resentations. When engineering a feature artifact, developers can choose the most-suited representation for the given task, switch representations on demand, and even use different representations in parallel.
    [Show full text]
  • Self-Organizing Software Architectures
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Helsingin yliopiston digitaalinen arkisto Department of Computer Science Series of Publications A Report A-2013-13 Self-Organizing Software Architectures Pietu Pohjalainen To be presented, with the permission of the Faculty of Science of the University of Helsinki, for public criticism in Auditorium XV, University Main Building, on 13th December 2013, at noon. University of Helsinki Finland Supervisors Jukka Paakki, University of Helsinki, Finland Juha Taina, University of Helsinki, Finland Pre-examiners G¨orelHedin, Lund University, Sweden Jyrki Nummenmaa, University of Tampere, Finland Opponent Kai Koskimies, Tampere University of Technology, Finland Custos Jukka Paakki, University of Helsinki, Finland Contact information Department of Computer Science P.O. Box 68 (Gustaf H¨allstr¨ominkatu 2b) FI-00014 University of Helsinki Finland Email address: [email protected].fi URL: http://www.cs.helsinki.fi/ Telephone: +358 9 1911, telefax: +358 9 191 51120 Copyright © 2013 Pietu Pohjalainen ISSN 1238-8645 ISBN 978-952-10-9424-8 (paperback) ISBN 978-952-10-9425-5 (PDF) Computing Reviews (1998) Classification: D.2.11, D.1.2, D1.5, D.2.2, D.2.3, D.2.7, D.2.13 Helsinki 2013 Unigrafia Self-Organizing Software Architectures Pietu Pohjalainen Department of Computer Science P.O. Box 68, FI-00014 University of Helsinki, Finland pietu.pohjalainen@iki.fi PhD Thesis, Series of Publications A, Report A-2013-13 Helsinki, December 2013, 114 + 71 pages ISSN 1238-8645 ISBN 978-952-10-9424-8 (paperback) ISBN 978-952-10-9425-5 (PDF) Abstract Looking at engineering productivity is a source for improving the state of software engineering.
    [Show full text]
  • Eindhoven University of Technology MASTER an Agile Approach
    Eindhoven University of Technology MASTER An agile approach supported by a tool environment for the development of software components Zwartjes, G.; van Geffen, J. Award date: 2005 Link to publication Disclaimer This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required minimum study period may vary in duration. General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain TECHNISCHE UNIVERSITEIT EINDHOVEN Department of Mathematics and Computing Science MASTER’S THESIS An Agile Approach Supported by a Tool Environment for the Development of Software Components Gertjan Zwartjes and Joost van Geffen fg.zwartjes, [email protected] Supervisor: Prof. Prof. Dr. B.W. Watson ∗+ [email protected] External advisers: Prof. Dr. D. G. Kourie +, Dr. A. Boake + [email protected], [email protected] ∗ Technische Universiteit Eindhoven, Eindhoven, The Netherlands.
    [Show full text]
  • Design Aspects and GRS-Based AOD the GREAT Transformation Framework
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Electronic Notes in Theoretical Computer Science 82 No. 5 (2003) URL: http://www.elsevier.nl/locate/entcs/volume82.html Design Aspects and GRS-based AOD The GREAT transformation framework Alexander Christoph1 SWT Forschungszentrum Informatik2 (FZI) Karlsruhe, Germany 1. Email: [email protected] 2. URL: http://www.fzi.de Abstract In analogy to Aspect Oriented Programming (AOP), Aspect Oriented Design (AOD) is a means of modelling different concerns in software designs independently from each other and from the design itself. Different approaches to AOD formalize design aspects as new design entities. Un- fortunately, these approaches are difficult to use or become unhandy with existing or large de- signs. This paper presents the rule-based design transformation framework GREAT that can be used to describe aspects in a formal way and generate weaving code from aspect descriptions. 1 Introduction The separation of concerns on the level of source code has been studied in a number of papers [10], [12]. The key issue of aspect oriented programming (AOP, [9]) is to realize different con- cepts separately from the implementation of the program. These concepts are later woven into the program, either prior to or during its execution. AOP aspects are defined as patterns over the program call graph, i.e. the execution view of the software. This facilitates the developer to declare additional behaviour before, during or after a method has been called. In [5] the authors explain that modelling different concerns separately during the design proc- ess can be useful, too.
    [Show full text]
  • Cleanroom Software Development Using Aspect - Oriented Programming
    Cleanroom Software Development using Aspect - Oriented Programming Natacha Govan Universidade Nova de Lisboa – Faculdade de Ciências e Tecnologia [email protected] Abstract CSD software engineering is clamed to yield software The issue of this article is pertaining with, Cleanroom that is correct by mathematically sound design, and Software Development using Aspect–Oriented software that is certified by statistically-valid testing. Programming. Reduced cycle time results from an incremental Cleanroom Software Development (CSD) is an development strategy and the avoidance of rework engineering process to develop software that is high in [Foreman 05]. quality and with a certified level of reliability. It is well-documented that significant differences in cost Aspect-Oriented Programming (AOP), also known as are associated with errors found at different stages of the Aspect-Oriented Software Development (AOSD), is an software life cycle. By detecting errors as early as approach to software development, which tends to possible, CSD reduces the cost of errors during separate concerns, or breaking a program into distinct development and the incidence of failures during features. operation; thus the overall life cycle cost of software The understanding of the meaning and the usage as well developed under CSD can be expected to be far lower as the functionality of the CSD can be very helpful, as it than industry average [Foreman 05]. can enable one to produce a software and in a developing process. Typical characteristics of CSD include: The present paper analyses the relationship that may • Software development based on formal methods exist between the Cleanroom Software Development and • Incremental implementation under statistical the Aspect - Oriented Programming.
    [Show full text]