Phaeoacremonium Species Associated with Olive Wilt and Decline in Southern Italy

Total Page:16

File Type:pdf, Size:1020Kb

Phaeoacremonium Species Associated with Olive Wilt and Decline in Southern Italy Eur J Plant Pathol (2015) 141:717–729 DOI 10.1007/s10658-014-0573-8 Phaeoacremonium species associated with olive wilt and decline in southern Italy Antonia Carlucci & F. Lops & F. Cibelli & M. L. Raimondo Accepted: 7 December 2014 /Published online: 20 December 2014 # The Author(s) 2014. This article is published with open access at Springerlink.com Abstract Six Phaeoacremonium species (spp.) were iso- Keywords Phaeoacremonium spp . Actin . β-tubulin . lated from symptomatic wood of olive trees (Olea Decline . Olive europea) in Apulia (southern Italy) that showed crown wilt and twig and branch dieback. These Phaeoacremonium spp. were identified according to their morphological char- Introduction acteristics and by analyses of partial sequences of the actin and β-tubulin genes. Combining these cultural, morpho- In historical times, the olive tree (Olea europea L.) logical and molecular data, three Phaeoacremonium spp. spread from its native Asia Minor, from the Paleolithic were isolated that are already known to be responsible for period (Salavert 2008) through the early Neolithic peri- severe decline of olive in Apulia, Phaeoacremonium od (Galili et al. 1997). Olive cultivation is considered to aleophilum, Phaeoacremonium alvesii and have then begun during the Chalcolithic period (Neef Phaeoacremonium parasiticum, together with three other 1990; Zohary and Spiegel-Roy 1975). Studies conduct- Phaeoacremonium spp. that are associated for the first ed by Van Zeist (1980) suggested that olive cultivation time with wilt, decline and dieback of olive orchards in gradually moved from the east to the west until it Italy and worldwide: Phaeoacremonium italicum, reached the Mediterranean area, and was taken to Phaeoacremonium sicilianum and Phaeoacremonium Greece around 2500 BC by the Phoenicians. scolyti. To understand and to confirm their involvement Subsequently, during the Roman Empire, the Romans in wilt and decline of olive trees, pathogenicity assays promoted the diffusion of the olive tree into some re- were performed on shoots of young olive plants. The data gions of southern Italy, including Apulia (Terral et al. indicate that all six of these Phaeoacremonium spp. can 2004). After the discovery of the Americas, the spread cause discolouration, necrotic wood, and death of shoots, of olive cultivation continued into Peru, Argentina, although different levels of virulence were observed, with Chile and Uruguay, and northwards to the coastal re- Pm. italicum, Pm. aleophilum and Pm. sicilianum pro- gions of Mexico and to the United States, where it found ducing greater necrotic lesions than the other an ideal environment in southern California. As the Phaeoacremonium spp. investigated here. olive fruit and oil have been always more appreciated and as their consumption has increased, olive cultivation became more widespread in South Africa and along the : : : coast of Australia, where it was introduced by Italian A. Carlucci (*) F. Lops F. Cibelli M. L. Raimondo and Greek immigrations, and also in New Zealand and Dipartimento di Scienze Agrarie, degli Alimenti e China. Hence, the olive tree is of major economic im- dell’Ambiente, Università degli Studi di Foggia, Via Napoli, 25, 71122 Foggia, Italy portance in many countries. The European Union is the e-mail: [email protected] leading world producer of olive oil and drupes, while 718 Eur J Plant Pathol (2015) 141:717–729 also being the leading consumer of about 70 % of the by Rhouma et al. (2010) in Tunisia. Botryosphaeriaceae world produce (Food and Agriculture Organisation of spp. have been reported to be associated with olive branch the United Nations 2013). dieback, canker and decline, although they are primarily Agosteo (2011) investigated olive diseases through a involved in olive fruit rot (Chattaoui et al. 2011;Moral historical account, and reported that in De Res Rustica, et al. 2008; Phillips et al. 2005). The main Columella (4–70 D.C.) described the olive as a frugal, Botryosphaeriaceae spp. from olive wood are: resistant and imperishable plant. This account further Botryosphaeria dothidea, Diplodia mutila, D. seriata, indicated that when left to itself, as often happened over Dothiorella iberica, Neofusicoccum mediteraneum,and the centuries, the olive tree was able to survive, and that Lasiodiplodia theobromae in California (Moral et al. with the use of charcoal burners at the base of the trunk, 2010; Úrbez-Torres et al. 2013); Botryosphaeria ribis in it could returned to its spontaneous state, as with the Spain (Romero et al. 2005); D. seriata in Croatia wild olive in the Mediterranean woodland, where it (Kaliterna et al. 2012); and D. mutila, L. theobromae and emulated oleaster and was found together with oak, Neofusicoccum parvum in Italy (Carlucci et al. 2013b). lentisk, broom and rosemary. During this period, agri- Another fungus, Pleurostomophora richardsiae,was cultural problems occurred with olive cultivation, such also recently associated with brown wood streaking and as wilting, loss of flowers, and lack of fruit production, canker of olive trees in Italy for the first time (Carlucci et al. although these were initially not investigated. In Italy in 2013b). Recently, a severe decline of olives occurred in 1936 (Agosteo 2011), three reasons were given regard- Italy characterized by a rapid dieback of shoots, twigs and ing the agricultural problems of olive plants: the cultural branches, and dark yellowing and browning of the leaf tips lack of care of the olive orchards; their spontaneous that was followed by death of the olive plant. In southern origin; and the long age and size of the trees. The age Italy, Nigro et al. (2013) isolated the following from symp- and the perpetual lack of care had made the olive tree a tomatic tissues: Phaeomoniella chlamydospora, plant in a constant state of disease. Phaeoacremonium aleophilum, Phaeoacremonium Investigations into plant pathology to identify the alvesii, Phaeoacremonium parasiticum and causal agents of olive diseases began to take their first Phaeoacremonium rubrigenum. The last three of these steps as an independent science only in the second half fungi were reported for the first time from olives in Italy. of the 1800’s, when it was necessary to find a remedy to The aim of the present study was to identify and protect the agricultural yields. Although olive trees were characterise the fungi associated with vascular considered to be very resistant to environment injuries, discolouration observed in xylem tissues of declining including biotic agents, several biotic entities were able olive plants in Apulia, and to use pathogenicity tests to to damage the healthy olive tree. The main fungal dis- determine if they are responsible for olive decline. eases that affected olives included: leaf diseases such as peacock spot, caused by Spilocaea oleaginaea;infec- tious leaf burn, caused by Martamyces panizzei (De Materials and methods Not.) Minter; cercospora leaf spot, caused by Pseudocercospora cladosporioides (Sacc.) (Braun Fungal isolations 1993); and vascular diseases such as tracheomycosis, caused by Verticillium spp.; and anthracnose, caused by During a field survey carried out from March 2012 to Colletotrichum species (spp.) and Botryosphaeriaceae December 2013 across several olive orchards of the spp. (Talhinhas et al. 2005; Moral et al. 2008). Foggia province in southern Italy, generalised wilt and More recently, decline, dieback and canker diseases decline symptoms were seen, and a large number of on olives have acquired great importance worldwide. In samples from the base of the trunk, and the trunks and the literature, different fungal species have been branches were collected. As the olive orchards visited associated with olive decline and dieback. Rumbos were of different ages (from 24 to over 100 years old), (1988, 1993)reportedonEutypa lata and Cytospora the samples were distinguished on the basis of age of the oleina in Greece, and Tosi and Natalini (2009)andTosi trees, while no distinction was made regarding the cul- and Zazzerini (1994)reportedonPhoma incompta and tivar. The samples were collected from a total of 62 E. lata in Italy. Phoma incompta was also associated symptomatic olive plants (33 plants over 50 years old, with olive dieback by Ivic et al. (2010)inCroatia,and and 29 plants under 50 years old), which showed Eur J Plant Pathol (2015) 141:717–729 719 external and internal symptoms on the olive trunks, necrotic areas with brown discolouration (in cross sec- branches and stems: first, wilting and dieback of entire tion) (Fig. 1). and/or part of the crown, with depressed browning areas The samples were transported into the laboratory for and brown streaking under the bark of the trunk and analysis and were subjected to surface sterilisation ac- branches (in longitudinal section); and second, extended cording to Fisher et al. (1992). Small pieces (2–5mm) Fig. 1 Disease symptoms observed on olive trees. a Generalised decline and die-back occurred on the tree. b Wiltandbrowningofleaves. c–d Discolouration of wood evolving in cankers. e–f Wilting of shoots after artificial inoculation caused from Pm. sicilianum 720 Eur J Plant Pathol (2015) 141:717–729 from discoloured wood of xylematic areas of the base of Amplification and sequencing the trunk, the trunk and the branches were placed on 2 % malt extract (Oxoid Ltd., UK) with 2 % agar (Difco, A fragment of 600 bp of the β-tubulin (TUB)genewas USA), supplemented with 300 mg/l streptomycin sul- amplified using the primers T1 (O’Donnell and Cigelnik phate (Sigma-Aldrich, USA) (MEAS), and incubated at 1997) and Bt2b (Glass and Donaldson 1995), and a 23 °C (±2 °C) in the dark. fragment of 300 bp of the actin (ACT) gene was ampli- All of the fungal colonies isolated were grown until fied using the primers ACT-512F and ACT-783R they sporulated, and then a conidial suspension was (Carbone and Kohn 1999) for 40 isolates as representa- spread onto agar plates. After 24 to 36 h of incubation, tive of the MSP-PCR profiles. The PCR reactions were single germinating conidia were transferred to fresh performed according to Raimondo et al.
Recommended publications
  • A Survey of Trunk Disease Pathogens Within Citrus Trees in Iran
    plants Article A Survey of Trunk Disease Pathogens within Citrus Trees in Iran Nahid Espargham 1, Hamid Mohammadi 1,* and David Gramaje 2,* 1 Department of Plant Protection, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman 7616914111, Iran; [email protected] 2 Instituto de Ciencias de la Vid y del Vino (ICVV), Consejo Superior de Investigaciones Científicas, Universidad de la Rioja, Gobierno de La Rioja, 26007 Logroño, Spain * Correspondence: [email protected] (H.M.); [email protected] (D.G.); Tel.: +98-34-3132-2682 (H.M.); +34-94-1899-4980 (D.G.) Received: 4 May 2020; Accepted: 12 June 2020; Published: 16 June 2020 Abstract: Citrus trees with cankers and dieback symptoms were observed in Bushehr (Bushehr province, Iran). Isolations were made from diseased cankers and branches. Recovered fungal isolates were identified using cultural and morphological characteristics, as well as comparisons of DNA sequence data of the nuclear ribosomal DNA-internal transcribed spacer region, translation elongation factor 1α, β-tubulin, and actin gene regions. Dothiorella viticola, Lasiodiplodia theobromae, Neoscytalidium hyalinum, Phaeoacremonium (P.) parasiticum, P. italicum, P. iranianum, P. rubrigenum, P. minimum, P. croatiense, P. fraxinopensylvanicum, Phaeoacremonium sp., Cadophora luteo-olivacea, Biscogniauxia (B.) mediterranea, Colletotrichum gloeosporioides, C. boninense, Peyronellaea (Pa.) pinodella, Stilbocrea (S.) walteri, and several isolates of Phoma, Pestalotiopsis, and Fusarium species were obtained from diseased trees. The pathogenicity tests were conducted by artificial inoculation of excised shoots of healthy acid lime trees (Citrus aurantifolia) under controlled conditions. Lasiodiplodia theobromae was the most virulent and caused the longest lesions within 40 days of inoculation. According to literature reviews, this is the first report of L.
    [Show full text]
  • Phytotoxins Produced by Fungi Associated with Grapevine Trunk Diseases
    Toxins 2011, 3, 1569-1605; doi:10.3390/toxins3121569 OPEN ACCESS toxins ISSN 2072-6651 www.mdpi.com/journal/toxins Review Phytotoxins Produced by Fungi Associated with Grapevine Trunk Diseases Anna Andolfi 1,*, Laura Mugnai 2,*, Jordi Luque 3, Giuseppe Surico 2, Alessio Cimmino 1 and Antonio Evidente 1 1 Dipartimento di Scienze del Suolo, della Pianta, dell’Ambiente e delle Produzioni Animali, Università di Napoli Federico II, Via Università 100, Portici I-80055, Italy; E-Mails: [email protected] (A.C.); [email protected] (A.E.) 2 Dipartimento di Biotecnologie Agrarie, Sezione Protezione delle piante, Università degli Studi di Firenze, P.le delle Cascine 28, Firenze I-50144, Italy; E-Mail: [email protected] 3 Departament de Patologia Vegetal, IRTA, Ctra. de Cabrils km 2, Cabrils E-08348, Spain; E-Mail: [email protected] * Authors to whom correspondence should be addressed; E-Mails: [email protected] (A.A.); [email protected] (L.M.); Tel.: +39-081-2539-179 (A.A.); +39-055-3288-274 (L.M.); Fax: +39-081-2539-186 (A.A.); +39-055-3288-273 (L.M.). Received: 8 November 2011; in revised form: 29 November 2011 / Accepted: 30 November 2011 / Published: 20 December 2011 Abstract: Up to 60 species of fungi in the Botryosphaeriaceae family, genera Cadophora, Cryptovalsa, Cylindrocarpon, Diatrype, Diatrypella, Eutypa, Eutypella, Fomitiporella, Fomitiporia, Inocutis, Phaeoacremonium and Phaeomoniella have been isolated from decline-affected grapevines all around the World. The main grapevine trunk diseases of mature vines are Eutypa dieback, the esca complex and cankers caused by the Botryospheriaceae, while in young vines the main diseases are Petri and black foot diseases.
    [Show full text]
  • Beta-Tubulin and Actin Gene Phylogeny Supports
    A peer-reviewed open-access journal MycoKeys 41: 1–15 (2018) Beta-tubulin and Actin gene phylogeny supports... 1 doi: 10.3897/mycokeys.41.27536 RESEARCH ARTICLE MycoKeys http://mycokeys.pensoft.net Launched to accelerate biodiversity research Beta-tubulin and Actin gene phylogeny supports Phaeoacremonium ovale as a new species from freshwater habitats in China Shi-Ke Huang1,2,3,7, Rajesh Jeewon4, Kevin D. Hyde2, D. Jayarama Bhat5,6, Putarak Chomnunti2,7, Ting-Chi Wen1 1 Engineering and Research Center of Southwest Bio-Pharmaceutical Resources, Ministry of Education, Guizhou University, Guiyang 550025, China 2 Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand 3 Key Laboratory for Plant Biodiversity and Biogeography of East Asia (KLPB), Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, Chi- na 4 Department of Health Sciences, Faculty of Science, University of Mauritius, Reduit, Mauritius 5 Azad Housing Society, No. 128/1-J, Curca, P.O. Goa Velha 403108, India 6 Formerly, Department of Botany, Goa University, Goa, 403206, India 7 School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand Corresponding author: Ting-Chi Wen ([email protected]) Academic editor: Marc Stadler | Received 15 June 2018 | Accepted 10 September 2018 | Published 11 October 2018 Citation: Huang S-K, Jeewon R, Hyde KD, Bhat DJ, Chomnunti P, Wen T-C (2018) Beta-tubulin and Actin gene phylogeny supports Phaeoacremonium ovale as a new species from freshwater habitats in China. MycoKeys 41: 1–15. https://doi.org/10.3897/mycokeys.41.27536 Abstract A new species of Phaeoacremonium, P.
    [Show full text]
  • What If Esca Disease of Grapevine Were Not a Fungal Disease?
    Fungal Diversity (2012) 54:51–67 DOI 10.1007/s13225-012-0171-z What if esca disease of grapevine were not a fungal disease? Valérie Hofstetter & Bart Buyck & Daniel Croll & Olivier Viret & Arnaud Couloux & Katia Gindro Received: 20 March 2012 /Accepted: 1 April 2012 /Published online: 24 April 2012 # The Author(s) 2012. This article is published with open access at Springerlink.com Abstract Esca disease, which attacks the wood of grape- healthy and diseased adult plants and presumed esca patho- vine, has become increasingly devastating during the past gens were widespread and occurred in similar frequencies in three decades and represents today a major concern in all both plant types. Pioneer esca-associated fungi are not trans- wine-producing countries. This disease is attributed to a mitted from adult to nursery plants through the grafting group of systematically diverse fungi that are considered process. Consequently the presumed esca-associated fungal to be latent pathogens, however, this has not been conclu- pathogens are most likely saprobes decaying already senes- sively established. This study presents the first in-depth cent or dead wood resulting from intensive pruning, frost or comparison between the mycota of healthy and diseased other mecanical injuries as grafting. The cause of esca plants taken from the same vineyard to determine which disease therefore remains elusive and requires well execu- fungi become invasive when foliar symptoms of esca ap- tive scientific study. These results question the assumed pear. An unprecedented high fungal diversity, 158 species, pathogenicity of fungi in other diseases of plants or animals is here reported exclusively from grapevine wood in a single where identical mycota are retrieved from both diseased and Swiss vineyard plot.
    [Show full text]
  • Ascospore Release of Togninia Minima, Cause of Esca and Grapevine Decline in California
    4/11/13 Ascospore release of Togninia minima, cause of esca and grapevine decline in California Search PMN PDF version © 2005 Plant Management Network. for printing Accepted for publication 7 December 2004. Published 9 February 2005. Ascospore Release of Togninia minima, Cause of Esca and Grapevine Decline in California Suzanne Rooney­Latham, A. Eskalen, and W. D. Gubler, Department of Plant Pathology, University of California, Davis 95616 Impact Statement Corresponding author: W. Douglas Gubler. [email protected] Rooney­Latham, S., Eskalen, A., and Gubler, W. D. 2005. Ascospore release of Togninia minima, cause of esca and grapevine decline in California. Online. Plant Health Progress doi:10.1094/PHP­2005­0209­01­RS. Abstract Esca and grapevine decline are important diseases affecting both young and mature grapevines worldwide. In California, these diseases are caused primarily by the fungal pathogens Phaeomoniella chlamydospora and Phaeoacremonium aleophilum. Perithecia of Togninia minima, the newly­ described teleomorph of Phaeoacremonium aleophilum, were produced by mating different strains in culture. Using a video camera, the process of emerging asci and release of ascospores from perithecia was filmed and presented herein for review. Furthermore, naturally occurring perithecia were discovered in infected California vineyards. These studies provide video documentation of the method of ascospore release of Togninia minima and suggest the importance of ascospore release in the disease cycle of esca in California vineyards. Introduction California’s grape harvest accounts for nearly 91% of the total annual production in the United States. In 2003, the 882,000 total acres of grape varieties (819,000 bearing acres) were valued at over $2.3 billion, making it California’s most valuable crop (2).
    [Show full text]
  • Identification and Pathogenicity of Lignicolous Fungi Associated with Grapevine Trunk Diseases Citation: M.L
    Phytopathologia Mediterranea Firenze University Press The international journal of the www.fupress.com/pm Mediterranean Phytopathological Union Research Paper Identification and pathogenicity of lignicolous fungi associated with grapevine trunk diseases Citation: M.L. Raimondo, A. Carlucci, C. Ciccarone, A. Sadallah, F. Lops in southern Italy (2019) Identification and pathogenic- ity of lignicolous fungi associated with grapevine trunk diseases in southern Italy. Phytopathologia Mediterranea Maria Luisa RAIMONDO1, Antonia CARLUCCI1,*, Claudio CICCA- 58(3): 639-662. doi: 10.14601/Phy- RONE1, Abderraouf SADALLAH1,2,3, Francesco LOPS1 to-10742 1 Department of Science of Agriculture, Food and Environment, University of Foggia, Via Accepted: December 22, 2019 Napoli, 25, 71122 Foggia, Italy 2 CIHEAM- Mediterranean Agronomic Institute of Bari, Via Ceglie, 9, 70010 Valenzano Published: December 30, 2019 (Ba), Italy Copyright: © 2019 M.L. Raimondo, A. 3 Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amen- Carlucci, C. Ciccarone, A. Sadallah, F. dola 165/A, 70126, Bari, Italy Lops. This is an open access, peer- *Corresponding author: [email protected] reviewed article published by Firenze University Press (http://www.fupress. com/pm) and distributed under the Summary. Over the last 10 years, several fungi were isolated from grapevines with terms of the Creative Commons Attri- grapevine trunk disease (GTD) symptoms, in the Apulia and Molise regions of Italy. bution License, which permits unre- Morphological and molecular analyses allowed the identification of species belonging to stricted use, distribution, and reproduc- Botryosphaeriaceae, Phaeoacremonium species, Phaeomoniella chlamydospora, Pleuros- tion in any medium, provided the origi- toma richardsiae and less-common fungi associated with grapevine trunk diseases, such nal author and source are credited.
    [Show full text]
  • <I>Phaeoacremonium</I> Species Isolated from Esca Diseased Grapev
    Persoonia 21, 2008: 119–134 www.persoonia.org RESEARCH ARTICLE doi:10.3767/003158508X374385 Molecular and phenotypic characterisation of novel Phaeoacremonium species isolated from esca diseased grapevines S. Essakhi1,2, L. Mugnai1, P.W. Crous2, J.Z. Groenewald2, G. Surico1 Key words Abstract Petri disease and esca are very destructive grapevine decline diseases that occur in most countries where grapevine (Vitis vinifera) is cultivated. Phaeoacremonium species are among the principal hyphomycetes actin associated with symptoms of the two diseases, producing a range of enzymes and phytotoxic metabolites. The β-tubulin present study compared the phylogeny of a global collection of 118 Phaeoacremonium isolates from grapevines, esca in order to gain a better understanding of their involvement in Petri disease and esca. Phylogenetic analyses of morphology combined DNA sequence datasets of actin and -tubulin genes revealed the presence of 13 species of Phaeoacre­ Phaeoacremonium β monium isolated from esca diseased grapevines. Phaeoacremonium aleophilum was the most frequently isolated phylogeny species with an incidence up to 80 % of all isolates investigated. Species previously described mainly as human pathogenic species, namely Pm. alvesii, Pm. griseorubrum and Pm. rubrigenum are newly reported on grapevine from Turkey, Italy and Croatia, respectively. Phaeoacremonium viticola and Pm. scotyli represent new records for Italy, as well as Pm. mortoniae for Hungary and Croatia. In addition, four new species of Phaeoacremonium, namely Pm. croatiense, Pm. hungaricum, Pm. sicilianum and Pm. tuscanum are newly described from grapevine based on morphology, cultural characteristics, as well as molecular phylogeny. Article info Received: 15 July 2008; Accepted: 26 September 2008; Published: 7 October 2008.
    [Show full text]
  • Isolation, Identification and Pathogenicity of Botryosphaeriaceae and Phaeoacremonium Species Associated with Decline of Prunus Species in Iran
    Journal of Plant Pathology (2017), 99 (3), 571-581 Edizioni ETS Pisa, 2017 571 ISOLATION, IDENTIFICATION AND PATHOGENICITY OF BOTRYOSPHAERIACEAE AND PHAEOACREMONIUM SPECIES ASSOCIATED WITH DECLINE OF PRUNUS SPECIES IN IRAN N. Soltaninejad, H. Mohammadi and H. Massumi Department of Plant Protection, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman 7616914111, Iran SUMMARY INTRODUCTION Between 2011 and 2013, a field survey was undertaken Various fungal genera are known to cause trunk dis- on stone fruit trees in four provinces of Iran to determine eases of woody plants including Prunus spp., which are the fungal trunk pathogens associated with decline diseas- susceptible to many fungal trunk pathogens worldwide es. Wood samples were collected from branches of apricot, (Damm et al., 2008; Slippers et al., 2007; Gramaje et al., peach, cherry, sour cherry and greengage trees showing 2012). Species of Botryosphaeriaceae Ces. and De Not. (In- yellowing, dieback, defoliation, canker, gummosis, decline derbitzin et al., 2010; Slippers et al., 2007; Gramaje et al., and internal wood discolouration. Five Phaeoacremonium 2012) and Togniniaceae Réblová, L. Mostert, W. Gams et species, including Phaeoacremonium minimum, P. parasiti- Crous (Damm et al., 2008; Gramaje et al., 2012) are well- cum, P. viticola, P. tuscanum and P. krajdenii and six species recognized fungal trunk pathogens on stone fruit trees. of Botryosphaeriaceae, namely Diplodia seriata, D. mutila, Various members of Botryosphaeriaceae, Botryosphae- Neofusicoccum parvum, Botryosphaeria dothidea, Spen- ria, Diplodia, Neofusicoccum, Lasiodiplodia, Aplosporella, cermartinsia viticola and Lasiodiplodia theobromae, were Dothiorella and Neoscytalidium, have also been reported isolated and identified based on morphology, culture char- on Prunus spp. (Agarwal et al., 1992; Slippers et al., 2007; acteristics and DNA sequence analyses.
    [Show full text]
  • AR TICLE Recommendations for Competing Sexual-Asexually Typified
    IMA FUNGUS · 7(1): 131–153 (2016) doi:10.5598/imafungus.2016.07.01.08 Recommendations for competing sexual-asexually typified generic names in ARTICLE Sordariomycetes (except Diaporthales, Hypocreales, and Magnaporthales) Martina Réblová1, Andrew N. Miller2, Amy Y. Rossman3*, Keith A. Seifert4, Pedro W. Crous5, David L. Hawksworth6,7,8, Mohamed A. Abdel-Wahab9, Paul F. Cannon8, Dinushani A. Daranagama10, Z. Wilhelm De Beer11, Shi-Ke Huang10, Kevin D. Hyde10, Ruvvishika Jayawardena10, Walter Jaklitsch12,13, E. B. Gareth Jones14, Yu-Ming Ju15, Caroline Judith16, Sajeewa S. N. Maharachchikumbura17, Ka-Lai Pang18, Liliane E. Petrini19, Huzefa A. Raja20, Andrea I Romero21, Carol Shearer2, Indunil C. Senanayake10, Hermann Voglmayr13, Bevan S. Weir22, and Nalin N. Wijayawarden10 1Department of Taxonomy, Institute of Botany of the Academy of Sciences of the Czech Republic, Průhonice 252 43, Czech Republic 2Illinois Natural History Survey, University of Illinois, Champaign, Illinois 61820, USA 3Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon 97331, USA; *corresponding author e-mail: amydianer@ yahoo.com 4Ottawa Research and Development Centre, Biodiversity (Mycology and Microbiology), Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, Ontario K1A 0C6 Canada 5CBS-KNAW Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands 6Departamento de Biología Vegetal II, Facultad de Farmacia, Universidad Complutense, Plaza de Ramón y Cajal s/n, Madrid 28040, Spain 7Department of Life Sciences,
    [Show full text]
  • EVALUATING the ENDOPHYTIC FUNGAL COMMUNITY in PLANTED and WILD RUBBER TREES (Hevea Brasiliensis)
    ABSTRACT Title of Document: EVALUATING THE ENDOPHYTIC FUNGAL COMMUNITY IN PLANTED AND WILD RUBBER TREES (Hevea brasiliensis) Romina O. Gazis, Ph.D., 2012 Directed By: Assistant Professor, Priscila Chaverri, Plant Science and Landscape Architecture The main objectives of this dissertation project were to characterize and compare the fungal endophytic communities associated with rubber trees (Hevea brasiliensis) distributed in wild habitats and under plantations. This study recovered an extensive number of isolates (more than 2,500) from a large sample size (190 individual trees) distributed in diverse regions (various locations in Peru, Cameroon, and Mexico). Molecular and classic taxonomic tools were used to identify, quantify, describe, and compare the diversity of the different assemblages. Innovative phylogenetic analyses for species delimitation were superimposed with ecological data to recognize operational taxonomic units (OTUs) or ―putative species‖ within commonly found species complexes, helping in the detection of meaningful differences between tree populations. Sapwood and leaf fragments showed high infection frequency, but sapwood was inhabited by a significantly higher number of species. More than 700 OTUs were recovered, supporting the hypothesis that tropical fungal endophytes are highly diverse. Furthermore, this study shows that not only leaf tissue can harbor a high diversity of endophytes, but also that sapwood can contain an even more diverse assemblage. Wild and managed habitats presented high species richness of comparable complexity (phylogenetic diversity). Nevertheless, main differences were found in the assemblage‘s taxonomic composition and frequency of specific strains. Trees growing within their native range were dominated by strains belonging to Trichoderma and even though they were also present in managed trees, plantations trees were dominated by strains of Colletotrichum.
    [Show full text]
  • Novel Phaeoacremonium Species Associated with Necrotic Wood of Prunus Trees
    Persoonia 20, 2008: 87–102 www.persoonia.org RESEARCH ARTICLE doi:10.3767/003158508X324227 Novel Phaeoacremonium species associated with necrotic wood of Prunus trees U. Damm1,2, L. Mostert1, P.W. Crous1,2, P.H. Fourie1,3 Key words Abstract The genus Phaeoacremonium is associated with opportunistic human infections, as well as stunted growth and die-back of various woody hosts, especially grapevines. In this study, Phaeoacremonium species were Diaporthales isolated from necrotic woody tissue of Prunus spp. (plum, peach, nectarine and apricot) from different stone fruit molecular systematics growing areas in South Africa. Morphological and cultural characteristics as well as DNA sequence data (5.8S pathogenicity rDNA, ITS1, ITS2, -tubulin, actin and 18S rDNA) were used to identify known, and describe novel species. From Togninia β the total number of wood samples collected (257), 42 Phaeoacremonium isolates were obtained, from which 14 Togniniaceae species were identified. Phaeoacremonium scolyti was most frequently isolated, and present on all Prunus species sampled, followed by Togninia minima (anamorph: Pm. aleophilum) and Pm. australiense. Almost all taxa isolated represent new records on Prunus. Furthermore, Pm. australiense, Pm. iranianum, T. fraxinopennsylvanica and Pm. griseorubrum represent new records for South Africa, while Pm. griseorubrum, hitherto only known from humans, is newly reported from a plant host. Five species are newly described, two of which produce a Togninia sexual state. Togninia africana, T. griseo-olivacea and Pm. pallidum are newly described from Prunus armeniaca, while Pm. prunicolum and Pm. fuscum are described from Prunus salicina. Article info Received: 9 May 2008; Accepted: 20 May 2008; Published: 24 May 2008.
    [Show full text]
  • Descriptions of Medical Fungi
    DESCRIPTIONS OF MEDICAL FUNGI THIRD EDITION (revised November 2016) SARAH KIDD1,3, CATRIONA HALLIDAY2, HELEN ALEXIOU1 and DAVID ELLIS1,3 1NaTIONal MycOlOgy REfERENcE cENTRE Sa PaTHOlOgy, aDElaIDE, SOUTH aUSTRalIa 2clINIcal MycOlOgy REfERENcE labORatory cENTRE fOR INfEcTIOUS DISEaSES aND MIcRObIOlOgy labORatory SERvIcES, PaTHOlOgy WEST, IcPMR, WESTMEaD HOSPITal, WESTMEaD, NEW SOUTH WalES 3 DEPaRTMENT Of MOlEcUlaR & cEllUlaR bIOlOgy ScHOOl Of bIOlOgIcal ScIENcES UNIvERSITy Of aDElaIDE, aDElaIDE aUSTRalIa 2016 We thank Pfizera ustralia for an unrestricted educational grant to the australian and New Zealand Mycology Interest group to cover the cost of the printing. Published by the authors contact: Dr. Sarah E. Kidd Head, National Mycology Reference centre Microbiology & Infectious Diseases Sa Pathology frome Rd, adelaide, Sa 5000 Email: [email protected] Phone: (08) 8222 3571 fax: (08) 8222 3543 www.mycology.adelaide.edu.au © copyright 2016 The National Library of Australia Cataloguing-in-Publication entry: creator: Kidd, Sarah, author. Title: Descriptions of medical fungi / Sarah Kidd, catriona Halliday, Helen alexiou, David Ellis. Edition: Third edition. ISbN: 9780646951294 (paperback). Notes: Includes bibliographical references and index. Subjects: fungi--Indexes. Mycology--Indexes. Other creators/contributors: Halliday, catriona l., author. Alexiou, Helen, author. Ellis, David (David H.), author. Dewey Number: 579.5 Printed in adelaide by Newstyle Printing 41 Manchester Street Mile End, South australia 5031 front cover: Cryptococcus neoformans, and montages including Syncephalastrum, Scedosporium, Aspergillus, Rhizopus, Microsporum, Purpureocillium, Paecilomyces and Trichophyton. back cover: the colours of Trichophyton spp. Descriptions of Medical Fungi iii PREFACE The first edition of this book entitled Descriptions of Medical QaP fungi was published in 1992 by David Ellis, Steve Davis, Helen alexiou, Tania Pfeiffer and Zabeta Manatakis.
    [Show full text]