Cavernous Sinus Venography and Stereotaxic Cryohypophysectomy*

Total Page:16

File Type:pdf, Size:1020Kb

Cavernous Sinus Venography and Stereotaxic Cryohypophysectomy* Cavernous Sinus Venography and Stereotaxic Cryohypophysectomy* ROBERT W. RAND, M.D., AND WILLIAM N. HANAFEE, M.D. Department oJ Surgery and Department of Radiology, U.C.L.A. School of Medicine, Los Angeles, California HE dimensions of a normal pituitary vision. 6-s Certain intrasellar pituitary gland can be approximated by roent- tumors, especially those causing hyper- T genographic studies of the sella tur- pituitary syndromes (acromegaly, Cushing's cica. Tumors in this region, however, fre- syndrome, and Nelson's syndrome),4 have quently grow in a lobulated asymmetrical also been successfully removed with this fashion so that the osseous walls of the sella cryosurgical procedure. do not give a true representation of the tumor size. Pneumoencephalograms will Anatomy show suprasellar tumor extensions, and The paired cavernous sinuses are irregu- bilateral carotid angiography will, in some larly quadrangular structures, lying extra- cases, demonstrate lateral and (less well) dural and adjacent to the body of the suprasellar growth patterns. X-ray studies sphenoid bone. In the lateral walls are the are most useful to rule out internal carotid oculomotor nerves, trochlear nerves, and aneurysms simulating nonsecretory pituitary first divisions of the trigeminal nerves. The tumors. abducens nerves lie lateral to the carotid Lateral extensions of pituitary tumors arteries. They are connected to each other present diagnostic and therapeutic problems. by two venous sinuses lying both anterior Opacification of the cavernous sinuses by and posterior to the pituitary gland that are percutaneous retrograde injection, however, called the anterior and posterior intercom- has allowed accurate delineation of the municating sinuses. The portions of the in- lateral extensions of pituitary adenomas and tercommunicating sinuses lying beneath the their relationships to the carotid siphon and diaphragma sellae are sometimes spoken of the cranial nerves of the cavernous sinus. as circular sinuses. Thus, the pituitary gland These anatomicopathological findings have is surrounded by venous channels. The made possible accurate placement of cryo- cavernous sinuses extend from the superior probes during stereotaxic cryohypophysec- orbital fissure anteriorly where they receive tomy. the ophthalmic veins and tributaries of the History pterygoid plexus to the dorsum sellae Retrograde jugular venography has been posteriorly. An excellent surgical description used for study of glomus jugular tumors by of the cavernous sinuses has been made by Gejrot and Lindbom2 In their technique, Parkinson. 5 a small vascular catheter was passed per- The inferior petrosal sinuses drain from cutaneously into the internal jugular vein, the posterior inferior quadrant of the cavern- and the injected contrast solution was re- ous sinus toward the region of the jugular fluxed into the transverse sinus. Satis- foramen. Most anatomy texts show the in- factory opacification of the cavernous sinuses ferior petrosal sinuses draining into the did not occur. jugular bulb at the level of the jugular fora- Stereotaxic cryohypophysectomy was de- men. Our radiographic investigations (Fig. 1) veloped in 1963 to replace yttrium-90 sphere have shown that the inferior petrosal sinus hypophysectomy in the palliative treatment drains in four patterns: of metastatic mammary cancer and progres- 1. The inferior petrosal sinus drains di- sive diabetic retinopathy causing loss of rectly into the internal jugular vein. ~. The inferior petrosal sinus ends in a Received for publication May 19, 1966. communicating vein which joins the Revision received August ~5, 1966. * Supported in part by U.S. Public Health Service deep cervical plexus with the internal Grant CA 04423, jugular vein. 5~1 5~ Robert W. Rand and William N. Hanafee 3. Occasionally the inferior petrosal sinus pared and then anesthetized with 1% xylo- is not a single channel, but a slight caine infiltrated 3 cm above the sternal end of exaggeration of tile plexus of veins the clavicle along the medial border of the which lies on the dorsum sellae and sternocleidomastoid muscle. A ~ to 3 mm clivus. These channels drain both into stab-wound incision is made to allow easier the internal jugular vein and deep passage of the polyethylene catheter (Becton, cervical plexus. Dickinson XRP 0.045tt radiopaque) since 4. The inferior petrosal sinus may drain the outside diameter of the catheter is directly into the deep cervical veins. slightly larger than the puncture needle. A 389inch 18-gauge thin-walled needle without Technique a styler is attached to a 10ec syringe con- The initial technique and results of cavern- taining 5 cc of 1% xylocaine. This needle is ous sinography, which consists of passing a inserted and directed about 5 mm lateral to catheter percutaneously via the internal the internal carotid artery. The tip of the jugular vein cephalad into the inferior mastoid process may be used as an osseous petrosal sinus under fluoroscopic control, landmark to direct the angle of puncture. have been reported previously. ~ We are now The attached syringe is used to aspirate reporting the method in more detail because frequently since the pressure of the internal of technical changes and improvement in tile jugular vein is insufficient to cause blood to procedure. flow spontaneously from the needle. If the The patient's head and neck are slightly patient experiences pain, small amounts of hyperextended. The skin of tile neck is pre- xylocaine are injected as needed. Fro. 1. Patterns of drainage of inferior petrosal sinuses observed during performance of cavernous sinus venography. .
Recommended publications
  • Gross Anatomy Assignment Name: Olorunfemi Peace Toluwalase Matric No: 17/Mhs01/257 Dept: Mbbs Course: Gross Anatomy of Head and Neck
    GROSS ANATOMY ASSIGNMENT NAME: OLORUNFEMI PEACE TOLUWALASE MATRIC NO: 17/MHS01/257 DEPT: MBBS COURSE: GROSS ANATOMY OF HEAD AND NECK QUESTION 1 Write an essay on the carvernous sinus. The cavernous sinuses are one of several drainage pathways for the brain that sits in the middle. In addition to receiving venous drainage from the brain, it also receives tributaries from parts of the face. STRUCTURE ➢ The cavernous sinuses are 1 cm wide cavities that extend a distance of 2 cm from the most posterior aspect of the orbit to the petrous part of the temporal bone. ➢ They are bilaterally paired collections of venous plexuses that sit on either side of the sphenoid bone. ➢ Although they are not truly trabeculated cavities like the corpora cavernosa of the penis, the numerous plexuses, however, give the cavities their characteristic sponge-like appearance. ➢ The cavernous sinus is roofed by an inner layer of dura matter that continues with the diaphragma sellae that covers the superior part of the pituitary gland. The roof of the sinus also has several other attachments. ➢ Anteriorly, it attaches to the anterior and middle clinoid processes, posteriorly it attaches to the tentorium (at its attachment to the posterior clinoid process). Part of the periosteum of the greater wing of the sphenoid bone forms the floor of the sinus. ➢ The body of the sphenoid acts as the medial wall of the sinus while the lateral wall is formed from the visceral part of the dura mater. CONTENTS The cavernous sinus contains the internal carotid artery and several cranial nerves. Abducens nerve (CN VI) traverses the sinus lateral to the internal carotid artery.
    [Show full text]
  • 1-Anatomy of the Pituitary Gland
    Color Code Important Anatomy of Pituitary Gland Doctors Notes Notes/Extra explanation Please view our Editing File before studying this lecture to check for any changes. Objectives At the end of the lecture, students should be able to: ✓ Describe the position of the pituitary gland. ✓ List the structures related to the pituitary gland. ✓ Differentiate between the lobes of the gland. ✓ Describe the blood supply of pituitary gland & the hypophyseal portal system. الغدة النخامية Pituitary Gland (also called Hypophysis Cerebri) o It is referred to as the master of endocrine glands. o It is a small oval structure 1 cm in diameter. o It doubles its size during pregnancy. lactation ,(الحمل) pregnancy ,(الحيض) A women experiences changes in her hormone levels during menstruation But only the pituitary gland will only increase in size during pregnancy .(سن اليأس) and menopause ,(الرضاعة) X-RAY SKULL: LATERAL VIEW SAGITTAL SECTION OF HEAD & NECK Extra Pituitary Gland Position o It lies in the middle cranial fossa. o It is well protected in sella turcica* (hypophyseal fossa) of body of sphenoid o It lies between optic chiasma (anteriorly) & mamillary bodies** (posteriorly). Clinical point: *سرج الحصان Anterior to the pituitary gland is the optic chiasm, so if there was a tumor in the pituitary gland or it was ** Part of hypothalamus enlarged this could press on the chiasm and disrupt the patients vision (loss of temporal field). Extra Pictures The purple part is the sphenoid bone Hypophyseal fossa Pituitary Gland The relations are important Important Relations • SUPERIOR: Diaphragma sellae: A fold of dura mater covers the pituitary gland & has an opening for passage of infundibulum (pituitary stalk) connecting the gland to hypothalamus.
    [Show full text]
  • CHAPTER 8 Face, Scalp, Skull, Cranial Cavity, and Orbit
    228 CHAPTER 8 Face, Scalp, Skull, Cranial Cavity, and Orbit MUSCLES OF FACIAL EXPRESSION Dural Venous Sinuses Not in the Subendocranial Occipitofrontalis Space More About the Epicranial Aponeurosis and the Cerebral Veins Subcutaneous Layer of the Scalp Emissary Veins Orbicularis Oculi CLINICAL SIGNIFICANCE OF EMISSARY VEINS Zygomaticus Major CAVERNOUS SINUS THROMBOSIS Orbicularis Oris Cranial Arachnoid and Pia Mentalis Vertebral Artery Within the Cranial Cavity Buccinator Internal Carotid Artery Within the Cranial Cavity Platysma Circle of Willis The Absence of Veins Accompanying the PAROTID GLAND Intracranial Parts of the Vertebral and Internal Carotid Arteries FACIAL ARTERY THE INTRACRANIAL PORTION OF THE TRANSVERSE FACIAL ARTERY TRIGEMINAL NERVE ( C.N. V) AND FACIAL VEIN MECKEL’S CAVE (CAVUM TRIGEMINALE) FACIAL NERVE ORBITAL CAVITY AND EYE EYELIDS Bony Orbit Conjunctival Sac Extraocular Fat and Fascia Eyelashes Anulus Tendineus and Compartmentalization of The Fibrous "Skeleton" of an Eyelid -- Composed the Superior Orbital Fissure of a Tarsus and an Orbital Septum Periorbita THE SKULL Muscles of the Oculomotor, Trochlear, and Development of the Neurocranium Abducens Somitomeres Cartilaginous Portion of the Neurocranium--the The Lateral, Superior, Inferior, and Medial Recti Cranial Base of the Eye Membranous Portion of the Neurocranium--Sides Superior Oblique and Top of the Braincase Levator Palpebrae Superioris SUTURAL FUSION, BOTH NORMAL AND OTHERWISE Inferior Oblique Development of the Face Actions and Functions of Extraocular Muscles Growth of Two Special Skull Structures--the Levator Palpebrae Superioris Mastoid Process and the Tympanic Bone Movements of the Eyeball Functions of the Recti and Obliques TEETH Ophthalmic Artery Ophthalmic Veins CRANIAL CAVITY Oculomotor Nerve – C.N. III Posterior Cranial Fossa CLINICAL CONSIDERATIONS Middle Cranial Fossa Trochlear Nerve – C.N.
    [Show full text]
  • Carotid Cavernous Sinus Fistula with Central Retinal Artery Occlusion: a Case Report
    Carotid cavernous sinus fistula with central retinal artery occlusion: A case report Suntaree Thitiwichienlert1, Chonwarat Phattarapongdilok1, Paiboon Bawornwattanadilok1 1Department of Ophthalmology, Faculty of Medicine Thammasat University, Thailand Background: A carotid-cavernous sinus fistula (CCF) is an abnormal arteriovenous communication between the cavernous sinus and the internal carotid artery (ICA) and/or external carotid artery (ECA). Central retinal artery occlusion (CRAO) is a rare posterior segment complication occurring as result of traumatic CCF from an ocular hypoperfusion. Case Report: We present a 58-year-old female complaining of acute visual loss, with redness and swelling of the right eye following a motor vehicle accident. Her visual acuity was light perception (PL) in the right eye and 20/40 in the left eye. The intraocular pressure (IOP) was 52 mm Hg in the right eye and normal in the left eye. Eye examinations revealed proptosis, ptosis, complete total ophthalmoplegia and a 5-mm fixed dilated right pupil with relative afferent pupillary defect (RAPD) positive in her right eye. The fundus examination showed CRAO in the right eye. Cerebral angiogra- phy revealed a high flow direct CCF Barrow’s type A. Endovascular treatment was performed using balloon embolization. During the one-year follow-up, the patient had improvement of eye redness, proptosis, and ophthalmoplegia. However, the visual prognosis was poor due to optic atrophy and macular ischemia with the final visual acuity of PL. Conclusion: A complete fundus examination found vision- threatening complications in patients who have traumatic CCFs. Early recognition of CRAO is important in the management of these patients. Conflicts of interest: The authors report no confilcts of interest.
    [Show full text]
  • Vessels and Circulation
    CARDIOVASCULAR SYSTEM OUTLINE 23.1 Anatomy of Blood Vessels 684 23.1a Blood Vessel Tunics 684 23.1b Arteries 685 23.1c Capillaries 688 23 23.1d Veins 689 23.2 Blood Pressure 691 23.3 Systemic Circulation 692 Vessels and 23.3a General Arterial Flow Out of the Heart 693 23.3b General Venous Return to the Heart 693 23.3c Blood Flow Through the Head and Neck 693 23.3d Blood Flow Through the Thoracic and Abdominal Walls 697 23.3e Blood Flow Through the Thoracic Organs 700 Circulation 23.3f Blood Flow Through the Gastrointestinal Tract 701 23.3g Blood Flow Through the Posterior Abdominal Organs, Pelvis, and Perineum 705 23.3h Blood Flow Through the Upper Limb 705 23.3i Blood Flow Through the Lower Limb 709 23.4 Pulmonary Circulation 712 23.5 Review of Heart, Systemic, and Pulmonary Circulation 714 23.6 Aging and the Cardiovascular System 715 23.7 Blood Vessel Development 716 23.7a Artery Development 716 23.7b Vein Development 717 23.7c Comparison of Fetal and Postnatal Circulation 718 MODULE 9: CARDIOVASCULAR SYSTEM mck78097_ch23_683-723.indd 683 2/14/11 4:31 PM 684 Chapter Twenty-Three Vessels and Circulation lood vessels are analogous to highways—they are an efficient larger as they merge and come closer to the heart. The site where B mode of transport for oxygen, carbon dioxide, nutrients, hor- two or more arteries (or two or more veins) converge to supply the mones, and waste products to and from body tissues. The heart is same body region is called an anastomosis (ă-nas ′tō -mō′ sis; pl., the mechanical pump that propels the blood through the vessels.
    [Show full text]
  • Vascular Supply to the Head and Neck
    Vascular supply to the head and neck Sumamry This lesson covers the head and neck vascular supply. ReviseDental would like to thank @KIKISDENTALSERVICE for the wonderful drawings in this lesson. Arterial supply to the head Facial artery: Origin: External carotid Branches: submental a. superior and inferior labial a. lateral nasal a. angular a. Note: passes superiorly over the body of there mandible at the masseter Superficial temporal artery: Origin: External carotid Branches: It is a continuation of the ex carotid a. Note: terminal branch of the ex carotid a. and is in close relation to the auricular temporal nerve Transverse facial artery: Origin: Superficial temporal a. Note: exits the parotid gland Maxillary branch: supplies the areas missed from the above vasculature Origin: External carotid a. Branches: (to the face) infraorbital, buccal and inferior alveolar a.- mental a. Note: Terminal branch of the ex carotid a. The ophthalmic branches Origin: Internal carotid a. Branches: Supratrochlear, supraorbital, lacrimal, anterior ethmoid, dorsal nasal Note:ReviseDental.com enters orbit via the optic foramen Note: The face arterial supply anastomose freely. ReviseDental.com ReviseDental.com Venous drainage of the head Note: follow a similar pathway to the arteries Superficial vessels can communicate with deep structures e.g. cavernous sinus and the pterygoid plexus. (note: relevant for spread of infection) Head venous vessels don't have valves Supratrochlear vein Origin: forehead and communicates with the superficial temporal v. Connects: joins with supra-orbital v. Note: from the angular vein Supra-orbital vein Origin: forehead and communicates with the superficial temporal v. Connects: joins with supratrochlear v.
    [Show full text]
  • Non-Pathological Opacification of the Cavernous Sinus on Brain CT
    healthcare Article Non-Pathological Opacification of the Cavernous Sinus on Brain CT Angiography: Comparison with Flow-Related Signal Intensity on Time-of-Flight MR Angiography Sun Ah Heo 1, Eun Soo Kim 1,* , Yul Lee 1, Sang Min Lee 1, Kwanseop Lee 1 , Dae Young Yoon 2, Young-Su Ju 3 and Mi Jung Kwon 4 1 Department of Radiology, Hallym University Sacred Heart Hospital, College of Medicine, Hallym University, Seoul 14068, Korea; [email protected] (S.A.H.); [email protected] (Y.L.); [email protected] (S.M.L.); [email protected] (K.L.) 2 Department of Radiology, Kangdong Sacred Heart Hospital, College of Medicine, Hallym University, Seoul 14068, Korea; [email protected] 3 National Medical Center, Seoul 04564, Korea; [email protected] 4 Department of Pathology, Hallym University Sacred Heart Hospital, College of Medicine, Hallym University, Seoul 14068, Korea; [email protected] * Correspondence: [email protected] Abstract: Purpose: To investigate the non-pathological opacification of the cavernous sinus (CS) on brain computed tomography angiography (CTA) and compare it with flow-related signal intensity (FRSI) on time-of-flight magnetic resonance angiography (TOF-MRA). Methods: Opacification of the CS was observed in 355 participants who underwent CTA and an additional 77 participants who underwent examination with three diagnostic modalities: CTA, TOF-MRA, and digital subtraction angiography (DSA). Opacification of the CS, superior petrosal sinus (SPS), inferior petrosal sinus Citation: Heo, S.A.; Kim, E.S.; Lee, Y.; Lee, S.M.; Lee, K.; Yoon, D.Y.; Ju, Y.-S.; (IPS), and pterygoid plexus (PP) were also analyzed using a five-point scale.
    [Show full text]
  • Carotid-Cavernous Sinus Fistulas and Venous Thrombosis
    141 Carotid-Cavernous Sinus Fistulas and Venous Thrombosis Joachim F. Seeger1 Radiographic signs of cavernous sinus thrombosis were found in eight consecutive Trygve 0. Gabrielsen 1 patients with an angiographic diagnosis of carotid-cavernous sinus fistula; six were of 1 2 the dural type and the ninth case was of a shunt from a cerebral hemisphere vascular Steven L. Giannotta · Preston R. Lotz ,_ 3 malformation. Diagnostic features consisted of filling defects within the cavernous sinus and its tributaries, an abnormal shape of the cavernous sinus, an atypical pattern of venous drainage, and venous stasis. Progression of thrombosis was demonstrated in five patients who underwent follow-up angiography. Because of a high incidence of spontaneous resolution, patients with dural- cavernous sinus fistulas who show signs of venous thrombosis at angiography should be followed conservatively. Spontaneous closure of dural arteriovenous fistulas involving branches of the internal and/ or external carotid arteries and the cavernous sinus has been reported by several investigators (1-4). The cause of such closure has been speculative, although venous thrombosis recently has been suggested as a possible mechanism (3]. This report demonstrates the high incidence of progres­ sive thrombosis of the cavernous sinus associated with dural carotid- cavernous shunts, proposes a possible mechanism of the thrombosis, and emphasizes certain characteristic angiographic features which are clues to thrombosis in evolution, with an associated high incidence of spontaneous " cure. " Materials and Methods We reviewed the radiographic and medical records of eight consecutive patients studied at our hospital in 1977 who had an angiographic diagnosis of carotid- cavernous sinus Received September 24, 1979; accepted after fistula.
    [Show full text]
  • Dural Venous Channels: Hidden in Plain Sight–Reassessment of an Under-Recognized Entity
    Published July 16, 2020 as 10.3174/ajnr.A6647 ORIGINAL RESEARCH INTERVENTIONAL Dural Venous Channels: Hidden in Plain Sight–Reassessment of an Under-Recognized Entity M. Shapiro, K. Srivatanakul, E. Raz, M. Litao, E. Nossek, and P.K. Nelson ABSTRACT BACKGROUND AND PURPOSE: Tentorial sinus venous channels within the tentorium cerebelli connecting various cerebellar and su- pratentorial veins, as well as the basal vein, to adjacent venous sinuses are a well-recognized entity. Also well-known are “dural lakes” at the vertex. However, the presence of similar channels in the supratentorial dura, serving as recipients of the Labbe, super- ficial temporal, and lateral and medial parieto-occipital veins, among others, appears to be underappreciated. Also under-recog- nized is the possible role of these channels in the angioarchitecture of certain high-grade dural fistulas. MATERIALS AND METHODS: A retrospective review of 100 consecutive angiographic studies was performed following identification of index cases to gather data on the angiographic and cross-sectional appearance, location, length, and other features. A review of 100 consecutive dural fistulas was also performed to identify those not directly involving a venous sinus. RESULTS: Supratentorial dural venous channels were found in 26% of angiograms. They have the same appearance as those in the tentorium cerebelli, a flattened, ovalized morphology owing to their course between 2 layers of the dura, in contradistinction to a rounded cross-section of cortical and bridging veins. They are best appreciated on angiography and volumetric postcontrast T1- weighted images. Ten dural fistulas not directly involving a venous sinus were identified, 6 tentorium cerebelli and 4 supratentorial.
    [Show full text]
  • CT Observations Pertinent to Septic Cavernous Sinus Thrombosis
    755 CT Observations Pertinent to Septic Cavernous Sinus Thrombosis Jamshid Ahmadi1 The use of high-resolution computed tomography (CT) is described in four patients James R. Keane2 with septic cavernous sinus thrombosis, In all patients CT findings included multiple Hervey D. Segall1 irregular filling defects in the enhancing cavernous sinus. Unilateral or bilateral inflam­ Chi-Shing Zee 1 matory changes in the orbital soft tissues were also present. Enlargement of the superior ophthalmic vein due to extension of thrombophlebitis was noted in three patients. Since the introduction of antibiotics, septic cavernous sinus thrombosis (throm­ bophlebitis) has become a rare disease [1-4]. Despite considerable improvement in morbidity and mortality (previously almost universal), it remains a potentially lethal disease. The diagnosis of cavernous sinus thrombophlebitis requires a careful clinical evaluation supplemented with appropriate laboratory and radiographic studies. Current computed tomographic (CT) scanners (having higher spatial and contrast resolution) play an important role in the radiographic evaluation of the diverse pathologiC processes that involve the cavernous sinus [5-7]. The use of CT has been documented in several isolated cases [8-13], and small series [14] dealing with the diagnosis and management of cavernous sinus thrombophlebitis. CT scanning in these cases was reported to be normal in two instances [8 , 10]. In other cases so studied, CT showed abnormalities such as orbital changes [11 , 14], paranasal sinusitis [12], and associated manifestations of intracranial infection [9]; however, no mention was made in these cases of thrombosis within the cavernous sinus itself. Direct CT demonstration of thrombosis within the cavernous sinus has been rarely reported [13].
    [Show full text]
  • Anatomy of the Periorbital Region Review Article Anatomia Da Região Periorbital
    RevSurgicalV5N3Inglês_RevistaSurgical&CosmeticDermatol 21/01/14 17:54 Página 245 245 Anatomy of the periorbital region Review article Anatomia da região periorbital Authors: Eliandre Costa Palermo1 ABSTRACT A careful study of the anatomy of the orbit is very important for dermatologists, even for those who do not perform major surgical procedures. This is due to the high complexity of the structures involved in the dermatological procedures performed in this region. A 1 Dermatologist Physician, Lato sensu post- detailed knowledge of facial anatomy is what differentiates a qualified professional— graduate diploma in Dermatologic Surgery from the Faculdade de Medician whether in performing minimally invasive procedures (such as botulinum toxin and der- do ABC - Santo André (SP), Brazil mal fillings) or in conducting excisions of skin lesions—thereby avoiding complications and ensuring the best results, both aesthetically and correctively. The present review article focuses on the anatomy of the orbit and palpebral region and on the important structures related to the execution of dermatological procedures. Keywords: eyelids; anatomy; skin. RESU MO Um estudo cuidadoso da anatomia da órbita é muito importante para os dermatologistas, mesmo para os que não realizam grandes procedimentos cirúrgicos, devido à elevada complexidade de estruturas envolvidas nos procedimentos dermatológicos realizados nesta região. O conhecimento detalhado da anatomia facial é o que diferencia o profissional qualificado, seja na realização de procedimentos mini- mamente invasivos, como toxina botulínica e preenchimentos, seja nas exéreses de lesões dermatoló- Correspondence: Dr. Eliandre Costa Palermo gicas, evitando complicações e assegurando os melhores resultados, tanto estéticos quanto corretivos. Av. São Gualter, 615 Trataremos neste artigo da revisão da anatomia da região órbito-palpebral e das estruturas importan- Cep: 05455 000 Alto de Pinheiros—São tes correlacionadas à realização dos procedimentos dermatológicos.
    [Show full text]
  • Hemodynamic Features in Normal and Cavernous Sinus Dural ORIGINAL RESEARCH Arteriovenous Fistulas
    Published September 6, 2012 as 10.3174/ajnr.A3252 Superior Petrosal Sinus: Hemodynamic Features in Normal and Cavernous Sinus Dural ORIGINAL RESEARCH Arteriovenous Fistulas R. Shimada BACKGROUND AND PURPOSE: Normal hemodynamic features of the superior petrosal sinus and their H. Kiyosue relationships to the SPS drainage from cavernous sinus dural arteriovenous fistulas are not well known. We investigated normal hemodynamic features of the SPS on cerebral angiography as well as the S. Tanoue frequency and types of the SPS drainage from CSDAVFs. H. Mori T. Abe MATERIALS AND METHODS: We evaluated 119 patients who underwent cerebral angiography by focusing on visualization and hemodynamic status of the SPS. We also reviewed selective angiography in 25 consecutive patients with CSDAVFs; we were especially interested in the presence of drainage routes through the SPS from CSDAVFs. RESULTS: In 119 patients (238 sides), the SPS was segmentally (anterior segment, 37 sides; posterior segment, 82 sides) or totally (116 sides) demonstrated. It was demonstrated on carotid angiography in 11 sides (4.6%), receiving blood from the basal vein of Rosenthal or sphenopetrosal sinus, and on vertebral angiography in 235 sides (98.7%), receiving blood from the petrosal vein. No SPSs were demonstrated with venous drainage from the cavernous sinus. SPS drainage was found in 7 of 25 patients (28%) with CSDAVFs. CSDAVFs drained through the anterior segment of SPS into the petrosal vein without draining to the posterior segment in 3 of 7 patients (12%). CONCLUSIONS: The SPS normally works as the drainage route receiving blood from the anterior cerebellar and brain stem venous systems.
    [Show full text]