(Chapter 11) Evaluation of Reintroduction

Total Page:16

File Type:pdf, Size:1020Kb

(Chapter 11) Evaluation of Reintroduction Feasibility of Reintroduction of Anadromous Fish Above or Within the Hells Canyon Complex James A. Chandler Editor Technical Report Appendix E.3.1-2 December 2001 Hells Canyon Complex FERC No. 1971 Copyright © 2003 by Idaho Power Company Evaluation of Reintroduction Alternatives James A. Chandler Fisheries Biologist Don Chapman BioAnalysts, Inc. Technical Report Appendix E. 3.1-2 Feasibility of Reintroduction of Anadromous Fish above or within the Hells Canyon Complex Chapter 11 December 2000 Revised July 2003 Hells Canyon Complex FERC No. 1971 Copyright © 2003 by Idaho Power Company Idaho Power Company Chapter 11: Reintroduction Alternatives TABLE OF CONTENTS Table of Contents ............................................................................................................................. i List of Tables.................................................................................................................................. iv List of Figures ................................................................................................................................ vi 1. Introduction ................................................................................................................................ 1 2. Methods...................................................................................................................................... 1 2.1. Downstream Migration Survival....................................................................................... 1 2.1.1. Free-Flowing River Segments.................................................................................. 2 2.1.2. Reservoir Segments.................................................................................................. 4 2.1.3. Brownlee Reservoir.................................................................................................. 4 2.2. Estimates of Smolt-to-Adult Returns ................................................................................ 6 2.3. Estimates of Required Escapement................................................................................... 7 2.3.1. Low Required Escapement (LRE) ........................................................................... 7 2.3.2. High Required Escapement (HRE) .......................................................................... 8 2.4. Reintroduction Scenario Evaluations................................................................................ 8 2.4.1. Scenario 1: Free-Flowing River Passage ................................................................. 8 2.4.2. Scenario 2: Passage at Hells Canyon Dam and Oxbow Dam .................................. 9 2.4.3. Scenarios 3A and 3B: Passage of Adults at Brownlee Dam—1957 Subbasin Availability ............................................................................................................... 9 2.4.4. Scenario 4: Passage of Adults at Brownlee Dam—1957 Subbasin Availability, Upper Reservoir Collection .................................................................................... 10 2.4.5. Scenarios 5A and 5B: Passage of Adults at Brownlee Dam—1957 Subbasin Availability, Collection and Transport at Brownlee Dam ...................................... 10 2.4.6. Scenarios 6A and 6B: Passage of Adults from Hells Canyon Dam to C.J. Strike Dam, Collection at Swan Falls Dam....................................................................... 10 Hells Canyon Complex Page i Feasibility of Reintroduction of Anadromous Fish Idaho Power Company 2.4.7. Scenarios 7A and 7B: Passage of Adults from Hells Canyon Dam to C.J. Strike Dam, Collection at Swan Falls Dam, Collection and Transport at Brownlee Dam 11 2.4.8. Scenario 8A and 8B: Passage of Adults from Hells Canyon Dam to C.J. Strike Dam, 100% Bypass at Brownlee Dam ................................................................... 11 2.4.9. Scenarios 9A and 9B: Collection at C.J. Strike Dam, 100% Bypass at Brownlee Dam......................................................................................................................... 11 3. Results ...................................................................................................................................... 11 3.1. Free-Flowing River Scenario .......................................................................................... 12 3.2. Oxbow and Hells Canyon Scenarios............................................................................... 12 3.2.1. Scenario 2: Passage at Hells Canyon Dam and Oxbow Dam ................................ 12 3.3. Upstream of Brownlee Dam Scenarios ........................................................................... 13 3.3.1. Scenarios 3A and 3B: Passage of Adults at Brownlee Dam—1957 Subbasin Availability ............................................................................................................. 13 3.3.2. Scenario 4: Passage of Adults at Brownlee Dam—1957 Subbasin Availability, Upper Reservoir Collection .................................................................................... 14 3.3.3. Scenarios 5A and 5B: Passage of Adults at Brownlee Dam—1957 Subbasin Availability, Collection and Transport at Brownlee Dam ...................................... 14 3.4. Upstream of Swan Falls Dam Scenarios......................................................................... 15 3.4.1. Scenarios 6A and 6B: Passage of Adults from Hells Canyon Dam to C.J. Strike Dam, Collection at Swan Falls Dam....................................................................... 15 3.4.2. Scenarios 7A and 7B: Passage of Adults from Hells Canyon Dam to C.J. Strike Dam, Collection at Swan Falls Dam, Collection/Transport at Brownlee Dam ...... 16 3.4.3. Scenarios 8A and 8B: Passage of Adults from Hells Canyon Dam to C.J. Strike Dam, 100% Bypass at Brownlee Dam ................................................................... 16 3.4.4. Scenarios 9A and 9B: Collection at C.J. Strike Dam, 100% Bypass at Brownlee Dam......................................................................................................................... 16 4. Discussion ................................................................................................................................ 17 4.1. Ability to Maintain Production Potential ........................................................................ 17 4.2. Assumptions.................................................................................................................... 18 4.2.1. Survival Estimates.................................................................................................. 18 Page ii Hells Canyon Complex Idaho Power Company Chapter 11: Reintroduction Alternatives 4.2.2. Smolt-to-Adult Returns and Required Escapement Assumptions ......................... 18 4.2.3. The “No-Fishing” Assumption............................................................................... 21 4.3. Subbasin Smolt Production............................................................................................. 21 4.4. Hatchery Supplementation .............................................................................................. 23 4.5. Costs of Reintroduction................................................................................................... 24 4.5.1. Facilities ................................................................................................................. 24 4.5.2. Operations .............................................................................................................. 25 4.6. Feasibility of Reintroduction........................................................................................... 25 4.6.1. Goals of Reintroduction ......................................................................................... 25 4.6.2. Recovery and the Evolutionarily Significant Unit ................................................. 26 4.6.3. Ecosystem Recovery .............................................................................................. 27 4.6.4. Harvest Potential .................................................................................................... 28 4.6.5. Marine-Derived Nutrients ...................................................................................... 29 5. Summary and Conclusions....................................................................................................... 30 6. Literature Cited ........................................................................................................................ 31 Hells Canyon Complex Page iii Feasibility of Reintroduction of Anadromous Fish Idaho Power Company LIST OF TABLES Table 1. Number of spring/summer chinook and steelhead PIT-tagged and released at the Salmon River trap near Riggins and at the Snake River trap near Lewiston, recovered at four downstream dams (Lower Granite, Little Goose, Lower Monumental, and McNary), and rate of recovery. Data are from Buettner and Brimmer (1994, 1995, 1996, 1998). ....................................... 39 Table 2. Description of reintroduction scenarios evaluated................................................ 40 Table 3. Mortality coefficients and survival estimates of spring chinook salmon, steelhead, and fall chinook salmon for different reaches of the Snake River. .......................................................................................................... 41 Table 4. Required adult escapement of spring
Recommended publications
  • Spring Chinook Salmon Dworshak National Fish Hatchery Clearwater River, Idaho
    Spring Chinook Salmon Dworshak National Fish Hatchery Clearwater River, Idaho Howard Burge Ray Jones U.S. Fish and Wildlife Service Idaho Fishery Resource Office Ahsahka, Idaho Idaho Washington NF Clearwater River Clearwater Lower Hatchery Columbia Lower Little Goose Granite Monumental Dam Dam Dam Dworshak Dam Clearwater R Dworshak Lochsa R River Snake NFH River Lewiston Kooskia IDFG Ice Harbor NFH Satellites Dam Selway River Rapid R Hatchery Hells Canyon Dam Oxbow Dam SF Clearwater McNary Brownlee Dam Dam Oregon Salmon River Program Goals 9,135 adults above Lower Granite Dam Harvest of 36,500 in ocean, Columbia River, and Lower Snake River fisheries Original production goal of 1.4 mil smolts Current production goal of 1.05 mil smolts - changed in 1996 Management Objectives Provide sport & tribal fishing opportunities in the Lower Clearwater River Return adequate broodstock to meet production needs Minimize impacts to natural populations Assist other programs in the Clearwater basin M & E Objectives Evaluate the effectiveness of the program so that it can be managed adaptively Determine the total adult return to assess if the program is meeting its mitigation goals Document and communicate programs success at meeting its program and management goals Coordinate hatchery and R,M & E activities Lewiston Dam 1929-1972 Leavenworth NFH 1983 - 86 Little White NFH 1983 & 85 1989 - 2010 Dworshak NFH Kooskia NFH 1995 Rapid River SH 1987 & 88 Broodstock sources and years Dworshak Spring Chinook Broodstock 50:50 ratio of males to females Approximately 65% of returning adults are 2-ocean Average size of a 2-ocean adult is 29 inches Average pre-spawn mortality (1995-2010) 3.1% Chinook arrive ~ May - August Spawning ~ late Aug - early Sept Juvenile Performance Rearing ~ approx.
    [Show full text]
  • Hells Canyon Complex Total Dissolved Gas Study
    Hells Canyon Complex Total Dissolved Gas Study Ralph Myers Project Limnologist Sharon E. Parkinson Principal Engineer Technical Report Appendix E.2.2-4 March 2002 Revised July 2003 Hells Canyon Complex FERC No. 1971 Copyright © 2003 by Idaho Power Company Idaho Power Company Hells Canyon Complex Total Dissolved Gas Study TABLE OF CONTENTS Table of Contents ............................................................................................................................. i List of Tables...................................................................................................................................ii List of Figures .................................................................................................................................ii List of Appendices .........................................................................................................................iii Abstract ........................................................................................................................................... 1 1. Introduction ................................................................................................................................ 2 2. Study Area.................................................................................................................................. 3 3. Plant Operations ......................................................................................................................... 4 4. Methods.....................................................................................................................................
    [Show full text]
  • OUTFITTER/GUIDE RIVER BOATING APPLICATION TRAINING REQUIREMENTS (FOR OG-11) See Rules for Complete Requirements
    OG-5 (10/15) OUTFITTER/GUIDE RIVER BOATING APPLICATION TRAINING REQUIREMENTS (FOR OG-11) See Rules for complete requirements. Unclassified river section qualifications: To qualify as a float boat guide on unclassified rivers and streams, the applicant shall have had one (1) complete trip on each of the rivers applied for under the supervision of a float boat guide licensed for each of those rivers. A completed OG-11 Training Log shall be submitted giving dates, river section, and the signatures of the supervisor, trainee, and licensed outfitter. Classified river section qualifications: A float boat guide on a classified river shall be licensed as a boatman or a lead boatman according to his experience on that specific river. Each float boat trip on a classified river shall have a lead boat operated by a guide licensed as a lead boatman for that specific river and all other boats participating in that trip shall follow the lead boat and shall be operated by a guide licensed as a boatman or a lead boatman for that specific river. (See Rule 040.01) Each training trip means the total section of river as designated by the Board. (See Rules 040, 041, 042 and 059) An applicant for a float boatman license on classified rivers may qualify in one of three ways: a. The guide shall have had three (3) complete float boat trips on each of the classified rivers applied for, under the direct supervision of a float boatman licensed for that river or they shall have had one or more complete float boat trips on each of the classified rivers applied for under the direct supervision of a float boatman licensed for that river with the remaining trip(s) in a boat with no more than one other trainee following a licensed float boatman for that river but they must not have passengers in the boat; or, b.
    [Show full text]
  • Clean Water Act Section 401 Water Quality Certification Hells Canyon Complex (FERC Project Number 1971)
    Evaluation and Findings Report: Clean Water Act Section 401 Water Quality Certification Hells Canyon Complex (FERC Project Number 1971) May 2019 Northwest Region 700 NE Multnomah St. Suite 600 Portland, OR 97232 Phone: 503-229-5696 800-452-4011 Fax: 503-229-5850 www.oregon.gov/DEQ DEQ is a leader in restoring, maintaining and enhancing the quality of Oregon’s air, land and water. Oregon Department of Environmental Quality 401 Water Quality Certification Hells Canyon Complex (FERC Project Number 1971) This report prepared by: Oregon Department of Environmental Quality 700 NE Multnomah St Suite 600 Portland, OR 97232 1-800-452-4011 www.oregon.gov/deq Contact: Marilyn Fonseca 503-229-6804 Documents can be provided upon request in an alternate format for individuals with disabilities or in a language other than English for people with limited English skills. To request a document in another format or language, call DEQ in Portland at 503-229-5696, or toll-free in Oregon at 1-800-452-4011, ext. 5696; or email [email protected]. State of Oregon Department of Environmental Quality ii 401 Water Quality Certification Hells Canyon Complex (FERC Project Number 1971) Table of Contents 1 Introduction ......................................................................................................................................... 1 2 Requirements for Certification ............................................................................................................ 1 2.1 Applicable Federal and State Law ..............................................................................................
    [Show full text]
  • Dams and Hydroelectricity in the Columbia
    COLUMBIA RIVER BASIN: DAMS AND HYDROELECTRICITY The power of falling water can be converted to hydroelectricity A Powerful River Major mountain ranges and large volumes of river flows into the Pacific—make the Columbia precipitation are the foundation for the Columbia one of the most powerful rivers in North America. River Basin. The large volumes of annual runoff, The entire Columbia River on both sides of combined with changes in elevation—from the the border is one of the most hydroelectrically river’s headwaters at Canal Flats in BC’s Rocky developed river systems in the world, with more Mountain Trench, to Astoria, Oregon, where the than 470 dams on the main stem and tributaries. Two Countries: One River Changing Water Levels Most dams on the Columbia River system were built between Deciding how to release and store water in the Canadian the 1940s and 1980s. They are part of a coordinated water Columbia River system is a complex process. Decision-makers management system guided by the 1964 Columbia River Treaty must balance obligations under the CRT (flood control and (CRT) between Canada and the United States. The CRT: power generation) with regional and provincial concerns such as ecosystems, recreation and cultural values. 1. coordinates flood control 2. optimizes hydroelectricity generation on both sides of the STORING AND RELEASING WATER border. The ability to store water in reservoirs behind dams means water can be released when it’s needed for fisheries, flood control, hydroelectricity, irrigation, recreation and transportation. Managing the River Releasing water to meet these needs influences water levels throughout the year and explains why water levels The Columbia River system includes creeks, glaciers, lakes, change frequently.
    [Show full text]
  • The Hells Canyon Dam Controversy
    N 1956, AT THE TENDER AGE OF THIRTY-TWO, Frank Church made a bold bid for the United States Senate. After squeak- I ing out a victory in the hotly contested Idaho Democratic pri- mary, Church faced down incumbent Senator Herman Welker, re- ceiving nearly percent of the vote. One issue that loomed over the campaign was an emerging dis- pute over building dams in the Snake River’s Hells Canyon. While Church and other Democrats supported the construction of a high federal dam in the Idaho gorge, their Republican opponents favored developing the resource through private utility companies. Idaho EVOLUTION voters split on the issue, and so, seeking to avoid a divisive debate, Church downplayed his position during the general election “be- of an cause it was not a winning issue, politically.”1 Senator Frank Church Although Church won the election, he could not escape the is- sue. Indeed, his victory and subsequent assignment to the Senate Committee on Interior and Insular Affairs put him at the center of a growing controversy about damming Hells Canyon. Over the next eighteen years, Church wrestled with balancing Idaho’s demand for economic growth and his own pro-development beliefs with an emerging environmental movement’s demand for preservation of nature—in Idaho and across the nation. As he grappled with these competing interests, Church under- went a significant transformation. While Church often supported development early in his Senate career, he, like few others of his time, began to see the value of wild places and to believe that rivers offered more than power production opportunities and irrigation water.
    [Show full text]
  • Snake River Flow Augmentation Impact Analysis Appendix
    SNAKE RIVER FLOW AUGMENTATION IMPACT ANALYSIS APPENDIX Prepared for the U.S. Army Corps of Engineers Walla Walla District’s Lower Snake River Juvenile Salmon Migration Feasibility Study and Environmental Impact Statement United States Department of the Interior Bureau of Reclamation Pacific Northwest Region Boise, Idaho February 1999 Acronyms and Abbreviations (Includes some common acronyms and abbreviations that may not appear in this document) 1427i A scenario in this analysis that provides up to 1,427,000 acre-feet of flow augmentation with large drawdown of Reclamation reservoirs. 1427r A scenario in this analysis that provides up to 1,427,000 acre-feet of flow augmentation with reservoir elevations maintained near current levels. BA Biological assessment BEA Bureau of Economic Analysis (U.S. Department of Commerce) BETTER Box Exchange Transport Temperature Ecology Reservoir (a water quality model) BIA Bureau of Indian Affairs BID Burley Irrigation District BIOP Biological opinion BLM Bureau of Land Management B.P. Before present BPA Bonneville Power Administration CES Conservation Extension Service cfs Cubic feet per second Corps U.S. Army Corps of Engineers CRFMP Columbia River Fish Mitigation Program CRP Conservation Reserve Program CVPIA Central Valley Project Improvement Act CWA Clean Water Act DO Dissolved Oxygen Acronyms and Abbreviations (Includes some common acronyms and abbreviations that may not appear in this document) DREW Drawdown Regional Economic Workgroup DDT Dichlorodiphenyltrichloroethane EIS Environmental Impact Statement EP Effective Precipitation EPA Environmental Protection Agency ESA Endangered Species Act ETAW Evapotranspiration of Applied Water FCRPS Federal Columbia River Power System FERC Federal Energy Regulatory Commission FIRE Finance, investment, and real estate HCNRA Hells Canyon National Recreation Area HUC Hydrologic unit code I.C.
    [Show full text]
  • Endangered Species Act 1972 1855 Treaties U.S. and Nez Perce
    Harvest Pacific Salmon Treaty (Pacific Salmon Hydro/Habitat Commission - PSC) Federal Columbia River Power System Magnuson Act (Pacific Fishery Biological Opinion Management Council – PFMC) • Dworshak Dam Endangered SpeciesSnake/Columbia Act 1972 summer spill U.S. vs. Oregon Management Agreement • Federal Energy Regulatory Commission • Idaho Power Complex Snake River Synergy is the interaction of elements that when combined produce a total effect that Fall Chinook is greater than the sum of the individual Salmon elements Hatchery Idaho Power Company/Hells Canyon Settlement Agreement Lower1855 Snake River Treaties Compensation U.S. Plan – Publicand Law Nez 94-587, Perce, 99-662, 103-316 NorthwestUmatilla,Yakama Power Act & Warm Springs U.S. vs. Oregon Management Agreement Columbia Basin Treaty Tribes Accords Snake River Falls SEA K 14% PFMC 34% CA NA DA 52% Pacific Salmon Treaty (Pacific Salmon Commission - PSC) Magnuson Act (Pacific Fishery Management Council – PFMC) U.S. vs. Oregon Management Agreement Columbia River Treaty Tribe Harvest Hydro/Habitat Federal Energy Regulatory Commission • Idaho Power Complex Federal Columbia River Power System Biological Opinion & Litigation • Snake/Columbia summer spill Snake River • Juvenile Transportation • Predation Fall Chinook • Estuary Salmon Bonneville Dam 1938 BrownleeIce Harbor Dam 1961 1958 LowerTheOxbow DallesMonumental Dam Dam 1961 1957 Dam 1969 John Day Dam 1971 HellsLittle Canyon Goose DamDam 19671970 Lower Granite Dam 1975 McNary Dam 1954 Warner W. Gardner, Assistant Secretary of the
    [Show full text]
  • Assessment of Fisheries Losses in the Upper Snake River Basin in Idaho Attributable to Construction and Operation of Dams with Federal Hydropower Facilities
    ASSESSMENT OF FISHERIES LOSSES IN THE UPPER SNAKE RIVER BASIN IN IDAHO ATTRIBUTABLE TO CONSTRUCTION AND OPERATION OF DAMS WITH FEDERAL HYDROPOWER FACILITIES Idaho Department of Fish and Game IDFG Report Number 07-52 August 2007 ASSESSMENT OF FISHERIES LOSSES IN THE UPPER SNAKE RIVER BASIN IN IDAHO ATTRIBUTABLE TO CONSTRUCTION AND OPERATION OF DAMS WITH FEDERAL HYDROPOWER FACILITIES Prepared by: Idaho Department of Fish and Game 600 South Walnut Street P.O. Box 25 Boise, ID 83707 IDFG Report Number 07-52 August 2007 TABLE OF CONTENTS Page ASSESSMENT OF FISHERIES LOSSES IN THE UPPER SNAKE RIVER BASIN IN IDAHO ATTRIBUTABLE TO CONSTRUCTION AND OPERATION OF DAMS WITH FEDERAL HYDROPOWER FACILITIES................................................................................ 1 ABSTRACT................................................................................................................................... 1 INTRODUCTION .......................................................................................................................... 2 BACKGROUND AND DESCRIPTION OF STUDY AREAS.......................................................... 2 Anderson Ranch Dam and Reservoir ........................................................................................ 2 Black Canyon Dam and Reservoir............................................................................................. 3 Deadwood Dam and Reservoir.................................................................................................. 4 Boise River Diversion
    [Show full text]
  • Evaluation of Seepage and Discharge Uncertainty in the Middle Snake River, Southwestern Idaho
    Prepared in cooperation with the State of Idaho, Idaho Power Company, and the Idaho Department of Water Resources Evaluation of Seepage and Discharge Uncertainty in the Middle Snake River, Southwestern Idaho Scientific Investigations Report 2014–5091 U.S. Department of the Interior U.S. Geological Survey Cover: Streamgage operated by Idaho Power Company on the Snake River below Swan Falls Dam near Murphy, Idaho (13172500), looking downstream. Photograph taken by Molly Wood, U.S. Geological Survey, March 15, 2010. Evaluation of Seepage and Discharge Uncertainty in the Middle Snake River, Southwestern Idaho By Molly S. Wood, Marshall L. Williams, David M. Evetts, and Peter J. Vidmar Prepared in cooperation with the State of Idaho, Idaho Power Company, and the Idaho Department of Water Resources Scientific-Investigations Report 2014–5091 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior SALLY JEWELL, Secretary U.S. Geological Survey Suzette M. Kimball, Acting Director U.S. Geological Survey, Reston, Virginia: 2014 For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment, visit http://www.usgs.gov or call 1–888–ASK–USGS For an overview of USGS information products, including maps, imagery, and publications, visit http://www.usgs.gov/pubprod To order this and other USGS information products, visit http://store.usgs.gov Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this information product, for the most part, is in the public domain, it also may contain copyrighted materials as noted in the text.
    [Show full text]
  • (E.1-2) Geomorphology of the Hells Canyon Reach of the Snake River
    Geomorphology of the Hells Canyon Reach of the Snake River Steve Miller, CH2M HILL Dick Glanzman, CH2M HILL Sherrill Doran, CH2M HILL Shaun Parkinson, Idaho Power Company John Buffington, University of Idaho and Jim Milligan, University of Idaho (Ret.) Technical Report Appendix E.1-2 May 2002 Revised July 2003 Hells Canyon Complex FERC No. 1971 Copyright © 2003 by Idaho Power Company Idaho Power Company Geomorphology of the Snake River Basin and Hells Canyon CONTENTS Chapter Page Definitions...................................................................................................................................... xi Acronyms.................................................................................................................................... xvii Executive Summary.....................................................................................................................C-1 Preface..........................................................................................................................................C-5 1. Introduction and Geologic and Geomorphic History............................................................... 1-1 1.1. Introduction ...................................................................................................................... 1-2 1.2. Current Physiographic Description .................................................................................. 1-3 1.3. Pre-Quaternary Geologic History....................................................................................
    [Show full text]
  • Columbia Basin White Sturgeon Planning Framework
    Review Draft Review Draft Columbia Basin White Sturgeon Planning Framework Prepared for The Northwest Power & Conservation Council February 2013 Review Draft PREFACE This document was prepared at the direction of the Northwest Power and Conservation Council to address comments by the Independent Scientific Review Panel (ISRP) in their 2010 review of Bonneville Power Administration research, monitoring, and evaluation projects regarding sturgeon in the lower Columbia River. The ISRP provided a favorable review of specific sturgeon projects but noted that an effective basin-wide management plan for white sturgeon is lacking and is the most important need for planning future research and restoration. The Council recommended that a comprehensive sturgeon management plan be developed through a collaborative effort involving currently funded projects. Hatchery planning projects by the Columbia River Inter-Tribal Fish Commission (2007-155-00) and the Yakama Nation (2008-455-00) were specifically tasked with leading or assisting with the comprehensive management plan. The lower Columbia sturgeon monitoring and mitigation project (1986-050-00) sponsored by the Oregon and Washington Departments of Fish and Wildlife and the Inter-Tribal Fish Commission also agreed to collaborate on this effort and work with the Council on the plan. The Council directed that scope of the planning area include from the mouth of the Columbia upstream to Priest Rapids on the mainstem and up to Lower Granite Dam on the Snake River. The plan was also to include summary information for sturgeon areas above Priest Rapids and Lower Granite. A planning group was convened of representatives of the designated projects. Development also involved collaboration with representatives of other agencies and tribes involved in related sturgeon projects throughout the region.
    [Show full text]